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Abstract: The degradation of the pharmaceutical compound diclofenac in an aqueous solution
was studied with an advanced oxidation method, catalytic ozonation. Diclofenac was destroyed
in a few minutes by ozonation but several long-lasting degradation by-products were formed.
For this reason, the combination of heterogeneous catalysts and ozonation was applied to eliminate
them completely. The kinetics of the diclofenac degradation and the formation of by-products
were thoroughly investigated. Loading of Pt on the catalysts resulted in an improvement of the
activity. The Mesoporous Molecular Sieves (MCM) were one of the promising catalysts for the
degradation of organic pollutants. In this study, six heterogeneous catalysts were screened, primarily
MCM-22-100 catalysts with different Pt concentrations loaded via the evaporation-impregnation
(EIM) method, and they were applied on the degradation of diclofenac. It was found that the
presence of Pt improved the degradation of diclofenac and gave lower concentrations of by-products.
The 2 wt % Pt-H-MCM-22-100-EIM demonstrated the highest degradation rate compared to the
proton form, 1% or 5 wt % Pt concentration, i.e., an optimum was found in between. Pt-H-Y-12-IE and
Pt-γ-Al2O3 (UOP)-IMP catalysts were applied and compared with the MCM-22 structure. Upon use
of both of these catalysts, an improvement in the degradation of diclofenac and by-products was
observed, and the 2 wt % Pt-H-MCM-22-100-EIM illustrated the maximum activity. All important
characterization methods were applied to understand the behavior of the catalysts (X-ray powder
diffraction, transmission electron microscopy, nitrogen physisorption, scanning electron microscopy,
energy dispersive X-ray micro-analyses, pyridine adsorption-desorption with FTIR spectroscopy,
X-ray photoelectron spectroscopy). Finally, leaching of Pt and Al were analyzed by inductively
coupled optical emission spectrometry.
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1. Introduction

The appearance of pharmaceutical compounds in the aquatic environment, particularly in the
surface waters, has become a global concern because various pharmaceuticals are frequently detected
in wastewaters, surface waters as well as ground waters around the world. In rivers and surface
waters, pharmaceuticals are sometimes observed at very high concentrations, even up to mg per liter
scales [1–3]. This is mainly due to the residuals of veterinary and medical pharmaceuticals discharged
to surface waters from the excreta of human and animals, the sewage effluent of water treatment
processes, as well as hospital and domestic wastewaters [4]. Owing to the typically strong biological
activity of the pharmaceuticals, they are harmful for marine animals, micro-organisms and potentially
human beings as well [5,6]. Most of these compounds are persistent to the treatment applied in
conventional wastewater treatment plants [7].

Diclofenac (2-(2-(2,6-dichlorophenylamino) phenyl) acetic acid), or DCF, is a non-steroidal
anti-inflammatory drug (NSAID). The molecular structure of DCF is displayed in Figure 1. DCF can
be used as oral tablets or as a topical gel for the prescription of osteoarthritis, rheumatoid arthritis,
migraine headache, and menstrual cramps [8,9]. DCF has been identified in numerous freshwaters
worldwide, and more than 100 publications have announced its occurrence in surface waters and
ground waters. This medicine is analyzed in freshwaters at Eco toxicological levels [10]. As an example,
DCF was reported by the Ministry of Health of Malaysia (2010) as one the most generally used domestic
drug, and it was detected in the three largest rivers Lui, Gombak, and Selangor at concentrations of 2.76,
4.84 ng/L, and 4.30 ng/L, respectively [4]. In Pakistan, DCF and five of its transformation by-products
have been detected in the Malir and Lyari River, as well as in surface and effluent waters of Karachi.
The highest measured concentrations of DCF, 4′-hydroxydiclofenac, and 5-hydroxydiclofenac were
85,000 ng/L, 18,000 ng/L, and 3000 ng/L, respectively [11]. The occurrence of DCF has been studied
in waste waters of Colombian rivers too. Concentrations corresponding to 400 ng/L at Bogotá and
256 ng/L at Medellin wastewater influent have been detected. Even after the water treatment plants
(in the effluents), the concentrations were 340 ng/L and 170 ng/L [2]. In Europe, too, the concentrations
of DCF are alarming. For example, in the surface waters of Milan it was detected at up to 100 ng/L [6].
In the investigation of the concentrations of pharmaceuticals along a 32 km expansion of a highly
wastewater contaminated watercourse (rivers and lakes) in Eastern Finland, the DCF load varied from
6000 mg/day to 10,000 mg/day depending on the seasons [12].
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DCF is reported to have potentially adverse effects on aquatic organisms such as that it has an
influence on the kidney and gill integrity in the brown trout a salmonid kind and more over it have
potential of bioaccumulation via food chain [13–15]. Stickleback fish which was exposed to sewage
effluents containing DCF at low concentrations (µg/L) were affected by kidney alterations [16].

Usually, DCF is not entirely degraded via wastewater treatment methods. It is in fact poorly
biodegradable throughout the entire wastewater treatment plants [8,17]. Consequently, it remains in
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effluents and pollutes surface and ground waters which are the principal sources of drinking water.
Indeed, frequent detection of DCF in drinking water sources prove this evidence [18,19]. DCF can
potentially interact with organic and inorganic contaminants in the environment, especially in the
wastewater treatment processes, for instance with organic pollutants and metals, which may drive to
the production of other harmful pollutants [20].

Various studies have focused on how to decrease the toxicity and improve the degradation
of emerging pharmaceutical pollutants. Advanced oxidation processes (AOPs) are one of the most
promising technologies for the removal of organic macro-pollutants. They could provide practical
technologies to the degradation of non-biodegradable pharmaceuticals in contaminated wastewater
as a replacement to the biological treatment [21–23]. Some methods have been proposed for the
removal of DCF from wastewater using adsorption [24], photocatalytic degradation [25], the use of
microorganisms [26], and sludge treatment [8]. Still, most of the treatments proposed have issues
such as long-term procedure, low effectiveness, adverse environmental impact, high cost, or they
have been proposed without analyzing the by-products at all [24]. A promising AOP method is
ozonation, because ozone has the ability to attack aromatic molecules and unsaturated bonds, and it is
a well-known method for the removal of pharmaceuticals [27,28]. There is, however, a risk concerning
the formation of toxic by-products appearing during ozone treatment [29]. While 99% of DCF can
be removed 99% by ozonation, only 24% of it was mineralized and the toxicity was only slightly
decreased [30]. Combination of heterogeneous catalysis and ozonation improves the removal of organic
micro pollutants by the transformation of ozone into high reactive species or by direct reactions on
the surface of catalysts [31]. Aguinaco et al. investigated the elimination of DCF from the water via
photocatalytic ozonation, where TiO2 was employed as a catalyst. Their study revealed that DCF was
removed after 6 min, and the total amount of organic compounds were removed to 60% after 60 min of
reaction [32]. Loading Pt on supported catalysts increases their activity during the ozonation process
in the elimination of organic pollutants such as Pt-supported alumina in the removal of paracetamol
and Pt-Ce/BEA catalyst in toluene oxidation [33,34].

This work investigates the efficiency of catalytic ozonation on the removal of DCF and the
evolution of by-products. Pt-modified catalysts were synthetized, several types of characterizations
were applied to understand the catalytic behavior. The effect of the Pt loading on the catalysts,
the catalyst concentration and catalyst structures in the transformation of DCF and its degradation
by-products were studied, too.

