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Abstract
Objective: We aimed to explore the added value of common machine learning (ML) algorithms for prediction of outcome for moderate
and severe traumatic brain injury.

Study Design and Setting: We performed logistic regression (LR), lasso regression, and ridge regression with key baseline predictors
in the IMPACT-II database (15 studies, n 5 11,022). ML algorithms included support vector machines, random forests, gradient boosting
machines, and artificial neural networks and were trained using the same predictors. To assess generalizability of predictions, we performed
internal, internal-external, and external validation on the recent CENTER-TBI study (patients with Glasgow Coma Scale !13, n 5 1,554).
Both calibration (calibration slope/intercept) and discrimination (area under the curve) was quantified.

Results: In the IMPACT-II database, 3,332/11,022 (30%) died and 5,233(48%) had unfavorable outcome (Glasgow Outcome Scale less
than 4). In the CENTER-TBI study, 348/1,554(29%) died and 651(54%) had unfavorable outcome. Discrimination and calibration varied
widely between the studies and less so between the studied algorithms. The mean area under the curve was 0.82 for mortality and 0.77 for
unfavorable outcomes in the CENTER-TBI study.

Conclusion: ML algorithms may not outperform traditional regression approaches in a low-dimensional setting for outcome prediction
after moderate or severe traumatic brain injury. Similar to regression-based prediction models, ML algorithms should be rigorously vali-
dated to ensure applicability to new populations. � 2020 The Authors. Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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What is new?

Key findings
� Considering discrimination and calibration and

overall performance, no clear difference was seen
in performance between machine learning (ML) al-
gorithms or regression-based models.

� More variability in performance (both discrimina-
tion and calibration) was seen between study pop-
ulations than between algorithms.

What this adds to what was known?
� A recent systematic review showed that studies

that suggested superior performance of ML
methods are more prone to bias. However, these
studies mainly focused on comparing discrimina-
tive performance of these models. Our study also
focused on performance in terms of calibration
and generalizability.

What is the implication and what should change
now?
� Using novel ML algorithms will likely not improve

outcome prediction. Instead, prediction research
should focus including predictors with substantial
incremental prognostic value.

� Prediction models, based on both ML algorithms
and regression-based methods, need continuous
validation and updating to ensure applicability to
new populations.
1. Introduction

Traumatic brain injury (TBI) is a common disease, with
a significant societal burden [1]: TBI is estimated to be
responsible for around 300 hospital admissions and 12
deaths per 100,000 persons per year in Europe [2]. TBI is
a heterogeneous disease in terms of phenotype and prog-
nosis [3]. Therefore, prognostic models, which predict
outcome for a patient, given a particular combination of
baseline characteristics, are important: they may give us
insight in mechanisms of disease that lead to poor outcome
and allow for risk-based stratification of patients for logis-
tic, research, and clinical reasons.

A large number of prediction models have been devel-
oped to predict outcome for patients with TBI, mostly using
traditional regression techniques [4]. However, these
models have not yet been widely implemented in clinical
practice. In recent years, more flexible machine learning
(ML) algorithms have enjoyed enthusiasm as potentially
promising techniques to improve outcome prognostication
[5]. Frequently used methods are support vector machines
(SVMs) [6], deep neural networks (NNs) [7], random for-
ests (RFs) [8], and gradient boosting machine (GBM) [9].
Some of these algorithms have been used to develop predic-
tion models on small data sets (!200 events) [10e12].
Because ML algorithms are more prone to overfitting
[13], it remains unclear what the impact on prognostication
is of these novel techniques.

Although the incremental value of flexible ML methods
has been previously assessed, these comparisons were
potentially subject to bias [14]. The incremental value of
ML algorithms is potentially overrated because studies up
to this point mainly focused on the ability of the methods
to discriminate between patients with good and poor out-
comes [15e19]. Performance of prediction models is how-
ever commonly measured across at least two dimensions:
calibration and discrimination [20,21]. Calibration refers
to the agreement of predicted probabilities of a model
and observed outcomes (e.g., ‘‘if the risk of death is x%,
do x% of the patients with this prediction actually die?’’).
Poor calibration of prediction models may lead to harmful
decision-making when applying these models [22e24].

