
Reliable Asynchronous Links for SoC

Ethiopia Nigussie, Juha Plosila, and Jouni Isoaho
Communication Systems Laboratory

Department of Information Technology, University of Turku
Turku, Finland

{ethnig, juplos, jisoaho} utu.fi

Abstract- this paper presents two asynchronous links between
any two independently clocked synchronous modules. The first
link is based on using synchronizers and synchronous and
asynchronous FIFOs which compensates the increase of
latency due to synchronization. Due to this the latency of this
link is reduced to 2.08nsec. The mean time between failures of
this link is 35 years, which is more than enough for any design.
The second link generates clock for each module locally and
stops it whenever there is communication between module and
link. In this link there is no synchronization failure at all. The
latency and power consumption of both links are very small
which makes them efficient links for SoC. Since the two link
architectures let the use of different clocks in each synchronous
module, it makes the system modular and enables easy re-
usage of different synchronous modules in the system. The
circuits are simulated using the analog environment of Spectre
with 0.13um technology.

I. INTRODUCTION
Due to technology scaling, gigascale integration of

devices on a single chip becomes a reality. At this integration
level clock distribution and alignment has become an
increasingly challenging problem, consuming an increasing
portion of resources such as wiring area, power, and design
time. Furthermore, with the advent of Systems-on-a Chip
(SoC), synchronizing all blocks of a large SoC to a single
global clock without degrading performance becomes a very
difficult task. Because of this modem SoC designs are
compositions of several independently clocked subsystems
which communicate each other through different ways.

One of the solutions to this problem is to divide the
system into several optimized clock domains which interact
via self-timed handshake signaling [1]. Such a system
enables flexible use of stoppable clocks providing automatic
power down of idle system modules. Also the clock skew-
related timing problems are restricted to relatively small
locally synchronous modules. In addition to these, it makes
easy to have a modular system.

In this paper, we presented two different types of
asynchronous links between any two independently clocked
modules. The first link is based on the principle of using

synchronizers and additional circuitry which helps to make
use of the clock cycle taken by the synchronizers. The
second one uses stoppable clock when there is a risk of
metastability. This is possible by generating the clock from a
delay line to each module.

Therefore, in this design the problem of clock skew are
not anymore system level design issues. Instead the clock
skew and routing problems are limited only to a locally
synchronous module which is relatively small compared to
the whole system. This simplifies the design process of a
complex system enabling easy re-usage of different
synchronous nodes. Furthermore, the asynchronously
controlled stoppable clocks make the automatic power-down
operation of currently idle blocks possible. [2]

The two link architectures are presented in Section II,
and their performance analysis in Section III.

II. LINK ARCHITECTURES
As we know in SoC, there are many processing elements

(blocks) which communicate with each other. Every block
consists of sender, receiver and data processing modules.
Four phase handshake signaling is used for both links. The
architectures of the two different types of links are presented
as follows

A. Link I
As it is shown in Figure 1, there are active sender and

passive receiver. The active sender initiates the
communication by sending a request to the passive receiver
and the passive receiver accepts the data and sends back an
acknowledgment.

Both the synchronous and asynchronous FIFOs help in
handling burst mode data transfer besides compensating the
throughput degradation which occurred due to the two
synchronization delays. These FIFOs store the data while the
synchronizer is synchronizing the acknowledgment signal
with clock 1 and the request signal with clock 2. The size of
these two FIFOs is determined by many factors. The main
factors are the two clock frequencies, in other words, the data
production and consumption rate, the average data traffic in

0-7803-9294-9/05/$20.00 C2005 IEEE 124

, ASYNCHRONOUS
'COMMUNICATION
i CHANNEL

-r-

I

I

I

I

1

1 I

I

I

PASSIVE RECEIVER

Figure 1. General Block Diagram of Link I

the link and the delay due to synchronizations.

The synchronous FIFO uses a ring counter for generating
the write and read pointer. When the FIFO receives request
signal from the sender, first it checks whether the FIFO is
full or not. If it has space for the incoming data, the enable
signal for the write counter becomes high. This in turn makes
the write pointer to start enabling the data latch to store the
incoming data. At the next rising edge of the clock the
acknowledgment signal will be sent back to the sender. The
acknowledgment signal goes down at the next clock edge
after the request signal goes down by the module. As soon as

the synchronous FIFO stores one word data or whenever it is
not empty, it sends request signal to the E-element. The E-
element in turn sends request to the asynchronous FIFO
control unit.

