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Abstract

We compared five statistical methods to detect differentially expressed genes between two distinct single-cell populations.
Currently, it remains unclear whether differential expression methods developed originally for conventional bulk RNA-seq
data can also be applied to single-cell RNA-seq data analysis. Our results in three diverse comparison settings showed
marked differences between the different methods in terms of the number of detections as well as their sensitivity and
specificity. They, however, did not reveal systematic benefits of the currently available single-cell-specific methods. Instead,
our previously introduced reproducibility-optimization method showed good performance in all comparison settings
without any single-cell-specific modifications.
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Background

Gene expression profiling has traditionally focused on bulk popu-
lations of millions of cells, measured either using microarrays or
next-generation sequencing technologies. Although an average
expression level for each gene in the cell population can be suffi-
cient in many applications, such as determining disease bio-
markers, bulk RNA-seq analysis lacks the detail of cell-specific
functionality. Consequently, with the rapid technological devel-
opments, single-cell RNA-seq (scRNA-seq) has quickly grown
into a popular field of RNA-sequencing, enabling novel biological
discoveries such as detecting novel cell types with distinct ex-
pression signatures, or understanding of the stochasticity of gene
expression in a cell population [1–3].

To effectively use the scRNA-seq data, it is crucial to use ap-
propriate tools for the data analysis. Although several sophisti-
cated methods are already available for analyzing bulk RNA-seq

data [4–6], their direct applicability to scRNA-seq data still re-
mains largely unclear. In particular, scRNA-seq has its own spe-
cificities and challenges, a major challenge being how to
distinguish technical and biological noise. This stems, on the
one hand, from the low amount of starting material and, on the
other hand, from inherent biological variability [7]. However,
the number of measurements per group is typically consider-
ably higher in scRNA-seq experiments than in bulk RNA-seq ex-
periments, which can, at least to some extent, compensate the
higher noise levels [3].

A common task in many single-cell studies is to detect dif-
ferentially expressed (DE) genes between cell populations.
There are already multiple methods that can be used for that
purpose. Some of the methods are new and designed specific-
ally for scRNA-seq data, some have been originally developed
for bulk RNA-seq data, and some are more general. Recently,
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Kharchenko et al. [7] briefly compared some of the single-cell
methods with their novel method presented in the article but
there still remains a lack of a systematic comparison of the cur-
rently available tools for scRNA-seq data.

To address this need, we compared five representative stat-
istical methods that detect DE genes between single-cell popu-
lations: (1) single-cell differential expression (SCDE) [7], (2)
model-based analysis of single-cell transcriptomics (MAST) [8],
(3) differential expression analysis for sequence count data
(DESeq) [9], (4) Linear models for microarray and RNA-Seq data
(Limma) [10] and (5) reproducibility-optimized test statistic
(ROTS) [11–13]. SCDE and MAST are specifically designed for
single-cell data, DESeq and Limma are methods developed ori-
ginally for conventional bulk RNA-seq data and ROTS is a gen-
eral statistical method, which learns the appropriate test
statistic directly from the data. To systematically assess
whether the methods designed specifically for scRNA-seq data
perform better than the methods developed for bulk RNA-seq
data or the more general methods, three diverse comparisons
were considered. The first one was similar to the one in [7]:
there are two independent data sets including measurements
from the same two cell types [14, 15] and the methods are ex-
pected to find the same genes as significant in both data sets. In
the other two comparisons, we investigated reproducibility of
the detections, false positive findings and the effect of the num-
ber of measured cells on the results using two recently pub-
lished large single-cell data sets by Kowalczyk et al. [16] and
Björklund et al. [17].