One of the more thoroughly validated prediction models
with good performance exists in the field of TBI: the
IMPACT model [25]. This model comprises baseline clin-
ical characteristics, presence of secondary insults, imaging
findings, and laboratory characteristics. Using the variables
of this model, the present study aims to fairly assess the po-
tential incremental value of flexible ML methods beyond
classical regression approaches.
2. Methods

This study was reported to conform with the TRIPOD
guidelines [23].

2.1. Study population

We included 15 studies from the IMPACT-II database.
These include four observational studies and eleven random-
ized controlled trials on moderate to severe TBI (Glasgow
Coma Scale [GCS] � 12), which were conducted between
1984 and 2004 [26]. Furthermore, we validated models in
the patients with moderate to severe TBI (GCS � 12) from
the CENTER-TBI core study. This is a recent prospective
study, which included patients from 2014 to 2018 [27]. Data
for the CENTER-TBI study have been collected through the
Quesgen e-CRF (Quesgen Systems Inc, Burlingame, CA,
USA), hosted on the INCF platform, and extracted via the
INCF Neurobot tool (INCF, Sweden). Version 1.0 of the
CENTER-TBI data was used for this analysis.

2.2. Model specification

The outcomes which were predicted were 6 months mor-
tality and unfavorable outcome (Glasgow Outcome
Scale ! 3, or Glasgow Outcome ScaleeExtended !5).
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The predictors included in the models were 11 predictors of
the IMPACT laboratory model [25]. Continuous variables
were included as continuous variables in the model (no cate-
gorization). An overview of the included variables, and their
specifications, is shown in Table 1. The baseline GCS score
was defined as the last GCS in the emergency department
(‘‘poststabilization’’). If this score was missing, the nearest
GCS at an earlier moment was used. In total, eleven predic-
tors were included, representing 19 parameters (or degrees of
freedom [df]). In the case of mortality, 3,491 events (or 184
events per parameter) were on average present in our data-
base for each training. The variables were normalized or
one-hot encoded because this is standard practice for training
algorithms which use gradient descent optimization.

2.3. Regression techniques

The regression techniques which were compared with
the ML algorithms included standard logistic regression,
but also penalized regression: lasso and ridge regressions
[28]. These algorithms were developed to improve the per-
formance of logistic regression models by shrinking the co-
efficients during estimation [29,30]. The objective is to
obtain models that are less prone to making too extreme
predictions (overfitting). The glmnet function from the
glmnet package was used (alpha 5 0 for ridge, and
alpha5 1 for lasso). No nonlinear or interaction terms were
included in the regression models.
Table 1. Model specification: 11 predictors, with 19 degrees of
freedom

Variable in the model Characteristics

Age Continuous

Motor GCS score Categorical, 1e6

w Categorical, 3 levels:

� Both reactive
� One reactive
� Two reactive

CT class Categorical, 5 levels:

� No visible pathology
� Diffuse injury
� Diffuse injury with swelling
� Diffuse injury with shift
� Mass

Traumatic subarachnoid
hemorrhage

Binary

Epidural hematoma Binary

Hypoxia Binary

Hypotension Binary

Glucose, first measured Continuous

Sodium, first measured Continuous

Hemoglobin, first measured Continuous

Abbreviations: GCS, Glasgow Coma Scale; CT, computed tomography.
2.4. Machine learning algorithms

All analyses were performed using R (R Core Team
(2013). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vien-
na, Austria). The script can be found on https://github.
com/bgravesteijn/ML_baseline_pred_code.

