
Manipulating GUI Structures Declaratively
Knut Anders Stokke
University of Bergen

Bergen, Norway
knut.stokke@uib.no

Mikhail Barash
University of Bergen

Bergen, Norway
mikhail.barash@uib.no

Jaakko Järvi
University of Turku

Turku, Finland
jaakko.jarvi@utu.fi

Abstract
GUIs often contain structures that are incidental, not prop-
erly manipulatable through well-defined APIs. For example,
modifying a list of items in a GUI’s model may require extra-
neous bookkeeping operations in the view, such as adding
and removing event handlers, and updating the menu struc-
ture. ObservingGUIs in practice gives an indication that pro-
grammers may find it difficult or tedious to implement com-
plete and convenient sets of operations for manipulating
various structures: useful operations for adding, inserting,
swapping, or reordering elements are often missing, incon-
sistent, or limited. This paper introduces a DSL for program-
ming operations that manipulate such incidental structures.
The programmer specifies structures via relations between
elements, concretely by defining methods that unestablish
and establish a relation. This gives the programmer an abil-
ity to describe structural transformations via rules that con-
trol which relations should hold before and after a rule is ap-
plied. The API for structure manipulation is generated from
these rules. Our DSL can give an abstract view on ad-hoc
structures, making it easier to provide the necessary set of
operations for their convenient manipulation.

CCSConcepts: • Software and its engineering→Graph-
ical user interface languages;Domain specific languages.

Keywords: declarative programming, GUIs, separation of con-
cerns

ACM Reference Format:
Knut Anders Stokke, Mikhail Barash, and Jaakko Järvi. 2020. Ma-
nipulating GUI Structures Declaratively. In Proceedings of the 19th
ACMSIGPLAN International Conference onGenerative Programming:
Concepts and Experiences (GPCE ’20), November 16–17, 2020, Virtual,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3425898.3426956

GPCE ’20, November 16–17, 2020, Virtual, USA
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 19th ACM SIGPLAN International Conference on Gener-
ative Programming: Concepts and Experiences (GPCE ’20), November 16–17,
2020, Virtual, USA, https://doi.org/10.1145/3425898.3426956.

1 Introduction
Programming is to a large extent about manipulating data
and the structures that data resides in. We routinely take ad-
vantage of well-known abstract data types (ADT) that spec-
ify operations and behavior of lists, queues, trees, graphs,
and other common structures. Typically data manipulated
through an ADT is stored in a concrete data type imple-
mented with the ADT’s interface in mind—the standard li-
braries of common programming languages contain many
examples.

Often structures that we encounter as programmers are,
however, more ad-hoc. They are not neatly encapsulated
within the boundaries of a canned implementation. This is
particularly true in Graphical User Interface (GUI) program-
ming, which is the domain that primarily motivates this pa-
per. In this domain, data is typically split between a model
and view, and operations that affect the structure of the one
should be reflected on the other too. Consider a GUI for spec-
ifying a multi-city flight search, where a user specifies a list
of flight segments, the departure and arrival city and a date
for each. Presumably the GUI’s model is a list or an array
of such records, but the manipulation of the flight segments
is more complex than invoking insert or erase methods of
some underlying list data structure: when the model’s struc-
ture changes, the view may require changes too, including
adding or removing textboxes or other widgets, adding and
removing event handlers on these widgets, and modifying
validation logic, e.g. to ensure that dates are increasing. The
programmer cannot merely consider the list of flight seg-
ments as a predefined data structure that has operations for
addition, deletion and reordering—the programmermust, for
each operation, ensure that the view is kept up to date with
themodel.We have an incidental data structure on our hands,
lacking operations for manipulating it.

Observations about GUIs today support the view that im-
plementing operations for structural modifications in GUIs
is a challenge. It is common that features for structure mod-
ification are limited and cumbersome. Continuing with the
flight search example, almost no flight booking services al-
low adding flight segments in the middle of a multi-city
search; we checked 30 services, of which only one has this
feature. Frequent travellers know that this would be a conve-
nient featurewhen exploring options for complex itineraries,
yet not even services that have millions of users provide it.