2. Results and Discussion

2.1. Results Physico-Chemical Characterization of Pt-Modified Catalysts

2.1.1. X-Ray Powder Diffraction (XRD)

X-ray powder diffraction was used to determine the phase purities and structures of
H-MCM-22-100, 1 wt % Pt-MCM-22-100-EIM, 2 wt % Pt-MCM-22-100-EIM, 5 wt % Pt-MCM-22-100-EIM,
Pt-H-Y-12-IE and Pt-γ-Al2O3 (UOP)-IMP catalysts. The measured XRD patterns of the MCM-22-100
samples are shown in Figure 2a. (2θ: 0–40) and 2b. (2θ: 40–100). The reference pattern fitted to the data
is a zeolite structure with the MWW framework [35]. The 2% and 5 wt % Pt samples were phase pure.
The detection limit for the impurities is around 1 vol.% when the reference pattern fits the data well,
like in this case. The 1 wt % Pt sample has a hint of Si phase visible. The sample without Pt has extra
peaks possibly originating from a different type of a framework. Estimating from the relative peak
intensity, amount of the impurity phase was about 10–20 vol.%. The results are collected in Table 1.
The lattice parameters given in the table were obtained from the Rietveld refinements and the crystal
sizes were estimated from the FWHMs of the (102) peaks using the Scherrer equation after correcting
the FWHMs for the instrument resolution. The agreement between the fits and the measured XRD data
is good in the MCM-22-100 sample series. Thus, the phase identification and the lattice parameters can
be reported with a high degree of certainty. The impurities in the H-MCM-22-100 sample could have
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two different sources: one is a large unit cell structure visible as peaks at the low angles and the other
is a small unit cell structure visible as a shoulder in the peak at 26◦ and as a separate peak at 49.5◦.
The latter peaks do not match with Al, Si or Al2O3.

The measured XRD pattern of the Pt-H-Y-12-IE sample is shown in Figure 2c. The reference pattern
fitted to the data is a zeolite structure with the Faujasite (FAU) framework [36]. In addition to the FAU
framework, the Pt-H-Y-12-IE sample shows a Pt phase. A fcc structure was used to fit the Pt phase.
The fit results are collected in Table 1. The lattice parameters given in the table were obtained from
the Rietveld refinements and the crystal sizes were estimated from the FWHMs of the (331) peak for
FAU and of the (111) peak for Pt phase using the Scherrer equation after correcting the FWHMs for the
instrument resolution.

The measured XRD pattern of the Pt-γ-Al2O3 (UOP)-IMP sample is displayed in Figure 2d.
The pattern shows broad smooth features which contain multiple peaks smeared by the Scherrer
broadening into a single large peak. The data were Rietveld refined using a tetragonal unit cell [37].
The fit results are collected in Table 1. The lattice parameters and the crystal sizes given in the table for
the Pt-γ-Al2O3 (UOP)-IMP sample were obtained from the Rietveld refinements.

The majority phase in all the four types of MCM-22 zeolite catalysts were MWW. There were some
impurities present in the catalysts, which were present as SiO2 domains in the synthesized MCM-22
zeolite. The presence of SiO2 phase in the MCM-22 catalysts were attributed to the unreacted source
of silica. It is noteworthy to mention that some of the peaks appearing, which were not identified
as SiO2, Al2O3 can be attributed to the PtO2 oxide phase. The three Pt-modified catalysts 1 wt %
Pt-MCM-22-100-EIM, 2 wt % Pt-MCM-22-100-EIM and 5 wt % Pt-MCM-22-100-EIM, peaks present as
PtO2 should be observed. However, due to small amounts of Pt in 1 wt % Pt-MCM-22-100-EIM and
2 wt % Pt-MCM-22-100-EIM, PtO2 phase was not visible. Further explanation for the absence of the
PtO2 phase could be nano size of PtO2 < 3 nm which are not detected by an X-ray powder diffractometer.

The agreement between the fits and the measured XRD data is reasonable in both Pt-H-Y-12-IE
and Pt-γ-Al2O3(UOP)-IMP samples. Resolving a small fraction of Pt particles from the γ-Al2O3

phase is very challenging because all the Pt peaks, except for a single peak at 80◦, coincide with
the γ -Al2O3 peaks. To detected small amounts of Pt in γ-Al2O3 would need to be compared the
Pt-γ-Al2O3(UOP)-IMP sample measurement to a clean reference sample of γ-Al2O3.

Table 1. The Rietveld refinement results for the H-MCM-22-100, 1 wt % Pt-MCM-22-100-EIM, 2 wt %
Pt-MCM-22-100-EIM, 5 wt % Pt-MCM-22-100-EIM Pt-H-Y-12-IE and Pt-γ-Al2O3 (UOP)-IMP catalysts.

Sample Phase Phase Fraction (wt %) α (A◦) c (A◦) Crystal Size (nm)

H-MCM-22-100 MWW 80–90 14.25 25 29

1 wt % Pt-MCM-22-100-EIM MWW
Si

96.1
3.9

14.27
5.4

25 19

2 wt % Pt-MCM-22-100-EIM MWW >99 14.25 25 20

5 wt % Pt-MCM-22-100-EIM MWW >99 14.23 25 22

Pt-H-Y-12-IE FAU
Pt (fcc)

98.4(3)
1.6(3)

24.341(1)
3.925(1)

- 66
30

Pt-γ-Al2O3 (UOP)-IMP γ-Al2O3 - 5.678(3) 7.866(4) 4.6
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Figure 2. X-ray powder diffraction patterns of H-MCM-22-100, 1 wt % Pt-MCM-22-100-EIM, 2 wt % 
Pt-MCM-22-100-EIM, 5 wt % Pt-MCM-22-100-EIM (a and b), Pt-H-Y-12-IE (c) and Pt-γ-Al₂O₃ (UOP)-
IMP (d) catalysts. 
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The TEM images of a) H-MCM-22-100, b) 1 wt % Pt-MCM-22-100-EIM, c) 2 wt % Pt-MCM-22-
100-EIM, d) 5 wt % Pt-MCM-22-100-EIM, e) Pt-H-Y-12-IE and f) Pt-γ-Al₂O₃ (UOP)-IMP catalysts and 
Pt particle size distributions are illustrated in histograms displayed in Figure 3. Figure 3a shows the 
structure of H-MCM-22-100 by TEM images, the lengths of the channels can be measured from these 
images between 1.12–1.63 nm. 

The TEM images exhibited the largest Pt particles for the Pt-H-Y-IE catalyst (30.6 nm) and the 
second largest Pt particles for 1 wt % Pt-MCM-22-100-EIM (24.9 nm). The smallest average Pt- 
particles were obtained for 5 wt % Pt-MCM-22-100-EIM (2.7 nm) catalyst. The explanation for the 
very small nanoparticles of Pt in 5 wt % Pt-MCM-22-100-EIM compared to 1 wt % Pt-MCM-22-100-
EIM can be attributed to a very high dispersion of Pt on the H-MCM-22-100 catalyst. Furthermore, 
high dispersion of Pt nanoparticles in H-MCM-22-100 can also be attributed to the presence of Pt 
nanoparticles only at the size of 5 nm (Figure 3d). Additionally, the description of variations in the 
average Pt particles is attributed to the methods of Pt introduction in the support materials H-MCM-
22, H-Y and Al2O3 (Table 2). Furthermore, the structures of the supports H-MCM-22, H-Y and Al2O3, 
surface area, Brønsted and Lewis acid sites of these catalytic materials can also influence the 
formation of Pt particles, size and dispersion. 

