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continuous monitoring 
of suspended sediment 
concentrations using image 
analytics and deriving inherent 
correlations by machine learning
Mohammad Ali Ghorbani1,2 ✉, Rahman Khatibi  3 ✉, Vijay P. Singh4, Ercan Kahya5, 
Heikki Ruskeepää6, Mandeep Kaur Saggi7, Bellie Sivakumar8, Sungwon Kim9, Farzin Salmasi1, 
Mahsa Hasanpour Kashani10, Saeed Samadianfard1, Mahmood Shahabi1 & Rasoul Jani11

the barriers for the development of continuous monitoring of Suspended Sediment concentration 
(SSC) in channels/rivers include costs and technological gaps but this paper shows that a solution is 
feasible by: (i) using readily available high-resolution images; (ii) transforming the images into image 
analytics to form a modelling dataset; and (iii) constructing predictive models by learning inherent 
correlation between observed SSC values and their image analytics. High-resolution images were taken 
of water containing a series of SSC values using an exploratory flume. Machine learning is processed by 
dividing the dataset into training and testing sets and the paper uses the following models: Generalized 
Linear Machine (GLM) and Distributed Random Forest (DRF). Results show that each model is capable 
of reliable predictions but the errors at higher SSC are not fully explained by modelling alone. Here we 
offer sufficient evidence for the feasibility of a continuous SSC monitoring capability in channels before 
the next phase of the study with the goal of producing practice guidelines.

Monitoring Suspended Sediment Concentration (SSC) in open channels is explored in this paper towards the 
goal of developing an innovative technique based on high-resolution imagery to train predictive models by using 
machine learning techniques. If the goal can be realised, the outcome would potentially meet the demand for 
SSC field measurements. Measurements of SSC data both in time and space are reviewed by the U.S. Bureau 
of Reclamation1,2. Existing measurement techniques are labour-intensive, time consuming and costly3,4, which 
also suffer from uncertainty. These techniques provide an important variable for design and management of 
open channel systems. The feasibility of continuous monitoring of SSC using image processing can be a potentially 
significant technique and if successful, some of existing barriers to continuous measurements can be removed to 
prepare the ground for the goal of producing practice guidance at the next phases.

The capability for monitoring SSC is based on photometric features of Red, Green, and Blue (RGB), where 
modern cheap high resolution cameras are capable of capturing subtle changes in tone and colour, both expressed 
in bits. RGB imaging tracks down the changes in the colour of river water through simple high-resolution images. 
The correlation between SSC and colour variations of RGB-based high-resolution images is explored for the 
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prediction of SSC in the riverine environment. Image processing has already been investigated successfully for 
monitoring surface water velocity during flood events5–7. A relationship between SSC and water transparency 
levels was advocated by Oxford8 as early as 1976 but more recently the techniques have diversified and those using 
field measurement techniques are based on acoustic backscatter, laser diffraction, turbidity, as well as various vari-
ations of using images by employing acoustic, physical (e.g. density and electric properties) and optical principles. 
Rai and Kumar9 review the research in the past 3 decades for continuous measurement technologies with respect 
to measuring acoustics, laser diffraction, turbidity and pressure differences and other principles including image 
capturing techniques and note that the research in this field is still topical.

Researchers have already devised working methods to quantify water quality using images from digital cam-
eras10–12. The techniques for fine sediments are outlined by Turley et al.13; Moirogiorgou et al.14 outline a scheme 
for correlating some of image properties with SSC using 6 samples taken from the real world; and Hoguane et al.15 
investigate the measurement of mineral suspended sediment concentration using optics and images on the basis 
of capacities to absorb the blue spectrum. The difference between the current work and reported research works 
on using images for various aspects of continuous measurement of suspended sediment is in using the parame-
terisation of cheap high-resolution images alone for continuous monitoring of SSC.

The development of a capability is beyond the scope of a single research project but this often requires a life-
cycle of activities, similar to the delivery of other tools and procedures. This paper takes only the preliminary step 
of the ‘proof-of-concept’ but other steps are outlined in due course. At this stage, it is necessary to consolidate 
the ideas for forming a set of procedures and to make a case for future works. The prototype capability, depicted 
in Fig. 1, requires the following activities: (i) setting up a laboratory flume for the generation of high-resolution 
imagery for SSC to test the idea; (ii) transforming the imagery into a set of parameters to serve as input data; and 
(iii) exploring existence of possible correlations within the input data. A review of each of these components is 
outlined below.