GUIs without adequate structural operations frustrate in
all walks of life.Many encounter in-house applicationswhose

https://doi.org/10.1145/3425898.3426956
https://doi.org/10.1145/3425898.3426956
https://doi.org/10.1145/3425898.3426956


GPCE ’20, November 16–17, 2020, Virtual, USA Knut Anders Stokke, Mikhail Barash, and Jaakko Järvi

Figure 1. ApplyTexas’ form for extracurricular activities.

GUI features for structure manipulation are very limited.
As a representative example, the ApplyTexas [1] website for
admissions to higher education institutions in the State of
Texas asks, as a part of the application, the applicant to spec-
ify up to ten extracurricular activities in the order of impor-
tance. Each activity has 23 fields: text inputs, numerical in-
puts, and checkboxes, as shown in Figure 1. The GUI does
not, however, let the user to reorder the activities in any
way. To move an activity up or down in the form would
require swapping activities by swapping (with copy-paste)
each of the 23 fields of the two activities. In practice, if the
user wants to reorder the activities, the choices are to fill
the form again or content oneself with a suboptimal order.
This time-wasting GUI, subjected to hundreds of thousands
of students yearly, has been part of ApplyTexas for more
than a decade. The lack of reordering operations is unfortu-
nate and unnecessary—our mock implementation of a sim-
ilar form in Figure 4 shows that implementing such oper-
ations is quite simple. In general, programmers of applica-
tions with smaller user bases can afford to put less effort
on producing feature-rich GUIs, so the problem of missing
structural operations is more prevalent in such applications.

This paper suggests making the incidental structures that
appear in GUIs explicit to the programmer. Our DSL can pro-
vide an abstract view over such messy structures. This view
is based on the programmer defining relations between ele-
ments, such as an element preceding another in a sequence,
and how these relations are established and unestablished.
An API for structural modifications is then specified as a set

of transformation rules that control which relations hold be-
fore and after a rule is applied. Often these transformation
rules are reusable for many relations. By defining a few re-
lations for each structure that appears on a GUI, insertions,
deletions, reorderings, and other restructurings can be sup-
ported with ease. Our DSL gives the programmer a prin-
cipled approach for implementing operations that affect a
GUIs structure, instead of resorting to whatever means of
implementation feels expedient.

2 Language for Structure Manipulation
This section presents a DSL for specifying relationships be-
tween elements in structures and defining rules that modify
those structures. Formally, a structure specification can be
thought of as a triple 𝑆 = ⟨𝐶, 𝑅,𝑇 ⟩, where

• 𝐶 is a set of components,
• 𝑅 is a set of finitary relations on components, and
• 𝑇 is a set of transformation rules that express (all) pos-

sible manipulations that modify component relations.
A relation defined on components is intended to capture

the structural link between component instances. While the
semantics of such a link is left implicit, it is dependent on the
application, one specifies explicitly how this link can be es-
tablished and unestablished, and how one can test whether
it exists between given component instances. These specifi-
cations are expressed as imperative code blocks in a general-
purpose language; our choice is JavaScript because of its
prevalence in GUI programming.

A relation 𝑟 defined on components 𝑐1, …, 𝑐𝑘 ∈ 𝐶 is a
quadruple 𝑟 = ⟨{𝑐1, . . . , 𝑐𝑘 }, 𝑟𝑃 , 𝑟𝐸, 𝑟𝑈 ⟩, where

• 𝑟𝑃 is an imperative code block that acts as a predicate
testing whether the relation holds,

• 𝑟𝐸 is an imperative code block that establishes the re-
lation,

• 𝑟𝑈 is an optional imperative code block that unestab-
lishes the relation; if this block is present then we call
the relation proper.