Figure 2. X-ray powder diffraction patterns of H-MCM-22-100, 1 wt % Pt-MCM-22-100-EIM, 2 wt %
Pt-MCM-22-100-EIM, 5 wt % Pt-MCM-22-100-EIM (a,b), Pt-H-Y-12-IE (c) and Pt-γ-Al2O3 (UOP)-IMP
(d) catalysts.

2.1.2. Transmission Electron Microscopy (TEM)

The TEM images of (a) H-MCM-22-100, (b) 1 wt % Pt-MCM-22-100-EIM, (c) 2 wt %
Pt-MCM-22-100-EIM, (d) 5 wt % Pt-MCM-22-100-EIM, (e) Pt-H-Y-12-IE and (f) Pt-γ-Al2O3 (UOP)-IMP
catalysts and Pt particle size distributions are illustrated in histograms displayed in Figure 3. Figure 3a
shows the structure of H-MCM-22-100 by TEM images, the lengths of the channels can be measured
from these images between 1.12–1.63 nm.

The TEM images exhibited the largest Pt particles for the Pt-H-Y-IE catalyst (30.6 nm) and the
second largest Pt particles for 1 wt % Pt-MCM-22-100-EIM (24.9 nm). The smallest average Pt- particles
were obtained for 5 wt % Pt-MCM-22-100-EIM (2.7 nm) catalyst. The explanation for the very small
nanoparticles of Pt in 5 wt % Pt-MCM-22-100-EIM compared to 1 wt % Pt-MCM-22-100-EIM can be
attributed to a very high dispersion of Pt on the H-MCM-22-100 catalyst. Furthermore, high dispersion
of Pt nanoparticles in H-MCM-22-100 can also be attributed to the presence of Pt nanoparticles only
at the size of 5 nm (Figure 3d). Additionally, the description of variations in the average Pt particles
is attributed to the methods of Pt introduction in the support materials H-MCM-22, H-Y and Al2O3

(Table 2). Furthermore, the structures of the supports H-MCM-22, H-Y and Al2O3, surface area,
Brønsted and Lewis acid sites of these catalytic materials can also influence the formation of Pt particles,
size and dispersion.
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Figure 3. Transmission electron microscope (TEM) images and Pt particle size distribution histograms
of (a) H-MCM-22-100, (b) 1 wt % Pt-MCM-22-100-EIM, (c) 2% nwt Pt-MCM-22-100-EIM, (d) 5% nwt
Pt-MCM-22-100-EIM, (e) Pt-H-Y-12-IE, and (f) Pt-γ-Al2O3 (UOP)-IMP.

Table 2. Pt particle size average of 1 wt % Pt-MCM-22-100, 2 wt % Pt-MCM-22-100, 5 wt %
Pt-MCM-22-100-EIM, Pt-H-Y-12-IE and Pt-γ-Al2O3 (UOP)-IMP catalysts.

Entry Catalyst Average Pt Particle Size Distribution (nm)

1 1 wt % Pt-MCM-22-100-EIM 24.9
2 2 wt % Pt-MCM-22-100-EIM 8.1
3 5 wt % Pt-MCM-22-100-EIM 2.7
4 Pt-H-Y-12-IE 30.6
5 Pt-γ-Al2O3 (UOP)-IMP 9.5

2.1.3. Nitrogen Physisorption

The catalysts were characterized by nitrogen physisorption for the measurement of the specific
surface areas and the specific pore volumes. The surface areas were calculated the aid of the
Brunauer-Emmett-Teller (BET) theory. The results from nitrogen physisorption analysis are presented
in Table 3.

Table 3. Specific surface area and pore volume of the catalysts used in the ozonation experiments.

Entry Catalyst Specific Surface Area (m2/g) Specific Pore Volume (cm3/g)
Fresh Spent Fresh Spent

1 H-MCM-22-100 538 431 0.191 0.153
2 1 wt % Pt-MCM-22-100-EIM 708 493 0.251 0.175
3 2 wt % Pt-MCM-22-100-EIM 631 464 0.224 0.165
4 5 wt % Pt-MCM-22-100-EIM 652 468 0.231 0.166
5 Pt-H-Y-12-IE 835 767 0.296 0.275
6 Pt-γ-Al2O3 (UOP)-IMP 238 189 0.767 0.493
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The highest specific surface areas and pore volumes were obtained for the Pt-H-Y-12-IE catalyst
(835 m2/g). For the spent Pt-H-Y-12-IE catalyst a decrease of the surface area and pore volume was
observed. This decrease in the surface area and pore volume is attributed to the coke formation in the
pores of the Pt-H-Y-IE zeolite catalyst. All the spent catalysts studied in the reaction showed a decrease
in the surface area and the pore volume. However, the extent to which the decrease in surface area and
pore volume took place, was dependent on the structure of zeolite, i.e., H-MCM-22, H-Y and Al2O3.
The Pt-γ-Al2O3 (UOP)-IMP spent catalyst showed the highest decrease in the surface area, followed
by H-MCM-22 spent zeolite catalyst according to Table 3. The Pt-modified H-MCM-22 and H-Y-12
zeolite catalysts exhibited lower surface areas than the Pt-modified H-MCM-22, H-Y-12 fresh catalysts.
The reason for such a decrease in the surface area for Pt-γ-Al2O3 (UOP)-EIM (189 m2/g) is probably
due to the coke formation in the pores of the catalysts. The Pt-modified MCM-22-100-EIM catalysts
exhibited a smaller decrease in the surface area (Table 3) for the spent catalysts. A plausible explanation
for the lower decrease in the surface area for 1 wt % Pt-, 2 wt % Pt-, 5 wt % Pt-H-MCM-22-100-EIM
can be attributed to the presence of Pt- in the MCM-22 zeolite catalysts, which has a coke inhibiting
property. Similarly, decrease in the surface area for the Pt-H-Y-IE catalyst (767 m2/g) spent catalyst was
much lower than the fresh Pt-H-Y-IE (835 m2/g) catalyst.

2.1.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Microanalyses

Scanning electron microscopy (SEM) was applied for the measurement of the crystal size, shape
and distributions of the synthesized catalytic materials. Furthermore, the crystal size distributions
for the H-MCM-22, Pt-modified H-MCM-22-100-EIM, H-Y-IE and γ-Al2O3 (UOP)-IMP catalysts were
measured as (100–800 nm) and (300–800 nm), respectively (Figure 4). The differences in the crystal
size distributions for Pt-modified H-MCM-22-100-EIM and Pt-modified H-Y-IE are attributed to the
variations in the shapes and structures of the studied H-MCM-22 (MWW) and H-Y (FAU) zeolites. It is
noteworthy to mention that modifications of pristine H-MCM-22 and H-Y zeolite catalysts with Pt- did
not influence the parent structures (Figure 4). The largest average crystal size (396 nm) was measured for
5 wt % Pt-H-MCM-22-100-EIM catalyst among the 1 wt % Pt-, 2 wt % Pt-, 5 wt % Pt- catalysts. The second
largest crystals were measured for H-MCM-22 (386 nm) catalyst. The Pt-H-Y-IE zeolite catalyst exhibited
the average crystal size (493 nm). The crystal size distribution of the (a) H-MCM-22-100, (b) 1 wt %
Pt-MCM-22-100-EIM, (c) 2 wt % Pt-MCM-22-100-EIM, (d) 5 wt % Pt-MCM-22-100-EIM, (e) Pt-H-Y-12-IE
and (f) Pt-γ-Al2O3 (UOP)-IMP catalysts are presented in Figure 4a–f.



Catalysts 2020, 10, 322 9 of 25

Catalysts 2020, 10, 322 9 of 25 

 

 

Figure 4. Cont.