Methods to detect DE genes

In this section, we shortly introduce the five tested methods with
both a general summary and by a brief description of the mathem-
atical basis of the methods. Detailed explanations are available in
the original publications [7–11]. The differential expression meth-
ods were applied following the instructions and recommenda-
tions of their respective software packages. Genes with false
discovery rate (FDR) <0.05 were considered as DE. To make the
comparisons fully reproducible, we provide the codes and param-
eters from our analyses in the Supplementary Code. The methods
to be tested were first selected on the basis of the comparison by
Kharchenko et al. [7]. MAST is essentially the same method as
Single Cell Assay (SCA) tested in [7]; CuffDiff2 was excluded from
the study based on poor performance in previous comparisons [6,
7]. Two additional methods, Limma and ROTS, were further added
to this study to investigate whether scRNA-seq-specific methods
perform significantly better than more general methods for de-
tecting differentially behaving elements between two groups. The
following R packages were used:

• SCDE (v. 1.99.0) was downloaded from

http://hms-dbmi.github.io/scde/package.html

• MAST (v. 0.931) was downloaded from

https://github.com/RGLab/MAST

• DESeq (v. 1.20.0) is available in

Bioconductor (http://www.bioconductor.org)

• Limma (v. 3.24.15) is available in

Bioconductor (http://www.bioconductor.org)

• ROTS (v. 0.99.9) is available in

Bioconductor (http://www.bioconductor.org)

Single-cell differential expression (SCDE)

The SCDE method is a recently introduced novel method de-
signed for single-cell data analysis [7]. SCDE analysis consists of
three main steps: data filtering, fitting an error model and test-
ing for differential expression. In the data filtering step, both
genes that are not expressed in any of the tested cells and cells
that show poor coverage over measured genes are excluded
from the analysis.

When comparing two subgroups of cells S and G to each
other, the probability of fold expression difference of f in gene g
is determined by

pgðf Þ ¼
X
x2X

pSgðxÞ � pGgðfxÞ; (1)

where X is the range of valid expression levels and pSgðxÞ is the
posterior probability of gene g being expressed at an average level
x in subpopulation S (pGg is defined similarly). In Bayesian ap-
proach, the probability pSgðxÞ is defined as an expected value (E):

pSgðxÞ ¼ E
Y
c2B

pgðxjrc;XcÞ
" #

; (2)

where B is a bootstrap sample of S and pgðxjrc;XcÞ is the posterior
probability of gene g being expressed at level x in cell c condi-
tioned on observed expression level rc and fitted error model Xc

for cell c. The posterior probability can be further written as

pgðxjrc;XcÞ ¼ pdðxÞppoissonðxÞ þ ð1� pdðxÞÞpNBðxjrcÞ; (3)

where pdðxÞ is the probability of dropout in cell c when a gene is
expressed at an average level of x, and ppoisson and pNB are proba-
bilities of observing expression magnitude of x in case of a drop-
out (Poisson) or successful amplification (negative binomial NB),
with the parameters of the distributions determined by the
error model Xc. The probabilities pd, ppoisson and pNB are calcu-
lated based on distributions

rc � NBðeÞ amplified

rc � Poissonð0:1Þ dropout;

(
(4)

where e is the expected expression magnitude estimated as a
median observed magnitude in cells where the gene is
amplified.

Model-based analysis of single-cell transcriptomics
(MAST)

The MAST method has originally been designed for quantitative
polymerase chain reaction-based fluidigm single-cell gene ex-
pression assay, but it can also be used for scRNA-seq data [8].
The theoretical basis of MAST lies in linear model fitting and
likelihood ratio testing. MAST analysis consists of preprocess-
ing, fitting a hurdle model and calculating the test statistics.
The rate of expression (how many cells express the gene) and
the level of expression for the expressed cells are modeled con-
ditionally independently for each gene g.

Let Zgc 2 f0; 1g denote if gene g is expressed in cell c (Zgc¼ 1)
or not (Zgc¼ 0), and let Ygc be the gene expression level when
Zgc¼ 1. MAST fits a logistic regression model for Z and a
Gaussian linear model for YjZ ¼ 1:
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logitðPðZgc ¼ 1ÞÞ ¼ Xcb
D
g and YgcjðZgc ¼ 1Þ � NðXcb

G
g ; r

2
gÞ; (5)

where Xc is the design matrix. The regression coefficients of
both components are regularized. In the discrete case the regu-
larization is done using a Bayesian approach in R-package arm.
In the continuous case the variance parameter is regularized by
cellular detection rate (CDR) defined as:

CDRc ¼
1
N

XN

g¼1

Zgc; (6)

where N is number of measured genes. Differential expression
is determined using the likelihood ratio test.