The E-element shown in Figure 1, starts performing its
task after detecting a request event, Reql, from the
synchronous FIFO. Then Reqr will be in up going phase of
the handshake cycle and starts then the return to zero phase
immediately after sending an acknowledgement through the
passive port. Here the E-element serves in saving time by
making the initialization of the request and acknowledgment
signal in parallel. The gate-level design of E-element and its
lower asymmetric C-element is shown in Fig 2. The lower
asymmetric C-element acts as C-element for falling output
transitions. One of the two inputs, b, is like an active-high set
signal. The VHDL abstraction of this gate is as follows,

if(b='l') then c <= '1';
elsif (a='0') and (b='O') then c <= '0';
else c <= c;
end if;
To read the data from the synchronous FIFO, the

synchronized acknowledgment signal which comes from the
E-element is used as enable input for the read counter, which
generates the read pointer for the FIFO. If the asynchronous
FIFO has place to store the word, it accepts the data and
sends acknowledgment to the E-element. In parallel with this
it sends request to the next control unit and so on. Finally the
request reaches to the receiver after synchronized with clock
2. Then the receiver sends acknowledgment back after
accepting the data.

There are two synchronizers in this link as it is shown in
Figure 1. We used brute force synchronization for both
synchronizers [3].

The asynchronous FIFO is a simple micropipelined
datapath with control unit. It uses an enabled latch for storing
the data and the control unit which helps in generating the
handshake and the enable signals for the data latch. The data
latch is active-low enabled by a lock signal, which is also
used as a request signal for the next latch. The control logic
used for this FIFO is shown in Figure 3. The control unit has
two three input upper asymmetric C-elements and one NOR
gate with delay logic.

The upper asymmetric C-element acts as a C-element for
rising output transitions. One of the three inputs (a) is like an

active-low reset signal. The output is cleared by setting this
input low. The VHDL abstraction of this gate is as follows,

if (a='l') and (b='l') and (d='1') then c <= '1';
elsif (a='O') then c <= '0';
else c <= c;
end if;

One of the three inputs Reqi and the inverted AckO of
the left and right upper asymmetric C-element respectively
acts like an active low reset signal. The ReqO signal is used
as an input request for the next control unit and an active-low
enable signal (Lock) for its data latch. This signal locks the
data latch as far as the data is not taken by the consecutive
data latch or in case of the last data latch by the module.
When the FIFO is full all the data latches get locked.

0Reql Reqr

Ackl Ackr

Figure 2. E-Element and its lower asymmetric C-element

*[[Reql]; Reqrt; [Ackr]; AcklIT; Reqrl ; [-nReql A--Ackr];Ackl l]
communication action of E-element, [] means wait; *[] means repeat

125

Module
1

Module
2

Clk 2

Figure 3. Control Unit of the Asynchronous FIFO

B. Link II
The block diagram of this link is shown in Figure 4, it

has sender, receiver, synchronous module (processing
element) with its clock generating and stopping circuitry. In
each module a specific clock is generated locally and
whenever there is a need of communication between the
sender and module or receiver and module the generated
clock will be stopped.

If there is no request either from sender or receiver to
communicate with the module, the output clock is inverted
and then fed back to a delay line and to one input of the
arbiter 2. The arbiter then grants in the favor of the clock
circuit and is merged with the output from the delay line.
This oscillatory process continues and a stable clock signal is
produced. The C-element is used to hold the state of the
clock whenever arbiter 2 grants in favor of request.

There are two clock stopping requests, one from the
sender to send acknowledgment to the module and the other
from the receiver to send request to the module. The block
diagram of clock generating and stopping is shown in Figure
7.

Arbiter 1 grants in the favor of one of the request to stop
the clock and then Arbiter 2 grants either the clock or the
granted request from arbiter 1. One of the requests to stop the
clock gets acknowledged whenever arbiter 2 grants the
request not the clock. The upper asymmetric C-element is
used to allow the clock to run after every grant of the
request.

The sender requests to stop the clock if there is request
from the module to transfer data to another module, if the
sender is not sending request to transfer data to receiver, if
there is no acknowledgment from the sender to the module
and if the clock is not stopped due to request of stopping
from the sender. The block diagram of sender module is
shown in Fig. 5. It consists of the active-high enabled data
latch, AND gate, E-element which has the same advantages
as in link I, two active-low reset D-flip flops and upper
asymmetric C-element.