Catalysts 2020, 10, 322 10 of 25
Catalysts 2020, 10, 322 10 of 25 

 

 

Figure 4. SEM images and crystal size distribution histograms of (a) H-MCM-22-100, (b) 1 wt % Pt-
MCM-22-100-EIM, (c) 2 wt % Pt-MCM-22-100-EIM, (d) 5 wt % Pt-MCM-22-100-EIM, (e) Pt-H-Y-12-IE 
and (f) Pt-γ-Al₂O₃ (UOP)-IMP catalysts. 

The amounts of Pt (wt %) in the Pt-modified H-MCM-22-100-EIM, H-Y-12 and γ-Al2O3 catalysts 
were determined using energy dispersive X-ray micro-analysis. The smallest amount of Pt (0.63 wt 
%) (Table 4) was measured for 1 wt % Pt-H-MCM-22-100-EIM catalyst and the largest amount of Pt 
(7.13 wt %) was measured for Pt-γ-Al2O3 catalyst. The differences in the loadings of Pt in H-MCM-
22-100, H-Y-12 and γ -Al2O3 catalysts were attributed to the methods of the catalyst synthesis, the 
support structure and the SiO2/Al2O3 ratio of the zeolites. 

Table 4. Average crystal size and Pt concentration of H-MCM-22-100, 1 wt % Pt-MCM-22-100, 2 wt % 
Pt-MCM-22-100, 5 wt % Pt-MCM-22-100-EIM, Pt-H-Y-12-IE and Pt-γ-Al₂O₃ (UOP)-IMP catalysts. 

Entry 
catalyst Average Crystal Size (nm) Pt Concentration 

(wt %) 

1 H-MCM-22-100 386.20 - 

2 1 wt % Pt-MCM-22-100-EIM 169.67 0.63 

3 2 wt % Pt-MCM-22-100-EIM 193.51 1.60 

4 5 wt % Pt-MCM-22-100-EIM 396.79 6.81 

5 Pt-H-Y-12-IE 493.96 3.65 

6 Pt-γ-Al2O3 (UOP)-IMP 116.16 7.13 

2.1.5. Measurements of the Brønsted and Lewis Acid Sites by FTIR Spectroscopy Using Pyridine as a 
Probe Molecule 

The amount of Brønsted and Lewis acid sites of the pristine H-MCM-22-100 and Pt-modified H-
MCM-22-100-EIM, H-Y-12-IE and γ-Al2O3 catalysts were determined by FTIR spectroscopy using 
pyridine adsorption/desorption. Pyridine was desorbed at 250, 350, and 450 °C, and these 
temperatures indicate the presence of weak, medium and strong acid sites (Table 5). 

The largest amount of Brønsted acid sites was obtained for Pt-H-Y-12-IE (145 μmol/g), the zeolite 
catalyst with lowest SiO2/Al2O3 ratio 12, the second largest amount of Brønsted acid site was obtained 
for the 1 wt % Pt-MCM-22-100-EIM catalyst (111 μmol/g), the lower amount of Brønsted acid cites is 
attributed to the high SiO2/Al2O3 ratio 100. It is noteworthy to mention that the H-MCM-22 zeolite 
catalyst exhibited a much lower amount of Brønsted acid sites (33 μmol/g). The Pt-modified H-MCM-
22 i.e., 1 wt % Pt-MCM-22-100-EIM, 2 wt % Pt-MCM-22-100-EIM and 5 wt % Pt-MCM-22-100-EIM 
catalysts, exhibited an increase of the Brønsted acid sites, the enhancement is attributed to the presence 
of Pt in the structure of MCM-22. The Pt-γ-Al2O3 (UOP)-IMP catalyst exhibited the lowest amount of 
Brønsted acid sites, which is attributed to the lower amount of acid sites in γ-Al2O3. 

Table 5. Brønsted and Lewis acidities of proton and Pt modified zeolites. 

Figure 4. SEM images and crystal size distribution histograms of (a) H-MCM-22-100, (b) 1 wt %
Pt-MCM-22-100-EIM, (c) 2 wt % Pt-MCM-22-100-EIM, (d) 5 wt % Pt-MCM-22-100-EIM, (e) Pt-H-Y-12-IE
and (f) Pt-γ-Al2O3 (UOP)-IMP catalysts.

The amounts of Pt (wt %) in the Pt-modified H-MCM-22-100-EIM, H-Y-12 and γ-Al2O3 catalysts
were determined using energy dispersive X-ray micro-analysis. The smallest amount of Pt (0.63 wt %)
(Table 4) was measured for 1 wt % Pt-H-MCM-22-100-EIM catalyst and the largest amount of
Pt (7.13 wt %) was measured for Pt-γ-Al2O3 catalyst. The differences in the loadings of Pt in
H-MCM-22-100, H-Y-12 and γ -Al2O3 catalysts were attributed to the methods of the catalyst synthesis,
the support structure and the SiO2/Al2O3 ratio of the zeolites.

Table 4. Average crystal size and Pt concentration of H-MCM-22-100, 1 wt % Pt-MCM-22-100, 2 wt %
Pt-MCM-22-100, 5 wt % Pt-MCM-22-100-EIM, Pt-H-Y-12-IE and Pt-γ-Al2O3 (UOP)-IMP catalysts.

Entry Catalyst Average Crystal Size (nm) Pt Concentration (wt %)

1 H-MCM-22-100 386.20 -
2 1 wt % Pt-MCM-22-100-EIM 169.67 0.63
3 2 wt % Pt-MCM-22-100-EIM 193.51 1.60
4 5 wt % Pt-MCM-22-100-EIM 396.79 6.81
5 Pt-H-Y-12-IE 493.96 3.65
6 Pt-γ-Al2O3 (UOP)-IMP 116.16 7.13

2.1.5. Measurements of the Brønsted and Lewis Acid Sites by FTIR Spectroscopy Using Pyridine as a
Probe Molecule

The amount of Brønsted and Lewis acid sites of the pristine H-MCM-22-100 and Pt-modified
H-MCM-22-100-EIM, H-Y-12-IE and γ-Al2O3 catalysts were determined by FTIR spectroscopy using
pyridine adsorption/desorption. Pyridine was desorbed at 250, 350, and 450 ◦C, and these temperatures
indicate the presence of weak, medium and strong acid sites (Table 5).

The largest amount of Brønsted acid sites was obtained for Pt-H-Y-12-IE (145 µmol/g), the zeolite
catalyst with lowest SiO2/Al2O3 ratio 12, the second largest amount of Brønsted acid site was obtained
for the 1 wt % Pt-MCM-22-100-EIM catalyst (111 µmol/g), the lower amount of Brønsted acid cites is
attributed to the high SiO2/Al2O3 ratio 100. It is noteworthy to mention that the H-MCM-22 zeolite
catalyst exhibited a much lower amount of Brønsted acid sites (33 µmol/g). The Pt-modified H-MCM-22
i.e., 1 wt % Pt-MCM-22-100-EIM, 2 wt % Pt-MCM-22-100-EIM and 5 wt % Pt-MCM-22-100-EIM
catalysts, exhibited an increase of the Brønsted acid sites, the enhancement is attributed to the presence
of Pt in the structure of MCM-22. The Pt-γ-Al2O3 (UOP)-IMP catalyst exhibited the lowest amount of
Brønsted acid sites, which is attributed to the lower amount of acid sites in γ-Al2O3.
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Table 5. Brønsted and Lewis acidities of proton and Pt modified zeolites.