After relations between the components of a GUI have
been defined, one can specify transformation rules to “turn
relations on and of”, and in this manner modify the struc-
tural links between component instances.

A transformation rule 𝑡 is a triple 𝑡 = ⟨{𝑐1, . . . , 𝑐𝑘 }, 𝑡𝑃 , 𝑡𝑄 ⟩,
where 𝑡𝑃 ⊆ 𝑅 is a sequence of premises, proper relations that
must hold for the transformation rule to be applicable, and
𝑡𝑄 ⊆ 𝑅 is a sequence of consequences, relations that shall
hold after the transformation rule has been applied. An ap-
plication of transformation rule 𝑡 unestablishes all relations
from set 𝑡𝑃 and establishes all relations from set 𝑡𝑄 .

We can now introduce a domain-specific language that
enables defining structure specifications as described above.
We showcase the language by specifying an assumedHTML-
based GUI that supports operations on elements (Li nodes
of the document object model) in lists (Ul nodes).



Manipulating GUI Structures Declaratively GPCE ’20, November 16–17, 2020, Virtual, USA

The structure specification 𝑆 = ⟨𝐶, 𝑅,𝑇 ⟩ concerns com-
ponents of two types: 𝐶 = {𝑐Li, 𝑐Ul}, corresponding to an
element and a list, respectively. These components can be
declared in our DSL as follows:

A declaration of a component includes its name followed
by an imperative code block in JavaScript, enclosed in triple
quotemarks.The code tests if an instance of a component—a
DOM node—is of the expected type. Guillemets can be used
to refer to identifiers declared in our DSL, similarly to tem-
plate strings in Eclipse Xpand [10].

Instances of components are called placeholders. Below
we introduce two instances of component 𝑐Li and one in-
stance of component 𝑐Ul.

Next we introduce a binary relation 𝑟precedes ∈ 𝑅, defined
on any two instances of 𝑐Li, expressing the fact that one
instance precedes another in a given list 𝑐Ul.We keep the list-
container implicit, because in this case the container can be
accessed from its elements. If this was not the case, 𝑟precedes
could be defined between two container-element pairs or as
a ternary relation on two elements and a container, to give
the code blocks access to the container.The implementation
defines a testing predicate and a code block that establishes
the relation.

Using the relation precedes, a transformation rule that
implements swapping of two adjacent elements a and b can
now be defined.The premise of this rule requires that the re-
lation 𝑟precedes holds for instances a and b of the component
𝑐Li, whereas its consequence establishes the same relation,
but with the order of arguments changed: 𝑡swapAdjacent = ⟨
{𝑐Li}, {𝑟precedes (𝑎, 𝑏)}, {𝑟precedes (𝑏, 𝑎)} ⟩. The specification
of this transformation rule in our DSL is as follows:

When applied to two Li component instances a and b,
this rule first checks whether the instances are indeed of
type 𝑐Li. After that, the relation a precedes b is unestab-
lished, and the relation b precedes a established.

Syntactically, a rule specification is a name, followed by
a list of placeholders referenced in the rule, followed by an
equation sign, a list of premises, an arrow sign, and a list of

consequences. Both the premise and consequence lists use
comma as the element delimiter. These lists define the order
in which relations are unestablished and established when
the rule is applied—the order matters since (un)establishing
a relation involves executing imperative code.

The following example shows a rule with two relations in
the consequences list; it defines a transformation for insert-
ing an element between two existing consecutive elements.

The programmer has a complete freedom in what rela-
tions they define, so no algebraic properties between the
relations can be assumed. Consider the relations isIn and
notIn, defined on an element a and a container l, that cap-
ture the containment of the element in the container.

Testing whether relation notIn holds is a negation of the
testing predicate of relation isIn.The relations cannot, how-
ever, be expressed as a negation of each other because es-
tablishing them requires performing different operations on
the container. We thus need a separate definition of notIn:

We can now define the rule to remove a component from a
list by first verifying that “the element is in the list”, and, if
so, then establishing that “the element is not in the list”.