The flexible ML algorithms that were compared with lo-
gistic regression were SVM, NN, RF, and GBM. All these
algorithms have so-called ‘‘hyperparameters,’’ which need
to be optimized for the algorithms to work optimally. To
select the optimal hyperparameters, the framework of the
caret package was used. The best combination of hyper-
parameters of the algorithms was chosen based on the high-
est log likelihood. The average log likelihood over 10
repetitions of tenfold cross-validation was used to select
the optimal parameters (Fig. 1). For a detailed description
of what algorithms were used and what hyperparameters
were considered, see Appendix B.

The included flexible ML methods, just like regression,
do not allow for missing values. Unlike regression, howev-
er, they are not readily compatible with multiple imputa-
tion: not every algorithm uses weights as core operators.
Moreover, for the algorithms that use weights, there is no
implementation of pooling these weights over multiple data
sets using Rubin’s rules [31]. Therefore, multiple imputa-
tion using the mice package was performed [32], but only
one imputed data set was used to train the models. The
outcome and all predictors were included in the imputation
model. To check for stability of results, a sensitivity anal-
ysis was performed with a different imputed data set.
2.5. Cross-validation

The models were validated using three different strate-
gies. First, they were cross-validated per study: the algo-
rithms were trained on all but one study, and calibration
and discrimination were assessed by applying the models
to the study not used at model development. This procedure
has been referred to as ‘Internal-external cross-validation’
[33,34]. For an overview of the analytical steps of
internal-external cross-validation, see Fig. 1. Second, inter-
nal validation was performed in the IMPACT-II database
using 10 times 10-fold random cross-validation. For this
method, the data were randomly divided by deciles. The
model was developed on 9/10 and validated on 1/10 of
the data. This process was repeated until all patients were
used once as validation sample. Finally, a fully external
validation was performed, with training of the models in
the IMPACT-II database and validating in CENTER-TBI.

The performance was assessed in three domains. First,
calibration was examined graphically and quantified using
a calibration slope and the calibration intercept: the calibra-
tion test proposed by Cox [35]. Second, discrimination was
quantified using the c-statistic, also known as the area under
the receiver operating curve. The confidence intervals of

https://github.com/bgravesteijn/ML_baseline_pred_code
https://github.com/bgravesteijn/ML_baseline_pred_code


Fig. 1. Overview of the experimental setup. Step1 is selecting a study as
a validation study. Step 2 is selecting the optimal hyperparameters
through 10 times 10-fold cross-validation. If the algorithm did not
require hyperparameters, this step was skipped. Step 3 is the training
of the finalmodel with optimal hyperparameters on the full training data.
The model of step 3 was validated in step 4 with the study that was left
out of the training set. Step 5 is repeating step 1e4 until all studies are
used once as validation study. Finally step 6 is the presentation of the
results, and pooling the results over the different studies.
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the c-statistic were obtained using the DeLong et al.
method [36], using the ci.auc function from the pROC
package. Third, as a measure of overall performance, the
Brier score was calculated [37]. More extensive descrip-
tions of these metrics can be found in Appendix B.

The estimates and 95%confidence intervalswere plotted in
forest plots, to visually inspect the variation. To obtain esti-
mates per model and outcome, the estimates (and standard er-
rors) in every validation were pooled using a random effects
meta-analysis, using the DerSimonian and Laird estimator
for t2 [38]. Because the CENTER-TBI database is a recent
study, unlike the IMPACT-II studies, the estimates obtained
from validating in this study were presented separately.

To compare whether observed variation of the perfor-
mance measures can be attributed to differences in perfor-
mance across study population or type of model used, we
used mixed effects linear regression. This was performed
in the internal-external validation framework. The perfor-
mance measure was used as dependent variable, and two
random intercepts were included in the model: one for what
algorithm was used and one for what study the models were
validated in. These random intercepts were assumed to
follow a normal distribution with mean 0 and variance t2.
The percentage variation in performance attributable to in
which study the model was validated was calculated by
dividing the t2 of study by the total variance (the sum of
the variance of the random intercepts of study and algorithm,
and the residuals): t2study/(t

2
studyþ t2algorithm þt2residuals). Simi-

larly, the percentage variation in performance attributable to
what algorithm was trained was calculated.
3. Results