Differential expression analysis for sequence count data
(DESeq)

The DESeq is a widely applied method originally developed for
bulk RNA-seq data. It is based on a NB model, with mean and
variance linked by local regression [9].

In DESeq, count Kgj of gene g in sample j is modeled with NB
distribution Kgj � NBðlgj; r

2
gjÞ. Parameters lgj and r2

gj are not
known and need to be estimated from the data. When compar-
ing two groups (A and B) to each other, terms

KAg ¼
X
j2A

Kgj and KBg ¼
X
j2B

Kgj (7)

are used. These variables are also expected to follow NB distri-
butions KAg � NBðlAg; r

2
AgÞ, KBg similarly, and the parameters lAg

and r2
Ag can be derived from those of Kgj. Let us denote the prob-

ability that KAg ¼ a and KBg ¼ b by p(a, b). Then the P-value pg of
observed KAg and KBg is defined as

pg ¼ 2 �

X
aþ b ¼ KSg

fcða;bÞ � fcðKAg;KBgÞ

pða; bÞ

X
aþb¼KSg

pða; bÞ
; (8)

where KSg ¼ KAg þ KBg is the total sum of counts for gene
g. Function fc denotes fold change

fcðx; yÞ ¼ x=sA

y=sB
; (9)

where sA ¼
X
j2A

sj and, correspondingly, sB ¼
X
j2B

sj.

Linear models for microarray and RNA-Seq data (Limma)

The LIMMA method was originally designed for gene expression
microarray data, but has recently been extended to RNA-seq data.
In case of RNA-seq data, Limma uses Voom preprocessing [18].
Limma is based on linear modeling and it has shown good perform-
ance in previous comparison studies on bulk RNA-seq data [5, 6].

Limma considers gene-wise linear models

EðygÞ ¼ Xag and VarðygÞ ¼Wgr
2
g ; (10)

where yg is a vector of expression values from different samples,
X is a design matrix, ag is a coefficient vector and Wg is a known
weight matrix. The variable that describes possible differences
between test groups is

bg ¼ CTag; (11)

where C is a contrast matrix. The linear model is fitted to the re-
sponses to obtain coefficient estimators bag and estimators s2

g of
r2

g . Contrast estimator is defined as bbg ¼ CTbag with estimated co-
variance matrices

VarðbbgÞ ¼ CTVgCs2
g ; (12)

where Vg is unscaled covariance matrix. Some assumptions about
the distributions of bbg and s2

g are made so that ordinary t-statistic

tgj ¼
bbgj

sg
ffiffiffiffiffiffivgj
p (13)

follows an approximate t-distribution with dg degrees of free-
dom. The term vgj is the jth diagonal element of CTVgC. Instead
of regular t-statistic, Limma uses modified t-statistic

~tgj ¼
bbgj

~sg
ffiffiffiffiffiffivgj
p ; (14)

where

~s2
g ¼

d0s2
0 þ dgs2

g

d0 þ dg
: (15)

Here a prior estimator s2
0 and degree of freedom d0 are estimated

from the data using empirical Bayes approach. If d0 ¼ 0, the
modified t-test (14) is the ordinary t-test.

Reproducibility-optimized test statistic (ROTS)

The ROTS is the only method among the tested ones that does
not have any single-cell or sequencing-specific functions.
ROTS optimizes the parameters among a family of modified t-
statistics by maximizing the reproducibility of the detections
across bootstrap samples. It has previously been shown to
perform well in gene expression microarray and bulk RNA-seq
data as well as in mass spectrometry-based proteomics data
[11–13].