Catalysts Brønsted Acidity (µmol/g) Lewis Acidity (µmol/g)
250 ◦C 350 ◦C 450 ◦C 250 ◦C 350 ◦C 450 ◦C

H-MCM-22-100 33 67 20 13 1 0
1 wt % Pt-MCM-22-100-EIM 111 4 0 3 0 0
2 wt % Pt-MCM-22-100-EIM 86 3 0 5 0 0
5 wt % Pt-MCM-22-100-EIM 62 0 2 10 1 1

Pt-H-Y-12-IE 145 6 0 11 3 0
Pt-γ-Al2O3 (UOP)-IMP 6 3 1 12 39 2

2.1.6. Characterization of the Oxidation States of Pt in Pt-Modified H-MCM-22-100-EIM,
Pt-H-Y-12-EIM and Pt-γ-Al2O3-EIM Catalysts by X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) was used to analyze the oxidation states of Pt (PtO,
PtO2 and Pt0) catalysts in 1 wt % Pt-H-MCM-22-100-EIM, 2 wt % Pt-H-MCM-22-100-EIM, 5 wt %
Pt-H-MCM-22-100-EIM, Pt-H-Y-12-EIM and Pt-γ-Al2O3 (UOP)-EIM catalysts. The presence of PtO,
PtO2 and Pt0 were observed in all the above-mentioned Pt-modified catalysts (Figure 5). The binding
energies (eV) of the Pt0 – 71 (eV), PtO – 72 (eV), PtO2 – 74 (eV) were measured for all the studied
Pt-modified catalysts. It was inferred from these binding energies that the surface of Pt modified catalytic
materials consisted of oxidation states of Pt0, PtO and PtO2, respectively. Similar binding energies for
Pt0, PtO, PtO2 have been previously reported by J. Z. Shyu et al. [38] and R. Bouwman et al. [39].
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Figure 5. XPS spectra of (a) H-MCM-22-100, (b) 1 wt % Pt-MCM-22-100, (c) 2 wt % Pt-MCM-22-100, 
(d) 5 wt % Pt-MCM-22-100, (e) Pt-H-Y-12-IE and (f) Pt-γ-Al₂O₃ (UOP)-IMP catalysts. 

2.2. Non-Catalytic and Catalytic Ozonation of Diclofenac 

2.2.1. Influence of Pt Modified Catalysts in Degradation of Diclofenac 

The degradation of DCF was investigated by non-catalytic as well as catalytic experiments using 
ozone as the oxidant. Initially, the catalysts H-MCM-22-100 with different Pt-modified concentrations 
were used (Figure 6). The kinetic experiments revealed that the degradation rate of DCF was higher 
in the presence of heterogeneous catalysts compared to non-catalytic experiments. The 2 wt % Pt-
MCM-22-100-EIM showed the highest decomposition rate, 95% of DCF had transformed at 4 min, 
whereas there was still 65% of DCF was left when no catalyst was used. Moreover, the 2 wt % Pt-
MCM-22-100-EIM demonstrated a higher degradation efficiency compared to 5 wt % Pt-MCM-22-
100-EIM. The excessive loading of metals on the support could decrease the amount of active sites, 
thus weakening the interaction among the metal and the support [40]. 

In addition, ozonation of DCF was investigated with 0, 0.25, 0.50 and 1.00 g of 2 wt % Pt-MCM-
22-100-EIM catalyst. The results reveal that using 0.25 g of 2 wt % Pt-MCM-22-100-EIM catalyst 
increased the degradation rate compared to non-catalytic experiments. Moreover, 0.5 g and 1 g of 2 

Figure 5. XPS spectra of (a) H-MCM-22-100, (b) 1 wt % Pt-MCM-22-100, (c) 2 wt % Pt-MCM-22-100,
(d) 5 wt % Pt-MCM-22-100, (e) Pt-H-Y-12-IE and (f) Pt-γ-Al2O3 (UOP)-IMP catalysts.

2.2. Non-Catalytic and Catalytic Ozonation of Diclofenac

2.2.1. Influence of Pt Modified Catalysts in Degradation of Diclofenac

The degradation of DCF was investigated by non-catalytic as well as catalytic experiments using
ozone as the oxidant. Initially, the catalysts H-MCM-22-100 with different Pt-modified concentrations
were used (Figure 6). The kinetic experiments revealed that the degradation rate of DCF was
higher in the presence of heterogeneous catalysts compared to non-catalytic experiments. The 2 wt %
Pt-MCM-22-100-EIM showed the highest decomposition rate, 95% of DCF had transformed at
4 min, whereas there was still 65% of DCF was left when no catalyst was used. Moreover,
the 2 wt % Pt-MCM-22-100-EIM demonstrated a higher degradation efficiency compared to 5 wt %
Pt-MCM-22-100-EIM. The excessive loading of metals on the support could decrease the amount of
active sites, thus weakening the interaction among the metal and the support [40].
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Figure 7. a) DCF degradation by ozonation without, and with 0.25, 0.50 and 1.00 g of 2 wt % Pt-MCM-
22–100 catalyst, b) Normalized. CDCF = 30 mg/L, gas flow rate = 110 mL/min, T = 20 °C, stirring speed 
= 900 rpm, CO3, g = 21 mg/L. 
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Figure 6. DCF degradation by ozonation and H-MCM-22-100, 1 wt % Pt-MCM-22-100-EIM, 2 wt %
Pt-MCM-22-100-EIM and 5 wt % Pt-MCM-22-100-EIM catalysts. CDCF = 30 mg/L, gas flow rate
= 110 mL/min, T = 20 ◦C, stirring speed = 900 rpm, CO3, g = 21 mg/L, C catalysts = 0.5 g/L.

In addition, ozonation of DCF was investigated with 0, 0.25, 0.50 and 1.00 g of 2 wt %
Pt-MCM-22-100-EIM catalyst. The results reveal that using 0.25 g of 2 wt % Pt-MCM-22-100-EIM
catalyst increased the degradation rate compared to non-catalytic experiments. Moreover, 0.5 g and 1 g
of 2 wt % Pt-MCM-22-100-EIM catalyst showed a maximum degradation rate of DCF. After 4 min of
ozonation, 65% of DCF was still left in case of non-catalytic experiments whereas in case of catalytic
reactions, 35% remained when 0.25 g catalyst was added, 8.3% when 0.5 g was added and 13% when
1 g of 2 wt % Pt-MCM-22-100-EIM catalyst was added (Figure 7a). Moreover, the normalized figure
(Figure 7b) of these three amounts of catalyst illustrates an overlap of the kinetic curves revealing that
the degradation rate is not dependent on the catalyst amount, which suggests the absence of gas-liquid
mass transfer limitations.
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Figure 7. (a) DCF degradation by ozonation without, and with 0.25, 0.50 and 1.00 g of 2 wt %
Pt-MCM-22–100 catalyst, (b) Normalized. CDCF = 30 mg/L, gas flow rate = 110 mL/min, T = 20 ◦C,
stirring speed = 900 rpm, CO3, g = 21 mg/L.

A comprehensive study on the ozonation of DCF using different Pt-modified catalyst structures
was conducted to evaluate its effect on the degradation of DCF. Two catalysts, Pt-H-Y-IE and Pt-γ-Al2O3

(UOP)-IMP were used and compared with the 2 wt % Pt-MCM-22-100-EIM. Figure 8 reveals that the
transformation of DCF was relatively similar for these three catalysts.
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Figure 8. DCF degradation by ozonation and 2 wt % Pt-MCM-22-100-EIM, Pt-γ-Al₂O₃ (UOP)-IMP and 
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CO3, g = 21 mg/L, C catalysts = 0.5 g/L. 
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compared by other structures. 