A transformation rule for inserting an element into a con-
tainer can be defined in a symmetric way:

In the above example the declarative rules are obviously
mere dressing for the underlying imperative operations, but
the rules nevertheless make the imperative actions’ effects
on structural relations explicit.

From a specification of structural changes expressed in
our DSL, an API in JavaScript is generated. We explain now
how components, placeholders, relations, and rules are tran-
spiled into JavaScript.

For each component 𝑐 , a function expect_𝑐(𝑎) is gener-
ated. This function returns true if its argument is an in-
stance of component 𝑐 , and throws an error otherwise.These
type-checking functions are invoked on JavaScript objects
whenever transformation rules are applied.1

1Many of the type-checking functions would be unnecessary if targeting a
statically or gradually typed language, such as TypeScript.



GPCE ’20, November 16–17, 2020, Virtual, USA Knut Anders Stokke, Mikhail Barash, and Jaakko Järvi

For each relation specification 𝑟 defined on instances 𝑎1,
…, 𝑎𝑘 of components 𝑐1, …, 𝑐𝑘 , we generate three JavaScript
functions: test_𝑟 (𝑎1, …, 𝑎𝑘 ), establish_𝑟 (𝑎1, …, 𝑎𝑘 ), and
unestablish_𝑟 (𝑎1, …, 𝑎𝑘 ). The first function is a predicate
that checks, by invoking functions expect_𝑐𝑖 , that its pa-
rameters have the same type as their corresponding place-
holders and then, by running the JavaScript code given in
the specification of 𝑟 , that 𝑟 holds. The second and the third
generated functions are symmetrical. They first type-check
their arguments 𝑎1, …, 𝑎𝑘 , and then establish (unestablish)
the relation 𝑟 , by executing the imperative code specified in
the establish (unestablish) block of the specification of
the relation 𝑟 . Then these functions check that the relation
indeed has been established (unestablished) by calling the
testing function test_𝑟 .

For each transformation rule 𝑡 , we generate a JavaScript
function. This function first type-checks its arguments and
checks the rule’s premises. It then invokes unestablish_𝑝
for every premise𝑝 and establish_𝑞 for every consequence
𝑞. Finally, it checks whether the consequences of the rule
hold. Figure 2 shows an example of the generated JavaScript
function for the insertBetween rule.

We used the language workbench Eclipse Xtext [2, 7] to
implement our DSL. Language workbenches [6, 8] let the
programmer specify the syntax, typing rules, and code gen-
erators for a language, based onwhich they output a tailored
IDEwith standard services, including a syntax-aware editor,
code completion, and automatic code corrections [13]. From
the grammar specification for our DSL, Xtext generates a
model using EclipseModeling Framework [14].Themodel is
populated during parsing, producing essentially an abstract
syntax tree that can be further analyzed or transformed. We
use the transformation language Eclipse Xtend [5] to gener-
ate the JavaScript code from our DSL programs. Figure 4
presents a screenshot of a working Eclipse instance of our
DSL, relations and rules of a GUI similar to ApplyTexas.

3 Case Study
This section puts our DSL to use in the implementation of
a simple timetable planning application. The user interface
of the application, in Figure 3, shows a sequence of days,
where each day contains a list of events scheduled one after
another. The user can edit the starting time of each day and
the duration of each event. The GUI responds to such edits
by adjusting events’ start and end times, so that there are
no holes in the schedule.