ROTS maximizes the scaled reproducibility

RkðdaÞ � R0
kðdaÞ

skðdaÞ
(16)

over the parameters a ¼ ða1; a2Þ and k; a1 2 0;1½ Þ; a2 2 0; 1f g, and
k defines the top list size. The denominator skðdaÞ is the esti-
mated standard deviation of the bootstrap distribution of the
observed reproducibility RkðdaÞ. The term R0

kðdaÞ corresponds to
reproducibility of random data. It is calculated as the average
reproducibility over randomized data sets, which are permuted
from the real samples. The reproducibility is defined as

RkðdaÞ ¼
1
B

XB

b¼1

RðbÞk ðdaÞ

¼ 1
B

XB

b¼1

#fgjðrgða;DðbÞ1 Þ < k; rgða;DðbÞ2 Þ < kÞg
k

; (17)

where B is the number of bootstrap rounds (two data sets Db
1

and Db
2 are generated in each round b), # denotes size of a set,

Comparison of methods to detect differentially expressed genes | 737

Downloaded from https://academic.oup.com/bib/article-abstract/18/5/735/2562772/Comparison-of-methods-to-detect-differentially
by Turun Yliopiston Kirjasto user
on 05 October 2017

Deleted Text: 2.3 
Deleted Text: DESeq
Deleted Text: Differential Expression analysis for Sequence count data (
Deleted Text: )
Deleted Text: negative binomial
Deleted Text: negative binomial
Deleted Text: negative binomial
Deleted Text: 2.4 
Deleted Text: ,
Deleted Text: 2.5 
Deleted Text: ROTS
Deleted Text: 2.5 ROTS
Deleted Text: Reproducibility-optimized test statistic (
Deleted Text: )
Deleted Text:  
Deleted Text:  


and function rg returns the rank of a gene (or other element) g
when test statistic da is used. The test statistic is a t-test-like
statistic

daðgÞ ¼
jxg � yg j
a1 þ a2sg

; (18)

where xg and yg are the averages of gene g over the samples in
group x and y, respectively. The term sg is the standard error.

Test design
Data sets

The five methods were tested on three different scRNA-seq data
sets with the objective of determining DE genes between differ-
ent types of cells.

The first scRNA-seq data set, originated from a study by
Islam et al. [14], is available in GEO database under accession
number GSE29087 (accessed 13 November 2015). The count
matrix available in GEO was used in the analysis. For validation
of the results, the data set by Moliner et al. [15] was used, simi-
larly as by Kharchenko et al. [7]. The .CEL files were available
at http://carlosibanezlab.se//Data/Moliner_CELfiles.zip (accessed
30 October 2015). The original .CEL files were preprocessed using
the Bioconductor package affy with Robust Multi-array Average
(RMA) normalization. Only the genes appearing in both data sets
were used in this study. Top 1000 DE genes were detected from
the validation data using the Bioconductor package Limma.

The second scRNA-seq data set came from the study by
Kowalczyk et al. [16]. The count matrix for mouse strain DBA
that was used in this study is available in GEO under accession
number GSE59114 (accessed 16 December 2015). The data con-
sist of long-term hematopoietic stem cells (LTHSC). The data set
is referred to here as LTHSC data set.

The third data set by Björklund et al. [17] contains innate
lymphoid cell (ILC) data from human tonsil. The data set is
available in GEO under accession number GSE70580 (accessed
13 April 2016). Only cell types ILC1, ILC2 and ILC3 were used in
this study. This data set is referred to as ILC data set.

In each analyzed scRNA-seq data set, genes that were never
expressed were filtered out. With SCDE, MAST, DESeq and
Limma, we followed the instructions of the respective authors
for data preprocessing and filtering. With ROTS we performed
Trimmed Mean of M values normalization [4] before performing
the differential expression analysis.