Image analytics connects the produced imagery to models, both of which are essential to produce input data 
to models. In this research, image analytics comprise 8 input variables, and comprise: Mean3, Mean intensity, 
Entropy, and Standard deviation3, (suffix ‘3’ corresponds to RGB); as well as target values in terms of measured 
SSC. If there is any connection in terms of inherent correlations within the image analytics, there is a good chance 
to be identified by artificial intelligence, machine learning models or similar techniques with the following fea-
tures: (i) they are characteristically bottom-up techniques and therefore the models employ no prior theoretical or 
empirical laws but each model has its own strategy or heuristic rules and parameters; and (ii) they are data-driven, 
as the values of inherent parameters are learned from the data.

The paper uses the following techniques to learn any correlation in the image analytics: Generalized Linear 
Model (GLM) and Distributed Random Forest (DRF). The main focus of the paper is on a better understanding 
of continuous SSC monitoring but not on modelling, which serves the purpose of a tool. An overview of these 
techniques is as follows. GLM is used here as a regression technique, and the values of its inherent parameters 
are learnt by its estimator identified by maximising the log-likelihood, see Nelder and Wedderburn16 for more 
details. DRF is an ensemble learning technique, in which the performance of several weak learners is boosted via 
a voting scheme. It refers to a classifier that uses multiple trees to train and predict the samples17. These models 
are described later in the Methods section.

Modelling results
Datasets. The experimental data, described later in the Method, comprise 166 observations, which are 
divided randomly into 111 training datapoints and 55 testing datapoints (in the ratio of 2/3 and 1/3). Table 1 
presents the statistical characteristics of measured SSC. The two models of GLM and DRF were constructed in 
the H2O platform through training and testing phases using the input data extracted from image analytics, as 
outlined in Fig. 1. The default parameters of each of these models are given later in Table 2. The experimental pro-
cedure is presented in the Methods section, where Figs. 5 and 6 illustrate the laboratory setup and gives examples 
of images from the test runs.

Model results of generalized linear machine – GLM. The input data to GLM are the image analytics 
and target values, where the latter are the measured SSC values. The performance of GLM at its testing phase is 

Figure 1. Prototype capability for continuous SSC monitoring in three steps.

https://doi.org/10.1038/s41598-020-64707-9


3Scientific RepoRtS |         (2020) 10:8589  | https://doi.org/10.1038/s41598-020-64707-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

shown in Fig. 2, in which Fig. 2a shows that Relative Errors (RE) percentages for the model between −5% and 
5%, the value of which is approx. 18%; Fig. 2b shows the results for the scatter diagram (modelled SSC against 
corresponding measured SSC), according to which a large number of datapoints display a good correlation but 
there are some strong discordant predictions at higher ranges; Fig. 2c displays Probability Distribution Function 
(PDF) of the residuals and its statistics (mean and standard deviation); according to which the PDF distribution 
is not similar to the normal distribution and is not symmetric with respect to the centreline; but these are attrib-
utable to possible gross errors at higher ranges. Therefore, GLM may be considered as fit-for-purpose for most of 
the concentration values but at higher values the algorithm can be responsible for undue errors, as discussed later.

Model results of distributed random forest – DRF. The input data to DRF are the image analytics and 
the measured target SSC values. The performance of DRF at the testing phases is shown in Fig. 3a–c.

The results at the testing phase in Fig. 3a shows that RE percentages for the model between −5% and 5% are 
approximately 34%; Fig. 3b shows the scatter diagram, according to which a large number of datapoints display a 
good correlation at low and medium ranges but strong discordant predictions are also observed at higher ranges; 
and Fig. 3c displays the PDF of the error residuals and its statistics (mean and standard deviation), according to 
which, the PDF distribution does not quite follow the normal distribution; and have multiple tails. Notably, dis-
cordant datapoints at higher values are not many.

Inter-comparison of models. The goal of the paper is not to search for the best model to predict SSC values 
from image analytics but to explore their predictability from the analytics. The two ML models are only a means 
to an end but not the end (the goal). Therefore, no ranking is intended to be carried out by the inter-comparison 
of these two models. Performances of both models in Fig. 4a are shown in terms of the scatter diagram of their 
residuals (measured SSCs-modelled SSCs) for both training and testing phases, which provide visual evidence 
that GLM and DRF are fit-for-purpose for prediction but may suffer from excessive errors at larger SSC values. 
Hence, their predictions may not be quite defensible and further improvements are appropriate.