To implement this application, the programmer defines
the GUI’s structures and their modification rules using our
DSL, offered to the programmers as an Eclipse-based IDE.
From the DSL program, the IDE generates JavaScript func-
tions for manipulating the structures, which are then im-
ported to the web application.

function insertBetween(a, b, c) {
  

  expect_Li(a);
  expect_Li(b);
  expect_Li(c);

  premises = 
    true

    && test_precedes(a, b)
    ;
  
  if (!premises) {
    console.log(”Rule not applicable”);
    return;
  }

  unestablish_precedes(a, b);
  
  establish_precedes(a, c);
  establish_precedes(c, b);

  consequences = 
    true

    && test_precedes(a, c)
    && test_precedes(c, b)
    ;

  if (!consequences) {
    console.log(”Failed to apply rule”);
  }
}

���������

��������

����������������

������������������������������

��������������
���������������������������

����������������

����������������

��������������������

��������������������

Figure 2. JS code generated for the insertBetween rule.

To keep the code of this example simple, we delegate the
value updates to a constraint system, to a library called Hot-
Drink [9], that takes care of updating variables’ valueswhen-
ever variables that they depend on change.The programmer
specifies constraint system components (cs-components for
short), consisting of variables and constraints. We define the
cs-component event as follows:

This cs-component owns four variables (start, duration,
end, title) and has one reference (previous_end), to be
connected to another event’s end variable. The HotDrink li-
brary keeps the constraints c1 and c2 enforced by executing



Manipulating GUI Structures Declaratively GPCE ’20, November 16–17, 2020, Virtual, USA

Figure 3. User interface of the timetable application.

theirmethods (named m in both constraints) when necessary.
The constraint c1 ensures that an event’s start time is the
same as the previous event’s ending time. The constraint c2
ensures the right ending time of an event. In enforcing a
constraint, the return value of a method is written to the
variable to the right of the arrow in the method signature.

For each pair of consecutive events (ek-1, ek), we im-
pose the constraint c1 between ek-1.end and ek.start.This
is achieved by connecting ek.previous_end to ek-1.end,
which is expressed as the assignment ek.previous_end =
ek-1.end.

Thanks to HotDrink’s constraint system, the code needed
to realize structural changes to the GUI’s model stays man-
ageable.This is not enough, however, since the model is con-
nected to one or more views. The structural changes in one
must be kept in sync with that in the other; our DSL lets the
programmer specify these changes hand in hand.

To implement the example application, we define the com-
ponents Day and Event, both consisting of a view and a Hot-
Drink cs-component bound to that view. These two mem-
bers are named view and model.

The relation that specifies that two events are consecu-
tive can then be defined as follows. The model’s vsmember
gives access to a cs-component’s variables and its system
member to the underlying constraint system. The call to
system.update() forcesHotDrink to enforce all constraints.

We can now define the desired operations on the events
of our application as transformation rules in our DSL. For
instance, the rule

Figure 4. The Eclipse IDE for our DSL, showing code
of the ApplyTexas GUI mockup. The IDE, implemented
with Eclipse Xtext, supports syntax highlighting, auto-
completion, hyperlinking, and hover tooltips.

specifies the operation of swapping two consecutive events
b and c when they are not, respectively, the first or the last
event.

In a similar way we can define the transformation rule for
swapping two consecutive events a and bwhen a is the first
event of its day:

For each transformation rule, our DSL program generates
a JavaScript function that can be called to apply the trans-
formation, as explained in Section 2. For instance, to swap
two consecutive events e1 and e2 in a day dwhere the event
e3 follows e2, we use the following JavaScript statement:
swapEventsAtBeginning(d, e1, e2, e3);

As can be seen, all of the complexity of a structural modifi-
cation remains in the DSL program.



GPCE ’20, November 16–17, 2020, Virtual, USA Knut Anders Stokke, Mikhail Barash, and Jaakko Järvi

4 Discussion
The examples above highlight the benefits of our DSL. By
explicitly defining rules according to which a structure is
manipulated, we separate the code concernedwith the struc-
ture from code that uses the structure. The notion of a struc-
ture in our approach is very loose, and does not necessarily
align with data structures’ boundaries of encapsulation. Ma-
nipulating such implicit structures directly with whatever
collection of APIs they make available is ad-hoc and error
prone, and does not impel the programmer to provide the
best GUIs for the users. Specifying explicitly the rules of
how a given structure can be modified increases the like-
lihood of the correctness of structural modifications, and
once the transformations are in use, programmingGUIs rich
with features is much less laborious.