Receiver operating characteristic performance,
precision, recall and false positives

Our first comparison setting used the comparison design and
data sets from the study by Kharchenko et al. [7]. More specific-
ally, the single-cell data set by Islam et al. [14] was used to detect
DE genes between 48 mouse embryonic stem cells and 44
mouse embryonic fibroblast cells. The five tested methods were
then compared in terms of their area under the receiver operat-
ing characteristic (ROC) curve (AUC) using bulk expression
measurements from Moliner et al. as a gold standard [15]. The
AUC values were calculated with the R package pROC using the
output of each method (absolute values of the test statistics or
P-values) as predictor, and a binary vector, which indicates
whether a gene belongs to the top 1000 validation genes, as re-
sponse. The AUC values were compared between the five meth-
ods by P-values computed using bootstrap method.

Our second comparison setting used the relatively large
single-cell data set by Kowalczyk et al. [16], which enabled us to
also systematically assess the effect of the number of cells on
the performance of the different methods. In these data, we
compared LTHSC from old (20 months) and young (2–3 months)
mice. After excluding cells with very low expression rate (sum
of all counts< 10 000), a total of 135 cells from the old mice and
89 cells from the young mice remained in the data. To investi-
gate the precision and recall of the methods when the number
of cells per group was decreased in the LTHSC data, detections
from the full data were considered as the gold standard. We
used subsets of 70, 50, 30 and 10 cells per group. To avoid seem-
ingly low or high precision and recall values occurring only
owing to random selection of cells into subsets, the random se-
lection was repeated 10 times per group size. Let DEfull denote
the set of detected DE genes in the full data set, and DEsubset the
set of detected DE genes in a subset of the data. The precision
was defined as

precisionðDEfull;DEsubsetÞ ¼
#ðDEfull \ DEsubsetÞ

#DEsubset
; (19)

where \ denotes the intersection between two sets. If
#DEsubset ¼ 0 then the precision value was set as missing. Recall
was defined as

recallðDEfull;DEsubsetÞ ¼
#ðDEfull \ DEsubsetÞ

#DEfull
: (20)

To estimate the rate of false-positive detections, we gener-
ated mock comparisons from the 135 LTHSC cells of the old
mice by randomly dividing the cells into two non-overlapping
groups that represent two cell populations. These two fake
populations were compared with each other and the procedure
was repeated 10 times. Because all the cells were from the same
population, there should not be any real differences. Therefore,
any possible detections would be considered false positive.

To consider data from other organisms than mouse, the
third comparison was applied to the human data set by
Björklund et al. [17]. Similarly as in original publication [17], we
compared ILC3 cells to the other ILC cells; the case group con-
sists of 308 ILC3 cells, and the control group consists of 266 ILC1
or ILC2 cells. Similar evaluations were carried out as in the sec-
ond comparison setting. Because of the large size of the data,
we tested also the subset size of 150 per group in addition to the
sizes of 70, 50, 30 and 10 used also in the comparison for LTHSC
data. The mock comparison for this data set was carried out by
comparing two groups both consisting of 70 ILC3 cells.
Similarly, as in the LTHSC comparison, the random selection for
subsets and mock data sets was repeated 10 times in this data
set.

Results and discussion
ROC performance with bulk benchmark

The ROC curves of the different methods are shown in Figure 1
together with the corresponding AUC values. In this compari-
son, SCDE (AUC 0.70) and ROTS (AUC 0.71) produced the highest
AUC values, followed by DESeq (AUC 0.68). The single-cell-
specific tool MAST performed significantly worse in this com-
parison (AUC 0.60), while Limma showed the overall lowest per-
formance (AUC 0.54). The P-values for comparing the AUC
values are shown in Table 1.
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It is worth noting that the results were not identical to those
reported by Kharchenko et al. [7], which is likely owing to differ-
ent preprocessing of the data sets. Especially the benchmark
validation data set is sensitive to differences in preprocessing
because of the small number of samples. Nevertheless, despite
the influence of preprocessing, the relative performance be-
tween the methods remained similar.