 

Figure 9. DCF and its major hydroxylation products. 

2.2.3. 5-Hydroxy Diclofenac 

Figure 10 illustrates the growth of one of the by-products, 5-OH-DCF, which emerges during 
the ozonation of DCF. In these experiments, using a heterogeneous catalyst resulted in a lower 
concentration of 5-OH-DCF compared to non-catalytic experiments. The lowest concentration of 5-
OH-DCF was observed for the 2 wt % Pt-MCM-22-100-EIM catalyst. The presence of the 
heterogeneous catalysts affects the formation of 5-OH-DCF. When only the H-MCM-22-100 catalyst 
was used, the concentration of 5-OH-DCF increased more rapidly than in the metal-catalyzed 

Figure 8. DCF degradation by ozonation and 2 wt % Pt-MCM-22-100-EIM, Pt-γ-Al2O3 (UOP)-IMP
and Pt-H-Y-12-IE catalysts. CDCF = 30 mg/L, gas flow rate = 110 mL/min, T = 20 ◦C, stirring speed
= 900 rpm, CO3, g = 21 mg/L, C catalysts = 0.5 g/L.

2.2.2. Quantification of Ozonation Transformation-Products

According to the literature, the advanced oxidation process of DCF leads to the formation of one
or more hydroxylated products [30,41]. Two of the hydroxylated products (4’-OH-DCF and 5-OH-DCF)
were purchased (Figure 9) and an MRM method was developed to quantify them in order to investigate
the effect of heterogeneous catalysis on the formation and transformation of hydroxylated DCF products.
The transition used to quantify both 4’-OH-DCF and 5-OH-DCF was the same (m/z 310 -> 266), but the
isomers were distinguished by their different retention times. The qualitative transitions were different
for the isomers. The presence of the hydroxylated internal standard of the 4’-OH-DCF isomer further
helped with distinguishing between the isomers. Chen et al. investigated the mineralization of DCF
by ozonation combined with Fe-MCM-41 and Fe-MCM-48 catalysts. Their studies illustrated that
mineralization of DCF using these catalysts is higher compared to non-catalytic ozonation [42,43].
For this reason, the MCM-structured catalyst was applied in our experiments to study the degradation
of by-products and the performance of the MCM catalyst was compared by other structures.
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2.2.3. 5-Hydroxy Diclofenac

Figure 10 illustrates the growth of one of the by-products, 5-OH-DCF, which emerges during the
ozonation of DCF. In these experiments, using a heterogeneous catalyst resulted in a lower concentration
of 5-OH-DCF compared to non-catalytic experiments. The lowest concentration of 5-OH-DCF was
observed for the 2 wt % Pt-MCM-22-100-EIM catalyst. The presence of the heterogeneous catalysts
affects the formation of 5-OH-DCF. When only the H-MCM-22-100 catalyst was used, the concentration
of 5-OH-DCF increased more rapidly than in the metal-catalyzed experiments. The presence of
Pt-modified catalyst resulted in a decrease of the maximum concentration of 5-OH-DCF.
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Figure 10. 5-OH-DCF concentration during the decomposition of DCF by catalytic and non-catalytic
ozonation. CDCF = 30 mg/L, gas flow rate = 110 mL/min, T = 20 ◦C, stirring speed = 900 rpm,
CO3, g = 21 mg/L, C catalysts = 0.5 g/L.

Three different catalyst amounts 0.25, 0.5, 1 g of 2 wt % Pt-MCM-22-100-EIM were studied
(Figure 11). The formation of 5-OH-DCF decreased when the higher amount of catalyst was employed.
As 1 g of catalyst was used, 5-OH-DCF could not be detected at all, which implies that the catalyst
inhibits the formation of 5-OH-DCF.
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Figure 11. 5-OH-DCF concentration during the ozonation of DCF using different amount of 2 wt %
Pt-MCM-22-100-EIM catalyst (0.25, 0.50 and 1.00 g/L). CDCF = 30 mg/L, gas flow rate = 110 mL/min,
T= 20 ◦C, stirring speed = 900 rpm, CO3, g = 21 mg/L.

The transformation of 5-OH-DCF with three different catalyst structures in the ozonation process
of DCF are illustrated in Figure 12. The decrease of 5-OH-DCF was strongly influenced by different
kinds of Pt modified catalysts, especially with 2 wt % Pt-MCM-22-100-EIM and the use of this catalyst
resulted in the lowest amount of 5-OH-DCF. Moreover, the concentration of 5-OH-DCF started to
decline after 4 min in the presence of the Pt-H-Y-12-IE catalyst.
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2.2.4. 4’-Hydroxy Diclofenac

The other main by-product formed was 4’-OH-DCF (Figure 9). During non-catalytic experiments,
the concentration of 4’-OH-DCF increased to a maximum in 4 minutes but remained stable until
the end of the experiment (Figure 13). As MCM-22-100 was used, the maximum concentration of
4’-OH-DCF was lower than in the non-catalytic experiment, and the concentration of 4’-OH-DCF
started to decrease towards the end of the experiment. The lowest final concentration was observed as
2 wt % Pt-MCM-22-100 was used.
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Figure 13. 4´OH-DCF concentration during the decomposition of DCF by catalytic and non-catalytic
ozonation. CDCF = 30 mg/L, gas flow rate = 110 mL/min, T = 20 ◦C, stirring speed = 900 rpm,
CO3, g = 21 mg/L, C catalysts = 0.5 g/L.

As mentioned before, three different catalyst amounts (0.25, 0.5, 1 g) of 2 wt % Pt-MCM-22-100-EIM
were studied in DCF elimination (Figure 14). The maximum concentration of 4’-OH-DCF which
was formed decreased as the amount of catalyst increased. The concentration of 4’-OH-DCF after
10 min of ozonation was 0.06 mg/L only when 1 g of 2 wt % Pt-MCM-22-100-EIM was used, compared
to 2.63 mg/L when no catalyst was present. This implies that the catalyst inhibits the formation of
4’-OH-DCF and/or enhances the transformation of it to the low molecular by-products.
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Figure 15. 4´OH-DCF concentration during the decomposition of DCF by catalytic and non-catalytic 
ozonation. CDCF = 30 mg/L, gas flow rate = 110 mL/min, T = 20 °C, stirring speed = 900 rpm, CO3, g = 21 
mg/L, C catalysts = 0.5 g/L. 
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The Al and Pt concentrations were analyzed from the end samples of the catalytic ozonation of 
DCF (Figure 16). The results from this experiments revealed that 2 wt % Pt-MCM-22-100-EIM and 5 
wt % Pt-MCM-22-100-EIM catalysts have the highest leaching of Pt about 15 to 18%, also MCM-22-
100 catalysts showed a small amount of Al leaching nearby 5%. Moreover, the Pt-γ-Al2O3-IMP and 
Pt-H-Y-12-IE catalysts exhibited a small amount of Pt and Al less than 5% in these experiments. 
Plausible explanations for the Pt and Al leaching during the catalytic ozonation of diclofenac can be 
attributed to the contents of Pt in the Pt-H-MCM-22-100-EIM, Pt-H-Y-12-EIM and Pt-γ-Al2O3 
catalysts. Furthermore, the extent of leaching of Pt can be also attributed to the structure and acidic 
properties of H-MCM-22-100, H-Y-12 and Al2O3. In general, the leaching of the metals during 
ozonation for the applied catalysts was quite low. 