Further comparisons are presented in Fig. 4b, in which the Taylor diagram shows the performance metric for 
both training and testing phases using SD and RMSE and compares modelled results with observed (measured) 
values (a single point in red). Thus, the closer the position of the modelled values to that of the observed value, 
the better the performance. According to Fig. 4b, the position of the DRF results is slightly closer to that of the 
observed value at both training and testing phases than those of GLM results but significant deterioration is 
observed at the testing phase. The results provide evidence that there is a significant correlation between image 
analytics and their corresponding observed SSC values, although attention should be given to significant errors 
at higher SSC values.

Variables Datapoints Mean Variance SD Skewness
Maximum 
gr/lt Minimum

Training Phase SSC (gr/lt) 111 3.477 8.834 2.972 0.783 10 0.28

Mean 3*111 0.466 0.010 0.100 −0.183 0.612 0.313

Mean intensity 111 0.491 0.001 0.031 0.301 0.544 0.446

Entropy 111 6.689 0.095 0.309 −0.184 7.260 5.852

SD 3*111 0.052 0.0002 0.016 −0.013 0.092 0.023

Testing Phase SSC (gr/lt) 55 3.506 8.901 2.983 0.772 9.9 0.32

Mean 3*55 0.466 0.010 0.100 −0.182 0.610 0.306

Mean intensity 55 0.492 0.0009 0.031 0.263 0.543 0.441

Entropy 55 6.692 0.121 0.348 −0.841 7.346 5.723

SD 3*55 0.052 0.0003 0.016 0.062 0.083 0.024

Table 1. Statistical characteristics of measured SSC.

GLM DRF

Family = “gamma”; mtries = 6

Lambda-search=TRUE ntrees = 500

nlambdas = 100 max-depth = 20

Solver = “IRLSM” nfolds = 5

Link = “inverse” score_each_iteration = T

nfolds = 5 Estimated parameters: number of tree= 500

Estimated parameters: nlambda = 100 min depth=8 max depth=13

lambda max = 4.9555

lambda min = 0.05191

Table 2. Default model parameters. Total Number of datapoints: 166; Datapoints for training: 111; Datapoints 
for testing: 55; their ratio: 33%:67%.
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Discussion and further works
Impacts of Suspended Sediment Concentration (SSC) on water quality is a driver to develop a continuous moni-
toring capability to minimise turbidity for encouraging subsequent penetration of sunlight to aquatic photosyn-
thesis of algae and other aquatic plants in waterbodies or open channels. The paper provides some evidence for 
a solution at its proof-of-concept stage, which refers to one stage at the lifecycle of transforming an idea towards 
the delivery of working tools at 9 steps, as formalised through a procedure given by NASA18. The status of the 
evidence produced by the paper for a continuous SSC monitoring capability should be equivalent to Technical 
Readiness Level 3 (TRL3) and this would justify future works towards delivering guidelines at TRL9.

The paper presents no comparison with published results, as to the best of the authors’ knowledge, similar 
research works are yet to be published. Past studies using microscopic image processing have been focussed 
on studying flocculation processes, e.g. Shen and Maa19 and Klassen et al.20 and such studies are often costly. 
However, the work by Ramalingam and Chandra21 is closer to the present research for investigating suspended 
sediments but they study their deposition to predict particle size distribution through their settling velocity by 
an image capturing system, which uses low-cost digital cameras. Their study produces satisfactory results for 
data obtained from both laboratory and field studies. Notably, the limitation of using images for continuous SSC 
monitoring is that it is unable to measure vertical distributions but this is currently investigated by holographic 
techniques, e.g. Graham and Smith22.

Before producing guidelines, the paper identified some problems for predicting at higher SSC values that need 
to be solved. The authors attribute this to possible shortfalls in achieving steady state flows at higher concentra-
tion, which can be investigated by attention to the following aspect: (i) using larger flumes with higher capacities; 
(ii) standardising the laboratory procedure to ensure that suspended matters are well mixed and steady state is 
ensured; (iii) testing the performance of different suspended matter; (iv) piloting the emerging knowhow on 
prototype river systems; and (v) developing practice guidelines.

It is noted that no detailed statistical analysis is carried out to establish the probability distribution of the PDFs 
presented in Figs. 2c and 3c. Arguably, such analyses ensure that the models extract maximum information from 

Figure 2. Results of GLM for the testing phases: (a) Relative error plot; (b) scatter diagram; (c) PDF plot of 
residuals.
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the data. However, the authors think that some of the measured data need to be improved and therefore any fur-
ther statistical analysis is not going to compensate for possible measurement errors.

conclusion
The paper presents evidence for the proof-of-concept for a continuous monitoring capability of Suspended 
Sediment Concentration (SSC) in channels/rivers. It tests the transformation of high-resolution images of the 
flows carrying suspended sediments through a laboratory flume into image analytics to serve as input data into 
machine learning models. The models explored inherent correlations between measured SSC and image analytics, 
comprising 8 input variables: Mean3, Mean intensity, Entropy, and Standard deviation3 (the suffix ‘3’ corresponds 
to images with Red, Green and Blue colours).