Number and reproducibility of detections when
reducing the number of cells

Figure 2 shows the numbers of DE genes (FDR<0.05) detected
with the different methods in the full LTHSC and ILC data sets
and in random subsets of sizes 10–150 cells per group, re-
peated 10 times for each size and data set. As expected, the
number of detections decreased when the number of cells per
group decreased, but the decrease was not steep before mov-
ing toward the 10 cells per group. From both data sets (LTHSC
and ILC), Limma detected the largest number of DE genes and
DESeq the lowest number; SCDE and ROTS had similar num-
bers of significant findings that were between the two ex-
tremes. In ILC data set, MAST behaved similarly to SCDE and
ROTS, but in LTHSC data set it detected more DE genes than
SCDE and ROTS. Notably, Limma tended to detect almost all of
the genes as DE in the LTHSC data and, therefore, it was
excluded from further comparisons in that data. DESeq threw
errors with almost all sample sizes in ILC data, and so it was
excluded from further comparisons in that data. For large data
sets (>50 cells per group), the MAST algorithm threw warnings
concerning convergence. However, the performance of MAST
was still reasonably good, so these warnings were not con-
sidered critical.

Next, we measured the precision and recall of the detections
using the detections from the full data of 135þ 89 LTHSC cells
and 308þ 266 ILC cells as the gold standard. The precision and
recall values in both data sets for different methods and differ-
ent numbers of cells per group are illustrated in Figure 3. When
the number of cells was 70 per group, all of the tested methods
had relatively high precision values (sampling medians ranged
from 0.66 by SCDE to 0.95 by ROTS in LTHSC data and from 0.64

Figure 1. ROC curves of the five differential expression methods using a bulk bench-

mark. Sensitivity is shown as a function of specificity with the five statistical methods

in the scRNA-seq data by Islam et al. [14]. Bulk measurements from the study by

Moliner et al. [15] were used as the gold standard, following the comparison design by

Kharchenko et al. [7]. Areas under the ROC curves (AUC) are shown in the parentheses.

A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Table 1. P-values of the pairwise differences between areas under
the ROC curves in the Islam et al. data [14] calculated using bootstrap
method

Method SCDE MAST DESeq Limma ROTS

SCDE – 1.1e-12 0.14 <2.2e-16 0.44
MAST 1.1e-12 – 5.4e-08 1.0e-05 1.6e-15
DESeq 0.14 5.4e-08 – <2.2e-16 0.03
Limma <2.2e-16 1.0e-05 <2.2e-16 – <2.2e-16
ROTS 0.44 1.6e-15 0.03 <2.2e-16 –

BA

Figure 2. Number of DE genes with the five methods in (A) LTHSC data by Kowalczyk et al. [16] and (B) ILC data by Björklund et al. [17]. The number of detections is

shown for the full data (All) and for the reduced data with decreasing number of cells per group. Different points in reduced sample sizes correspond to 10 randomly

sampled subsets and the median numbers are connected with a line. DESeq could not be used in reduced ILC data with <150 cells per group. The y-axis is in log scale

for the clarity of illustration. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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by Limma to 0.94 by ROTS in ILC data, see Figure 3A and B, re-
spectively). For MAST and ROTS, the precision values remained
high in both data sets when sample size was reduced (excluding
MAST for 10 cells in ILC data set). SCDE clearly performed better
in ILC data set than in LTHSC data set in both general precision
level and sample size effect. Limma was excluded from LTHSC
data set analysis because it detected almost everything as sig-
nificant; in ILC data set analysis, its performance was the most
modest among the tested methods. DESeq was excluded from
ILC data set analysis because it could not be used with most of
the reduced data sets; in analysis of LTHSC data set, it was
among the worst-performing methods together with SCDE.
With small sample size subset (10 cells per group) in LTHSC
data set, DESeq produced detections only in 1 of the 10 ran-
domly sampled subsets.

The recall values were systematically lower than the preci-
sion values for all the methods (Figure 3). The median recall val-
ues for random samplings were <0.55 for all the methods and
all sample sizes in both data sets (Figure 3C and D). The recall
values rapidly decreased for all the methods when the number
of cells was decreased; at 10 cells per group, all the methods
had sampling median close to 0. The lower levels of recall val-
ues compared with precision values is an expected outcome for
two reasons. First, with smaller number of cells (subset versus
full data), the differences between the two groups have to be
larger to be significant. Second, when fewer cells are analyzed
there are more genes that are never detected and therefore
excluded.