The receiver module is the same as passive receiver of
link I with few exceptions, Link II receiver doesn't need
synchronizer and instead of N place asynchronous HFO it
has one place FIFO. In addition to these it has E-element, the

rise in request from the control unit, causes an immediate
rise in request to stop the clock and as soon as the clock
stopping gets acknowledged the request to the synchronous
module will be high. The logic diagram of Link II receiver
is shown in Figure 6.

Figure 5. Link II Sender

Figure 6. Link II Receiver

126

Figure 4. Block diagram of Link 11

Figure 7. Clock generating and stopping of Link II

III. PERFORMANCE ANALYSIS

As shown in Fig. 1, Link I has risk of synchronization
failure and increase in latency due to the time needed to
synchronize the request and acknowledgment signal to the
two independently clocked modules. In this design, we used
two different types of FIFOs, synchronous and asynchronous
to compromise the throughput degradation due to
synchronization delay. The size of each of the two FIFOs in
this design is three and with these sizes it works correctly as
it is verified by simulation. There is no data dropping or
duplicating.

To have reliable link throughout the life time of the
system, the link should have mean time between failures
greater than the life time of the system. Since the link is
designed with 0.13um technology, regeneration time
constant, X = 30psec. Taking average clock frequency of the
two modules, fc,L = 800MHz and data frequency, f&,,, =
200MHz, the mean time between failures using the standard
formula [4] is 35 years. This is long enough for any design
since almost all design life time is less than 35 years.

In Link II, instead of using synchronizer to prevent
metastability failure, clock stretching is used when there is a
risk of metastability. So this means synchronization failure is
not any more concern of Link II. Furthermore the arbiter has
metastability filter, metastability is a delay issue not a failure.
For example in Arbiter 2, if the clock falls and request goes
high around the same time then the arbiter may go
metastable. This is safe since the arbiter guarantees that the
clock cannot continue and the request can not be propagated
until the metastablility has resolved.

As it is seen from Table I below, link I latency is almost
three times of Link II. This is due to the time taken by the
synchronization. The power consumptions on both links are
very small and almost comparable.

TABLE I. PERFORMANCE ANALYSIS

PERFORMANCE LINK I LINK II
PARAMETER

Latency (nsec) 2.08 0.7
Power consumption (,W) 54.63 65.54

IV. CONCLUSIONS

Two different asynchronous links for any two
independently clocked modules are presented. The first link
uses synchronizers to communicate between the modules and
the asynchronous link. As it is well known using
synchronizers has risk of failure and in our design the mean
time between failures is 35 years, which is more than enough
for any design. The speed of this link mainly depends on the
data production and consumption rate, the average data
traffic on the channel and the size of the FIFOs. As expected
the latency of this link is three times greater than link II
latency, this is due to synchronization. The two links have
almost equal power consumption. In Link II there is no
synchronization failure, instead there may be little increase
in latency to resolve the metastability. The two links are
designed using four phase signaling, we are continuing the
link performance analysis for two phase signaling and will
make conclusion about which signaling is efficient.

The presented link architectures illustrate two feasible
ways to construct a globally asynchronous locally
synchronous system with very small synchronization failure
rate or without any synchronization failure. Both links have
very small latency and power consumption, which makes
them more suitable for SoC communication channel.
Furthermore, the two links architecture allows truly modular
design and easy plug and play of different synchronous
modules, since no global timing assumptions have to be
made. In addition, the physical timing problems are made
local, and thereby the simulation and verification tasks are
simplified.

REFERENCES
[1] J. Sparso, S. Furber, Principles of Asynchronous Circuit Design A

System Perspective, Kluwer Academic Publishers, Dordrecht, 2001.
[2] L. Plana and S. Nowick Architectural Optimization for Low-Power

Nonpipelined Asynchronous Systems. In IEEE Trans. On VLSI
Systems, 6(1) March 1998.

[3] W.J. Dally, J.W. Poulton, Digital System Engineering, Cambridge
University Press, Cambridge, 1998.

[4] C. Dike and E. Burton, "Miller and Noise Effects in a Synchronizing
Flip-flop," IEEE Journal of Solid-State Circuits, 34(6), pp. 849-855,
1999.

127