3.1. Patient characteristics

The baseline characteristics differed substantially be-
tween the IMPACT-II and the CENTER-TBI data. In the
IMPACT-II database, patients were younger (35 vs.
47.4 years), had less traumatic subarachnoid hemorrhages
(4,016 [45%] vs. 759 [74%]), and presented less often with
a motor GCS of one (1,565 [16%] vs. 615 [45%]). Howev-
er, the patients showed similar Glasgow Outcome Scale in
the two studies: In the IMPACT-II database, 3,332 (30%)
died and 5,233 (48%) had an unfavorable outcome, and
in the CENTER-TBI study, 348 (29%) died and 651
(54%) had unfavorable outcome (Table 2). For an overview
of the patient characteristics per study in IMPACT-II and
CENTER-TBI, see Table A1.
3.2. Discrimination

At internal-external validation, the difference between
maximum and minimum c-statistic of the algorithms was
only 0.02 for mortality and unfavorable outcome. The
discriminatory performance of the implementation of RF
was suboptimal: the median and IQR of c-statistic of the
RF were 0.79 (0.77e0.82) for mortality (the overall
average was 0.81) and 0.79 (0.76e0.81) for unfavorable
outcome (the overall average was 0.80). The discriminative
performances varied substantially per study (Fig. A2 and
Table 3). At internal validation in IMPACT-II, a similar
pattern was seen, but the c-statistics were somewhat higher.
For example, the GBM showed a c-statistic of 0.81
(0.79e0.83) at internal-external validation and 0.83
(0.82e0.84) at internal validation. When performing
external validation in CENTER-TBI, this pattern was also
seen: The RF showed a median and 95% CI for the c-statis-
tic of 0.81 (0.78e0.84) for mortality (overall average was
0.82) and 0.76 (0.74e0.79) for unfavorable outcome (over-
all average was 0.77). Similar results were observed over a
different imputed set, see Table A5.



Table 2. Baseline characteristics of the CENTER-TBI and IMPACT-II databases

Characteristic IMPACT-II CENTER-TBI Missing data, total %

N 11,022 1,375

Age (median [IQR]) 31 [22, 46] 48 [28, 65] 0.0

Hypoxia (%) 1,707 (22) 217 (16.8) 26.3

Hypotension (%) 1,518 (17.2) 205 (15.9) 18.3

Marshall CT class (%) 40.6

1 379 (5.9) 81 (8.3)

2 2,281 (36) 428 (43.9)

3 1,259 (20) 86 (8.8)

4 248 (3.9) 19 (2.0)

5 2,223 (35) 360 (37.0)

Traumatic subarachnoid hemorrhage (%) 4,016 (44.6) 759 (73.6) 19.1

Epidural hematoma (%) 1,275 (13.4) 172 (16.7) 14.8

Glucose (median mmol/L (SD)) 8.84 (3.46) 8.18 (2.95) 44.5

Hemoglobin (mean g/dL (SD)) 12.46 (2.42) 7.96 (2.36) 52.2

GCS motor (%) 7.4

1 1,565 (15.5) 615 (44.7)

2 1,285 (12.7) 77 (5.6)

3 1,362 (13.5) 80 (5.8)

4 2,438 (24.1) 136 (9.9)

5 2,791 (27.6) 357 (26.0)

6 658 (6.5) 110 (8.0)

Pupil (%) 12.8

Both reactive 6,292 (66.3) 973 (73.7)

One reactive 1,192 (12.6) 110 (8.3)

None reactive 2,010 (21.2) 238 (18.0)

Glasgow outcome scale (%) 1.4

2 3,322 (30.1) 348 (29.0)

3 1,911 (17.3) 303 (25.2)

4 2,262 (20.5) 246 (20.5)

5 3,527 (32.0) 303 (25.2)

Abbreviations: CT, computed tomography; GCS, Glasgow Coma Scale; SD, standard deviation; IQR, interquartile range.