The examples above were all concerned with list struc-
tures, the planning application involving lists of lists (a list
of days, each a list of events). The approach, however, gen-
eralizes to any kind of structures, such as trees and graphs,
and their combinations. As mentioned in Section 2, there
are no limitations on the relations the programmer defines
and on what kind of components they operate.

Our approach gives no guarantee of composablity: noth-
ing protects the programmer from declaring different sets
of rules that operate on two or more structures that overlap.
This could lead to one rule inadvertently breaking invariants
that the programmer assumes for another rule’s correctness.
In this regard our DSL requires similar carefulness as GUI
programming in general.

5 Related Work
Treating a user interface as a composition of components
is mainstream in contemporary approaches to GUI devel-
opment. Perhaps most prominently this view is embraced
by React [11], a templating framework for developing GUI
applications. A React user interface is essentially a hierar-
chy of stateful components that are responsible for updating
their (and their child components’) views whenever their
state changes. A similar view on components is also shared
by other JavaScript frameworks such as Angular [12] and
Vue.js [15]. The hierarchical structure of components mani-
fests also in GUI frameworks for implementing desktop ap-
plications, such as Windows Forms [3] and JavaFX [4].

Our DSL can complement suchGUI-component solutions.
As with any composition of components, the programmer
can express relations on, e.g., React-components in our DSL,
allowing declaratively specifying modifications of inciden-
tal structures that emerge as compositions of such compo-
nents.

6 Conclusion and Future Work
The DSL presented in this paper lets the programmer ex-
press structural changes in a declarative manner. Structures,

that could appear incidental and implicit without the DSL,
can be explicitly declared, and an extensive set of functions
for making changes to the structure can be provided with
ease. Applications can then perform higher-level operations
on the structure in a straight-forward manner, using the
functions that hide the details of those changes.

We consider the work described in this paper as explor-
ing a new approach for controlling the complexity of GUI
programming. We can immediately identify both possible
improvements to what we have reported here and avenues
for new research.

As it is described in the paper, the DSL is a bit simplis-
tic. It is evident that the same transformation rules could be
applicable to more than one relation. For this purpose, we
have experimented with generic rules, parameterized on re-
lations. For example, the transformation rule swap could be
made generic, so that it wouldworkwith an arbitrary binary
relation that expresses order and adjacency. One rule would
suffice to specify the operation of swapping once and for all,
to be reused for different components in one application, or
even in different applications altogether.

Generic rules have the following form:

The angle brackets enclosing the relation R state that this
rule is generic; the abstract relation R and abstract placehold-
ers x and y need not be declared explicitly.

From a generic rule t<R1, …, R𝑛> that uses abstract place-
holders 𝑥1, …, 𝑥𝑘 , we generate a JavaScript function t(𝑥1,
…, 𝑥𝑘 , 𝑅1, …, 𝑅𝑛), similar to the one in Figure 2. This func-
tion invokes functions test, establish, and unestablish
defined as members of JavaScript objects R𝑖 .

To apply a generic rule, we instantiate it with a relation,
for example, isAbove defined in Figure 4. This is done by
calling the corresponding JavaScript function and passing
the name of the relation to it:
swap(elem1, elem2, isAbove);

Specifying structural modifications via changes to which
relations hold between elements opens interesting opportu-
nities to further study. If we annotate such relations with
algebraic properties, such as symmetry, transitivity, or re-
flexivity, we may be able to statically analyze the rules and
report to the programmer if a rule invalidates a property of
a relation. E.g., assume that the relation precedes is anno-
tated as anti-symmetric. If a programmer wrongly defines
a transformation rule where the two relations a precedes
b and b precedes a are to be established, then, because
precedes is anti-symmetric, a report about an error can be
made and communicated to the programmer.