False-positive findings

In Figure 4 the absolute numbers and rates of false positives are
illustrated for LTHSC and ILC data sets. The false-positive rate
was defined as the number of false-positive findings scaled by
the median number of detected DE genes from the real compari-
son with similar number of cells (70 cells per group). Again,
Limma was excluded from LTHSC analyses and DESeq from ILC
analyses. MAST and ROTS made relatively few false-positive de-
tections in both data sets. The median false-positive rate of
MAST was 0.005 in LTHSC data set and 0.045 in ILC data set. The
respective medians of ROTS were 0.006 and 0.001. SCDE per-
formed better than Limma, but not as well as MAST and ROTS.
With Limma the number and rate of false positives were high
compared with the other methods. The median false-positive
rate of Limma was 0.57, whereas all the other methods had me-
dian false-positive rate <0.1. The false-positive rates of DESeq
varied more than those of MAST or ROTS. Overlaps between the
false-positive findings across the different random subsam-
plings were low for all the methods, indicating that none of the
tested methods is biased in detecting specific genes as DE.

Similarity between the methods

Finally, we compared the overlaps of the detections between
the methods in the three different data sets by extracting �10%
of the most DE genes from the results of each method (600
genes in the Islam et al. data [14], 2000 genes in the Kowalczyk
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Figure 3. Precision and recall of the five methods in two data sets: precision (A) in LTHSC data by Kowalczyk et al. [16] and (B) in ILC data by Björklund et al. [17], and re-

call (C) in LTHSC data and (D) in ILC data. The values were calculated using DE genes in the full data as gold standard. Limma found almost everything as significant in

all comparisons from the LTHSC data set; hence, for clarity of illustration it was excluded from those figures. In the precision figure of LTHSC data set, nine values were

missing for DESeq with 10 cells per group owing to undefined values generated from zero detections. In the ILC data set, DESeq did not work with subsets of<150 cells

per group and it was therefore excluded from those figures. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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et al. data [16], 3500 genes in the Björklund et al. [17] data).
Overall, the overlaps between the methods were relatively low
(always <70%) and none of the tested methods showed system-
atically higher overlap than the other methods in all three data
sets considered. The overlaps between the methods are listed in
Table 2.

The modest overlaps between top detections from different
methods indicate that the methods perform differently from
one another.

Running time

Among the tested methods, Limma is the fastest to run; MAST
and DESeq are also relatively fast, whereas ROTS and SCDE are
more computationally intensive. The time-consuming steps of
SCDE and ROTS are fitting an error model and permuting the
samples for bootstrapping, respectively. The remaining three
methods, MAST, DESeq and Limma, do not include any heavily

time-consuming steps. Details about running times with regard
to different sizes of input data are available in Table 3.

The times were recorded using system.time function in R.
The user times listed in the table correspond to a system with
Intel i7-4790 processor (3.60 GHz) and 32 GB of RAM. For the sake
of comparability, only one core was used for the runs in Table 3.
Otherwise SCDE includes an option to use multiple cores and
the algorithm of ROTS is also suitable for parallel computing.

Conclusions

We have performed a systematic comparison of five different
statistical methods to detect DE genes between single-cell popu-
lations. The single-cell-specific methods SCDE and MAST per-
formed differently from each other. SCDE performed well in the
first comparison setting in the Islam et al. data [14], but was
among the worst performing methods in LTHSC and ILC data
sets. MAST had low AUC in the Islam et al. data, but it performed
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Figure 4. The number and rate of false positives on the basis of mock comparisons generated using two data sets: number of false positives (A) in LTHSC data by