99B.Y. Gravesteijn et al. / Journal of Clinical Epidemiology 122 (2020) 95e107
3.3. Calibration

At internal-external validation, the average calibration
intercepts across the algorithms did not vary substantially:
the range of calibration intercepts was �0.08 to �0.02
for mortality, and for unfavorable outcome, the calibration
intercepts were 0.02 (Fig. 2B and Table A2). The range of
calibration slopes was larger: 0.85e1.05 for mortality and
0.89e1.06 for unfavorable outcome (Fig. 2C and Table
A3). The RF made too extreme predictions, with a median
(95% CI) calibration slope of 0.85 (0.77e0.93) for mortal-
ity, whereas the overall mean was 0.97, and 0.89
(0.82e0.96) for unfavorable outcome, whereas the overall
mean was 0.99. At internal validation in IMPACT-II, cali-
bration slopes and intercepts were similar. In external vali-
dation in CENTER-TBI, the RF had again a too low
calibration slope (0.88, 95% CI: 0.77e0.99 for mortality).

The calibration intercept for mortality was generally low
in CENTER-TBI: the overall mean was �0.58, indicating
that the 6-month mortality was lower than expected in
CENTER-TBI.

3.4. Overall predictive ability

The Brier score was very similar at internal-external
validation, internal, and external validation for both out-
comes (Table A4). The brier score was somewhat higher
at external validation but consistent for all methods (e.g.,
0.19 vs. 0.18 for logistic regression to predict unfavorable
outcome).

3.5. Explained heterogeneity

At internal-external validation, variation in c-statistic,
calibration intercept, and Brier score was mainly attribut-
able to the study in which the algorithm was validated
(Table 4): for mortality, the variation in c-statistic was
97% attributable to the study in which the algorithm was



Table 3. Results for discriminative performance of all algorithms, in all three validation strategies: internal-external (per-study CV), internal (10-fold
CV), and external (CENTER-TBI) validation

Algorithm Outcome Internal-external Internal External

Logistic regression Mortality 0.81 (0.79e0.84) 0.82 (0.81e0.83) 0.82 (0.79e0.84)

Support vector machine 0.81 (0.78e0.83) 0.82 (0.82e0.83) 0.81 (0.79e0.84)

Random forest 0.79 (0.77e0.82) 0.79 (0.78e0.81) 0.81 (0.78e0.84)

Neural network 0.81 (0.79e0.84) 0.82 (0.81e0.83) 0.82 (0.79e0.84)

Gradient boosting machine 0.81 (0.79e0.84) 0.83 (0.82e0.84) 0.83 (0.81e0.86)

Lasso regression 0.81 (0.79e0.84) 0.82 (0.82e0.83) 0.82 (0.79e0.84)

Ridge regression 0.81 (0.79e0.84) 0.82 (0.82e0.83) 0.82 (0.79e0.84)

Logistic regression Unfavorable outcome 0.81 (0.79e0.83) 0.82 (0.81e0.82) 0.77 (0.75e0.80)

Support vector machine 0.80 (0.79e0.82) 0.81 (0.81e0.82) 0.78 (0.75e0.80)

Random forest 0.79 (0.76e0.81) 0.79 (0.78e0.80) 0.76 (0.74e0.79)

neural network 0.80 (0.79e0.82) 0.81 (0.81e0.82) 0.78 (0.76e0.80)

Gradient boosting machine 0.80 (0.78e0.82) 0.81 (0.80e0.82) 0.78 (0.76e0.80)

Lasso regression 0.81 (0.79e0.83) 0.81 (0.80e0.82) 0.77 (0.75e0.80)

Ridge regression 0.81 (0.79e0.83) 0.81 (0.80e0.82) 0.77 (0.75e0.80)

Abbreviation: CV, cross-validation.
Estimates and 95% CI are shown.
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validated (vs. 2.0% to what algorithm was used), whereas
the variation in calibration intercept was 98% attributable
to the study in which the algorithm was validated (vs.
0.3% to what algorithm was used); and variation in Brier
A