Figure 14. 4’OH-DCF concentration during the ozonation of DCF using different amount of 2 wt %
Pt-MCM-22-100 catalyst (0.25, 0.50 and 1.00 g). CDCF = 30 mg/L, gas flow rate = 110 mL/min, T = 20 ◦C,
stirring speed = 900 rpm, CO3, g = 21 mg/L.

The effects of the different structures of Pt-modified catalysts combined with the ozonation on
the transformation of 4’-OH-DCF are displayed in Figure 15. The amount of 4’-OH-DCF increased to
around 1 mg/L at 2 min; later it declined to zero at 10 min in catalytic ozonation. All these three catalysts
turned to be efficient upon transformation of 4’-OH-DCF compared to the non-catalytic process.
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ozonation. CDCF = 30 mg/L, gas flow rate = 110 mL/min, T = 20 °C, stirring speed = 900 rpm, CO3, g = 21 
mg/L, C catalysts = 0.5 g/L. 
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100 catalysts showed a small amount of Al leaching nearby 5%. Moreover, the Pt-γ-Al2O3-IMP and 
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The mechanisms that could enhance the degradation of DCF and by-products in the presence
of heterogeneous catalysts were as follows: the first pathway is the ozone adsorption on the catalyst
surface, following the generation of more active radical species which react with DCF and by-products;
the second pathway is that the DCF and/or by-products adsorb on the catalyst surface resulting in a
reaction by dissolved ozone; and the third pathway is that the ozone, DCF and its by-products adsorb
on the catalyst surface and react by direct or indirect reaction on the surface [44].

2.2.5. Leaching of Pt and Al in the Reaction Media During the Catalytic Ozonation of Diclofenac

The Al and Pt concentrations were analyzed from the end samples of the catalytic ozonation of
DCF (Figure 16). The results from this experiments revealed that 2 wt % Pt-MCM-22-100-EIM and
5 wt % Pt-MCM-22-100-EIM catalysts have the highest leaching of Pt about 15 to 18%, also MCM-22-100
catalysts showed a small amount of Al leaching nearby 5%. Moreover, the Pt-γ-Al2O3-IMP and
Pt-H-Y-12-IE catalysts exhibited a small amount of Pt and Al less than 5% in these experiments.
Plausible explanations for the Pt and Al leaching during the catalytic ozonation of diclofenac can be
attributed to the contents of Pt in the Pt-H-MCM-22-100-EIM, Pt-H-Y-12-EIM and Pt-γ-Al2O3 catalysts.
Furthermore, the extent of leaching of Pt can be also attributed to the structure and acidic properties of



Catalysts 2020, 10, 322 19 of 25

H-MCM-22-100, H-Y-12 and Al2O3. In general, the leaching of the metals during ozonation for the
applied catalysts was quite low.Catalysts 2020, 10, 322 19 of 25 
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3. Materials and Methods

3.1. Chemicals

DCF (2-[(2,6-dichlorophenyl)amino]- phenylacetic acid, C14H11Cl2NO2, MW: 296.148 g/mol, CAS
number: 15307-86-5, >98% purity) was purchased from Sigma-Aldrich, St. Louis, MO, USA).
The water used in the LC-MS analysis was purified using a Millipore Simplicity 185 system
(Millipore S.A.S., Molsheim, France). The acetonitrile used in the LC-MS analysis was of LC-MS
grade obtained from Fischer scientificTM. Finland, ammonium formate was obtained from Fischer
Scientific. Ozone was produced in situ using Nano ozonator. The catalysts used were synthesized by
the methods described below.

3.2. Preparation of Pt-Modified H-MCM-22-100, H-Y-12 and γ-Al2O3 Catalysts

Six different heterogeneous catalysts H-MCM-22-100, 1 wt % Pt-MCM-22-100-EIM, 2 wt %
Pt-MCM-22-100-EIM, 5 wt % Pt-MCM-22-100-EIM, Pt-H-Y-12-IE and Pt-γ-Al2O3 (UOP)-IMP were
synthesized. The Na-MCM-22-100 was synthesized in the laboratory [45]. The Pt-MCM-22-100 modified
catalysts were prepared by the evaporation impregnation (EIM) method. The modification of the
MCM-22-100 and Pt(NO3)2 solution was carried out in a rotator evaporator at 60 ◦C for 24 h. After the
modification, the Pt-MCM-22-100 catalysts were dried at 100 ◦C in oven and calcined at 450 ◦C for
240 min in muffle oven [46]. In addition, the Pt-γ-Al2O3 (UOP)-IMP likewise was prepared by EIM
method. Pt-H-Y-12-IE was prepared by solution ion exchange (IE) method, which was carried out
in a beaker using an aqueous solution of Pt(NO3)2 and H-Y-12 for 24h. The catalyst was filtered and
washed with two liters of distilled water and the Pt-H-Y-12-IE catalyst was dried in an oven at 100 ◦C.
Later, the Pt-H-Y-12-IE catalyst was calcined at 450 ◦C in a muffle oven for 4.5 h.

3.3. Catalytic Physico-Chemical Characterizations

The crystallinity and structural properties of the catalysts were characterized using a powder X-ray
diffraction (XRD) with PANalytical Empyrean diffractometer in Bragg-Brentano mode. The incident
X-ray beam was collimated with parallel beam optics consisting of a 1/2 divergence slit, a 10 mm mask,
a 0.04 rad Soller, a Göbel mirror and 1 antiscatter slit. On the diffracted side, a 7.5 mm antiscatter slit,
a 0.04 rad Soller and a PIXcel3D detector array by 255 × 255 pixels were applied. The Göbel mirror
monochromatizes the beam into Cu-Kα1 and Cu-Kα2 lines giving an average wavelength of λ = 1.542 Å.
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The powder samples were determined on a siliceous zero background sample holder from 5◦ to 100◦

including a step size of 0.026 and counting for 120 s per step. The XRD data was fitted via the Rietveld
refinement using the MAUD software [47]. The Pt particle size distributions and structural properties
were measured from images obtained with JEM-1400 Plus transmission electron microscope (TEM,
model JEM 1400 plus: Jeol Ltd., Tokyo, Japan) by a voltage of 120 kV. The specific surface area and pore
volume were measured by nitrogen physisorption using the Sorptomatic 1900 apparatus Carlo Erba
Instrument. The fresh catalysts outgassed for 3 h at 150 ◦C while the catalyst in the ozonation process
was outgassed for 3 h at 100 ◦C. The specific surface areas and pore distribution were interpreted by
using the BET: nitrogen physisorption (Carlo Erba Sorptomatic 1900-Fisons Instruments, Milan, Italy)
and Dubinin equations. The morphology and crystal size distribution catalysts were studied by a
scanning electron microscope Zeiss Leo 1530 Gemini equipped by ThermoNORAN vantage X-ray
detector. Energy-dispersive X-ray analysis (EDXA: Zeiss Leo Gemini 1530, oberkochen, Germany) was
carried out with the same instrument to analyze the Pt and Al contents of the catalysts.

The amount of Brønsted and Lewis acid sites in the catalysts were determined by FTIR (ATI Mattson
Infinity series, Madison, U.S.A) using pyridine as a probe molecules. Molar extinction coefficients
from Emeis were used to quantify Brønsted and Lewis acid sites at bands 1545 cm−1 and 1455 cm−1

through pyridine as probe molecule.
X-ray photoelectron spectroscopy (XPS) was used to investigate the oxidation state of Pt. A Kratos

Axis Ultra DLD electron spectrometer with monochromated Al K source was operated at 150 W.
Analyser pass energy of 160 eV for acquiring wide spectra and a pass energy of 20 eV for individual
photoelectron lines were used. The surface potential was stabilized with the spectrometer charge
neutralization system and the binding energy (BE) scale was referenced to the C 1s line of aliphatic
carbon, set at 285.0 eV. Processing of the spectra was accomplished with the Kratos software. The powder
samples were gently hand-pressed into a pellet directly on a sample holder using clean Ni spatula.
Energy dispersive X-ray microanalysis was used to determine the chemical compositions of fresh
catalytic materials.