Kowalczyk et al. [16] and (B) in ILC data by Björklund et al. [17], and false-positive rate (C) in LTHSC data and (D) in ILC data. In both mock comparisons, DE genes were

detected between two artificially constructed subsets of cells from the same population, in which no significant detections were expected. The points correspond to 10

randomly generated mock data sets. Limma could not be used with LTHSC data and DESeq could not be used with ILC data. In ILC data, Limma had high number of

false positives and false positive rate compared with the other methods and therefore it was visualized separately. When there are <10 points visible, some of the

points are overlapping. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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well in both LTHSC and ILC data sets. Based on our compari-
sons, DESeq and Limma without any modifications are not suit-
able for scRNA-seq data analysis, and yet, they have performed
well in the context of bulk RNA-seq data [5, 6]. ROTS is the most
general method among the tested methods, as it is not designed
specifically for sequencing data (bulk or single-cell). However, it
performed well in all the comparisons in this study.

MAST detected much more DE genes than the other tested
methods (excluding Limma, which detected almost everything
from LTHSC data set), whereas DESeq yielded the smallest
number of detections. SCDE and ROTS found similar numbers of

DE genes and the numbers were between the two extremes.
Overall the relative differences between the methods were simi-
lar in the LTHSC and ILC data sets. It is based on the application
whether a high or low number of detections is more favorable.
The conclusions are summarized in Table 4.

In addition to statistical properties, other features are also
relevant when deciding which method to use [6, 19]. For ex-
ample, SCDE, DESeq, Limma and ROTS require count data,
whereas MAST prefers transcripts per million [20]. DESeq,
Limma and ROTS are rather user-friendly and SCDE has a de-
tailed tutorial available (http://hms-dbmi.github.io/scde/tutor
ials.html). All the methods are available as R packages.

Overall, our comparisons in three diverse data sets showed
marked differences between the five tested methods in terms of
the number of detections as well as their sensitivity and specifi-
city, but did not reveal systematic benefits of the single-cell-
specific methods in general. Instead, our previously introduced
reproducibility-optimization method ROTS showed good per-
formance in all comparisons even without any single-cell-
specific modifications.

Key Points

• Selection of the method had a large impact on the
results.

• Single-cell-specific methods did not have systematic-
ally better performance than other methods.

• Methods developed originally for bulk RNA-seq, DESeq
and Limma, were not suitable for analyzing scRNA-seq
data.

• ROTS performed well in all the comparisons and
MAST had good statistical properties (false positives,
precision and recall) as well.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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Table 2. Overlap (%) of top �10 % significant detections between the
different methods in the data by Islam et al. [14], the LTHSC data by
Kowalczyk et al. [16] and ILC data by Björklund et al. [17]

Method SCDE MAST DESeq Limma ROTS

Data set by Islam et al. (mouse)

SCDE 100 27 39 9 47
MAST 27 100 55 1 67
DESeq 39 55 100 5 62
Limma 9 1 5 100 3
ROTS 47 67 62 3 100

LTHSC data set (mouse).

SCDE 100 24 35 10 39
MAST 24 100 18 2 36
DESeq 35 18 100 14 26
Limma 10 2 14 100 3
ROTS 39 36 26 3 100

ILC data set (human)

SCDE 100 57 30 57 56
MAST 57 100 29 62 60
DESeq 30 29 100 25 24
Limma 57 62 25 100 58
ROTS 56 60 24 58 100

Table 3. Running time (seconds) of each method with different sizes
of input data

Methods Number of cells per group

All 70 50 30 10

SCDE 17 962.8 10 200.5 5896.2 2113.8 322.8
MAST 135.2 110.7 100.9 84.6 61.5
DESeq 21.4 14.1 11.6 8.0 3.5
Limma 7.1 4.9 4.0 3.0 1.9
ROTS 805.8 624.0 538.4 426.6 293.6

The analyzed data are from LTHSC data by Kowalczyk et al. [16].

Table 4. Summary of the performance of the methods

Feature SCDE MAST DESeq Limma ROTS

Designed for scRNAseq scRNAseq Bulk RNAseq Bulk RNAseq General
Number of significant findings Medium High Low Very high Medium
False positive rate Medium Low Unstable High Very low
Reproducibility Unstable High Low Low/unstable High
Running time Very slow Medium Fast Fast Slow
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