C

Fig. 2. Results of the internal-external cross-validation for mortality. Panel A
shows the calibration intercept, panel C shows the calibration slope, and p
study (left: observational, right: randomized controlled trials), and per algor
chine; RF, random forest; NN, neural network; GBM, gradient boosting ma
score was 96% attributable to the study in which the algo-
rithm was validated (vs. 2.0% to what algorithm was used).
Variation in calibration slope was slightly more attributable
to what algorithm was used, compared with the other
B

D

shows the results of the c-statistic/area under the ROC curve, panel B
anel D shows the Brier score. The validation results are displayed per
ithm. Abbreviations: LR, logistic regression; SVM, support vector ma-
chine; ROC, receiver operating curve.



Table 4. Percentage of variation in performance attributable to what
study the algorithms were validated in

Outcome
C-

statistic
Calibration
intercept

Calibration
slope

Brier
score

Mortality

Algorithm 2.0 0.3 11 2.0

Study 97 98 86 96

Unfavorable

Algorithm 2.9 0.0 12 2.5

Study 96 99 85 97

An example is shown in the supplemental material (Fig. 1).
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metrics (Fig. A1). For mortality, the variation in calibration
slope was 11% attributable to the algorithm used and 86%
attributable to the study in which the algorithm was vali-
dated. This was mostly caused by the low calibration slope
of the RF algorithm. This algorithm displayed the worst
calibration slope, as indicated in Fig. 2C. For unfavorable
outcome, the results were similar.

3.6. Nonadditivity and nonlinearity

To explore whether nonadditive and nonlinear effects
were frequently appropriate to assume in our data, we per-
formed a post hoc analysis. Per study, logistic regression
models allowing for nonadditivity and nonlinearity were
tested with likelihood ratio tests (omnibus tests) to the
model which did not allow for relaxation of those assump-
tions [20]. It was observed that the model predicting mor-
tality had a better fit when nonlinearity was allowed for
in 7 (44%) studies. Less often, the assumption of nonaddi-
tivity improved the model fit (Table A6).
4. Discussion

This study aimed to compare flexible ML algorithms to
more traditional logistic regression in contemporary patient
data. We trained the algorithms to obtain a model with both
high discrimination and good calibration. This was
achieved by optimizing the log-likelihood for both regres-
sion and ML algorithms. All models and algorithms were
developed and validated in large data sets, including the
recent prospective cohort study CENTER-TBI [27]. Perfor-
mance was assessed in terms of both discrimination and
calibration, which are both important characteristics to be
assessed in algorithm validation [22,24,39]. Similar perfor-
mance of most methods was found across a large number of
studies from different time periods.

The algorithm that relatively underperformed was the RF:
the discrimination was somewhat lower, but it clearly under-
performed in terms of calibration. In particular, the RF
showed a calibration slope that was far below one. This indi-
cates overfitting, a problem often arising in small data sets
[37]. According to theoretical arguments, the RF algorithm
should not overfit [40]. The discrepancy between the theory
and the empirical evidence of our study should be explored
further. There could be a role for the selection of hyperpara-
meters, in particular the number of random variables at the
split, and the fraction of observations in the training sample
[41]. Because the RF shows signs of overfitting, even in large
data sets, the discriminative performance should be inter-
preted with caution: due to optimism, the discrimination in
new data sets can be lower [21]. As a contrast, this method
was one of the better performing methods in other studies
[15,42], which however did not assess calibration. Because
calibration is a crucial step before implementation of a pre-
diction model in clinical practice [20,39,43], our study en-
courages the use of other modeling techniques compared
with RFs for outcome prediction.

Thevariation in observedperformancewasmore explained
by the cohorts where the algorithms were validated than by
which algorithms were used. This implies that prediction
models need continuous updating and validation because their
performance is often worse in new cohorts [44]. This is a lim-
itation which needs to be addressed, to effectively use these
models in clinical practice [45]. This finding does raise con-
cerns about the validity of individual patient data meta-
analysis in the context of prediction modeling.