The content of metals in the spent catalysts after catalytic ozonation process was determined by
inductively coupled plasma optical emission spectroscopy (ICP-OES: PerkinElmer precisely. Selton,
USA), using an Optima 5300 DV Perkin Elmer instrument to investigate the potential leaching of Pt
and Al.

3.4. Kinetic Experiments

Ozonation experiments were conducted in the presence and absence of heterogeneous catalysts in
a double jacket glass reactor having a 1000 mL capacity. The reactor vessel was covered by aluminum
foil to prevent photo-degradation. The reactor was connected to an ozone generator (Absolute Ozone,
Nano model, Canada), and the gas was continuously dispersed to the liquid by a 7 µm disperser placed
on the bottom of the reactor vessel. The kinetic experiments were operating in two phases (gas-liquid)
when no catalyst was used, or in three phases (gas, liquid and solid) when a catalyst was used. The gas
flow rate in these experiments was 110 mL/min (mixed oxygen 108.5 mL/min and nitrogen 1.5 mL/min)
which produced 21 mg/L of ozone in gas phase (determined by iodine volumetric titration). In the
liquid phase, 0.03 g of DCF was dissolved in 1000 mL of de-ionized water to provide 30 mg/L of DCF
solution. The solid catalyst was, immobilized in a SpinchemTM rotating bed reactor using a 200 µm
mesh that allowed the trapping of the catalyst (150–500 µm catalyst particle sizes) inside the stirrer.
The stirring rate was 900 rpm to provide a high mass transfer rate between the three phases. Due to a
rapid reaction of DCF by ozone, the total reaction time was 10 min and samples were collected at 0, 0.5,
1, 1.5, 2, 3, 4 and 10 min, respectively. The dissolved ozone concentration was 0.44 mg/L, determined
by the indigo method. Because this reaction is so rapid compared to ibuprofen degradation described
in our earlier study (2018) [46] a much smaller gas flow (110 mL/min) was used and therefore dissolved
ozone concentration was only 0.44 mg/L. Even if 30 mg/L of DCF is much higher than ordinarily
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detected in the aquatic environments using a concentration of 30 mg/L enables to identify and classify
the transformed by-products at low concentration level (Figure 17).Catalysts 2020, 10, 322 21 of 25 
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3.5. Quantification of DCF

DCF was quantified by using the LC-UV method. The chromatographic separation was performed
using an Agilent 1100 binary pump equipped with a vacuum degasser, an autosampler, a thermostated
column oven set to 30 ◦C, a variable wavelength detector, and a Waters Atlantis T3 C18 column
2.1 × 100 mm, 3 µm) with a pre-column made from the same material. The eluents were 0.1% formic
acid in water (A) and 0.1% formic acid in acetonitrile (B). Initially the composition was kept at 30%
(B) for 2 min, then the composition increased linearly to 95% (B) over 8 min. The eluent composition
was held at 95% (B) for 1 min before being returned to the initial conditions over the next 0.1 min and
given 8.9 min for equilibration. The gas flow rate was 0.3 mL/min and the injection volume was 30 µL.
The detector was set to 254 nm. For quantification, a seven-point calibration curve was prepared in
water by diluting the stock solution. The ozonated samples were injected without sample preparation.

3.6. Quantification of 4’-OH-DCF and 5-OH-DCF

For LC-MS/MS analysis of 4’-OH-DCF and 5-OH-DCF, an Agilent 6460 triple quadrupole mass
spectrometer equipped with an Agilent Jet Spray electrospray ionization (ESI source was used in full
scan and MSn scan modes. Manufacturer: Agilent Technologies, USA) source was used in the multiple
reaction monitoring (MRM) mode. Nitrogen was used as the drying, sheath, nebulizer, and collision
gas. The drying gas and sheath gas were held at 6 and 12 L/min respectively and the gas flow and
sheath gas flow were heated to 180 and 400 ◦C, respectively. The nebulizer pressure was set to 20 psi.
A capillary voltage of 1500 V and a nozzle voltage of 500 V were applied. The cell acceleration voltage
was 3 V. The fragmentor voltage and collision energy were optimized for the compounds individually
using the Mass Hunter Optimizer software (Table 6). The chromatographic separation was performed
using an Agilent 1290 binary pump equipped with a vacuum degasser, an autosampler, a thermostated
column oven set to 30 ◦C, and a Waters xbrigde C18 column (2.1 × 50 mm, 3 µm) with a pre-column
made from the same material. The eluents used were 10 mM ammonium formate in water (A) and
acetonitrile (B). Initially the composition was held at 10% (B) for 0.5 min, the composition increased
linearly to 30% (B) over 2.5 min, followed by a linear increase to 95% (B) over 1 min. The eluent
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composition was held at 95% (B) for 1 min before being returned to the initial conditions over the next
0.1 min and given 1.4 min for equilibration. The flow rate was 0.4 mL/min and the injection volume
was 10 µL. The internal standard method was used for the quantification. The quantification was
performed using a ten-point calibration curve prepared in water. An internal standard (100 ng/mL) was
added to the calibration samples. The ozonated samples were prepared by adding 50 µL of internal
standard solution (1000 ng/mL) to 450 µL of the sample.

Table 6. Mass spectrometric parameters for DCF transformation products.

Compound Precursor Ion Product Ion Fragmentor (V) Collision Energy (V)

5-OH-DCF 310 266 100 4
- 230 100 4
- 166.1 100 24

4’-OH-DCF 310 266 80 4
- 222.1 80 12
- 179.9 80 12
- 35.1 80 20

4’-OH-DCF-d4 314 234 105 0

4. Conclusions

Pt-modified H-MCM-22-100, H-Y-12 and γ-Al2O3 catalysts were synthesized using evaporation
impregnation method. The physico-chemical characterization of the catalytic materials was carried
out using several techniques such as XRD, SEM, EDX, TEM, XPS and N2-physisorption. Pt-modified
H-MCM-22-100, H-Y-12 and Al2O3 catalysts were observed to be active in the degradation of diclofenac.
Furthermore, by-products of diclofenac such as 5-hydroxydiclofenac, 4-hydroxydiclofenac were
removed from the aqueous phase using 1 wt % Pt-H-MCM-22-100-EIM, 2 wt % Pt-H-MCM-22-100-EIM,
5 wt % Pt-H-MCM-22-100-EIM, Pt-γ-Al2O3 (UOP)-IMP and Pt-H-Y-12-EIM and catalysts. The main
selected factors for this work were the concentration of Pt on MCM-22-100 catalyst, concentration of
catalysts in ozonation process and different types of Pt-modified catalysts for degradation of DCF.
The highest degradation rate of DCF, side products 5-hydroxy diclofenac and 4-hydroxydeclofenac was
obtained using 2 wt % Pt-MCM-22-100-EIM catalyst. It was observed that 0.5 g/L and 1 g/L amount
of 2 wt % Pt-MCM-22-100-EIM catalyst gives a similar degradation efficiency of DCF and ozonation
by-products. Moreover, most of applied catalysts were exhibited low decrease in the surface area and
pore volume, which it was expressed that these kinds of catalysts could be used again.
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