References
[1] Accessed: 2020-07-15. ApplyTexas Sample Application: extracurricu-

lar, personal & volunteer activities (page 7). https://www.applytexas.
org/adappc/html/preview20/igr_ec.html.

https://www.applytexas.org/adappc/html/preview20/igr_ec.html
https://www.applytexas.org/adappc/html/preview20/igr_ec.html


Manipulating GUI Structures Declaratively GPCE ’20, November 16–17, 2020, Virtual, USA

[2] Lorenzo Bettini. 2016. Implementing domain-specific languages with
Xtext and Xtend: learn how to implement a DSL with Xtext and Xtend
using easy-to-understand examples and best practices. Packt Publish-
ing.

[3] Microsoft Corp. Accessed: 2020-07-15. Windows Forms. https://docs.
microsoft.com/en-us/dotnet/framework/winforms/.

[4] Oracle Corp. Accessed: 2020-07-15. JavaFX. https://openjfx.io/.
[5] Sven Efftinge and Sebastian Zarnekow. Accessed: 2020-07-15. Xtend—

modernized Java. https://www.eclipse.org/xtend/.
[6] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt,

Remi Bosman, William Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël Konat, Pedro Molina, Martin Palat-
nik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo
Solmi, Vlad Vergu, Eelco Visser, and Jimi Woning. 2015. Evaluating
AndComparing LanguageWorkbenches: Existing Results And Bench-
marks For The Future. Computer Languages, Systems & Structures 44
(08 2015), 24–47. https://doi.org/10.1016/j.cl.2015.08.007

[7] Moritz Eysholdt and Johannes Rupprecht. 2010. Migrating a large
modeling environment from XML/UML to Xtext/GMF. In Compan-
ion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, andApplications, SPLASH/OOPSLA
2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, William R. Cook,

Siobhán Clarke, and Martin C. Rinard (Eds.). ACM, 97–104. https:
//doi.org/10.1145/1869542.1869559

[8] Martin Fowler. 2005. Language Workbenches: The Killer-App
for Domain Specific Languages? https://martinfowler.com/articles/
languageWorkbench.html.

[9] John Freeman, Jaakko Järvi, and Gabriel Foust. 2012. HotDrink: A
Library for Web User Interfaces. SIGPLAN Not. 48, 3 (Sept. 2012), 80–
83. https://doi.org/10.1145/2480361.2371413

[10] Richard C. Gronback. 2009. Eclipse modeling project: a domain-specific
language toolkit. Addison-Wesley.

[11] Facebook inc. Accessed: 2020-05-02. React—A JavaScript library for
building user interfaces. https://reactjs.org/.

[12] Google LLC. Accessed: 2020-07-15. Angular. https://angular.io/.
[13] VoelterMarkus, Sebastian Benz, ChristianDietrich, Birgit Engelmann,

Mats Helander, Lennart Kats, Eelco Visser, and Guido Wachsmuth.
2013. DSL engineering: designing, implementing and using domain-
specific languages. CreateSpace Independent Publishing Platform.

[14] Dave Steinberg, Frank Budinski, Marcelo Paternostro, and Ed Merks.
2008. EMF : Eclipse Modeling Framework. Addison-Wesley, Upper
Saddle River, N.J.

[15] Evan You. 2020. Vue.js. https://vuejs.org/.

https://docs.microsoft.com/en-us/dotnet/framework/winforms/
https://docs.microsoft.com/en-us/dotnet/framework/winforms/
https://openjfx.io/
https://www.eclipse.org/xtend/
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1145/1869542.1869559
https://doi.org/10.1145/1869542.1869559
https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1145/2480361.2371413
https://reactjs.org/
https://angular.io/
https://vuejs.org/

	Abstract
	1 Introduction
	2 Language for Structure Manipulation
	3 Case Study
	4 Discussion
	5 Related Work
	6 Conclusion and Future Work
	References