A recent systematic review compared flexible ML
methods to traditional statistical techniques in relatively
small data sets (median sample size was 1,250) and did not
find incremental value [14]. This was perhaps to be expected
because modern ML methods are known to be data hungry
compared with classical statistical techniques [13,46]. How-
ever, due to the increased sharing of data, international col-
laborations, and the availability of data from electronical
health records and other data sets with routinely collected
data, data sets are becoming increasingly large [47e49].
Our study shows that in this situation, flexible ML methods
are not improving outcome prognostication as well.

A limitation of our study is that we only used a linear
kernel function of SVM. Other kernels could have
increased the performance of the algorithm because the per-
formance of the algorithm is substantially dependent on its
hyperparameters [41]. Unfortunately, the computation time
increased drastically when this kernel was implemented
(the expected running time for one series of cross-
validation was 21 days). Because the first six iterations
did not show substantial increase in discriminative perfor-
mance, we decided to use the linear basis function instead.

Second, we only considered a relatively small number of
predictors (11 predictors, with 19 df). The reason for not
including more predictors is that there were no other com-
mon data elements between all databases. This potentially
limits the performance of ML techniques because it has
been suggested that flexible ML techniques perform better
than traditional regression techniques when a large number
of predictors are being considered, that is, high-
dimensional data [50,51]. A reason for such presumed su-
periority is the flexibility of these algorithms, enabling
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them to capture complex nonlinear and interaction effects.
It should be noted that regression-based techniques can also
be extended by nonlinear and interaction effects [20].
Given that ML algorithms did not outperform regression,
these effects are not likely to be essential in the field of
outcome prediction in patients with TBI. Our study was
not able to fully use the potential benefit of multidimen-
sional data because of a phenomenon that is expected in
big data research: larger volumes of data for better models
may come at the price of less detailed or lower quality data.

We do believe that although we could perhaps not use
the full potential performance of ML algorithms, our com-
parison is just as relevant. Published ML-based prediction
algorithms often include a large number of predictors,
sometimes with the suggestion to result in high discrimina-
tive performance [52,53]. We note that external validation
of these high-dimensional prediction algorithms is chal-
lenging because availability of predictors may differ from
one setting to the other. For prediction with genomics data,
this may be feasible if sufficient standardization and harmo-
nization was performed [54]. However, clinical variables
often have different definitions, notations, or units, which
complicate the validation procedure with a large number
(say n O 50) of predictors. External validation remains
an essential step before implementing prediction algorithms
in clinical practice. To train and validate high-dimensional
data, a sophisticated IT environment is necessary [55].
Therefore, we believe that the low-dimensional setting,
such as our study, might be more relevant for clinical prac-
tice, also for the near future. Powerful predictions for
outcome after TBI can apparently be made with linear ef-
fects which are captured with simple algorithms.

Finally, this study should be replicated in other fields than
TBI to ensure the generalizability of our findings, again from
a largely neutral perspective [54]. Preferably, a wide range of
studies should be used, representing different settings in
terms of study design (randomized controlled trials vs. obser-
vational), geography (different countries), types of centers
(level I trauma centers vs. other), and so forth. Most studies
that compared algorithms used only one or a limited number
of study populations [15e19]. Because the performance
heavily relies on the study population, comparing the
methods in multiple populations is recommended.
5. Conclusion

In a low-dimensional setting, flexible ML algorithms do
not perform better than more traditional regression models
in outcome prediction after moderate or severe TBI. This is
potentially explained by the most important prognostic ef-
fects acting as independent, linear effects. Predictive per-
formance is more dependent on the population in which
the model is applied than the type of algorithm used. This
finding has strong implications: continuous validation and
updating of prediction models is necessary to ensure
applicability to new populations of both ML algorithms
and regression-based models. To improve prognostication
for TBI, future studies should extend current prognostic
models with new predictors (biomarkers, imaging, geno-
mics) with strong incremental value, for the reliable identi-
fication of patients with poor vs. good prognosis.
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