Although the paper uses machine learning techniques, models at this stage are treated as a means to an end 
and there is no effort in the paper to search for more appropriate modelling strategies. The two machine learn-
ing models comprise: Generalized Linear Machine (GLM) and Distributed Random Forest (DRF). The dataset 
comprises 166 datapoints, divided randomly into 111 training datapoints and 55 testing datapoints (a ratio of 2/3 
to 1/3). The modelling results show that the use of high-resolution image is appropriate for predicting the SSC 
values. The paper offers evidence for existence of correlation between subsequent image analytics and SSC values 
and shows the correlation to be strong enough. Thus, the procedure investigated here treats a technological gap 
and offers a potential for the capability to monitor continuously SSC values. Nonetheless, significant errors are 
not ruled out at higher concentrations, which are attributed to laboratory procedures and the paper recommends 

Figure 3. Results of DRF for the testing phase: (a) Rlative error plot; (b) scatter diagram; (c) PDF plot of 
residuals.
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standardisation of the testing procedure, after which prototype pilot studies can be carried out in real river situa-
tions before developing practice guidelines.

Methods
Laboratory procedure. Experiments were conducted in the hydraulics laboratory in the University of 
Tabriz and the Islamic Azad University of Tabriz, Iran. The laboratory flume is 8 m long, 0.1 m wide, and 0.4 m 
deep (see Fig. 5). At the upstream end, a centrifugal pump is connected to the flume with a maximum capacity of 
8.7 litre/second; at the downstream end, the flume is connected to a sump tank with the capacity of 0.4 m3. The 
highest flow through the flume would therefore fill the sump tank in 46 sec. The flow through the flume is con-
trolled by a radial gate at the downstream of the flume. The matter in suspension is introduced by mixing the 
sediment with water in the sump tank as per specified concentration. The study used sediments with a clay texture 
to achieve the suspended state. The weight of the required clay soil in each concentration was measured with an 
accuracy of ± .0 01 gr using a digital scale.

During all tests, the temperature of circulation water was measured and its value was 20 °C. Photographs by 
camera were taken in the middle of the flume (i.e., 1.0 m above the flume) for each concentration and repeated 
for all 166 sediment concentration datapoints (Fig. 6), during which steady conditions were achieved to minimise 
impacts of turbulence by the boundary conditions at the upstream and downstream ends.

Whilst there are barriers for a continuous SSC monitoring for a number of reasons including cost, the paper 
show that the barrier may be removed by a rather cheap solution, as high-resolution cameras are rather cheap 
nowadays.

Specification of modelling techniques. The paper specifies the two models (GLM and DRF) used in 
this study for predicting SSC using image analytics in the H2O platform as described by Landry et al.23. Each of 
these models is widely used and well established and H2O is built on Java, Python and R to optimise machine 
learning for big data and as such, its advantages include efficient data handling facilities for better prediction. An 
H2O model can handle billions of data rows in-memory, even with a fairly small cluster. It implements almost 
all common ML algorithms but data preparation and handling facilities use entirely the R Studio software24. The 
continuous SSC monitoring procedure is schematised in Fig. 1 and both models are specified below.

Generalised linear models – GLM. GLMs connect multivariable inputs to outputs in their predictor mode 
for regression analysis. Francke et al.25 investigated the performance of GLM and a set of other models (RF, and 
Quantile Regression Forest) using data from a flood season at four catchments with different sizes in the Central 
Spanish Pyrenees. Cox et al.26 used GLM to estimate SSC in case studies at Burnhope Burn. Its implementation in 
the paper follows that described by Nykodym et al.27 and is specified as follows.

Figure 4. Inter-comparison of the r esults - testing and training phases: (a) Scatter diagram of residuals of the 
models; (b) Taylor diagram.
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The H2O implementation extends the widely-used linear regression analysis as a machine learning technique 
by maximising the log-likelihood, where the innovation over traditional capabilities is by removing the require-
ment for the normality of the error distributions through adding an explicit error term as a function of mean, 
non-normal errors, and a non-linear relation between the response and covariates. Therefore, the response dis-
tribution is taken in terms of the exponential family (e.g. the Gaussian, Poisson, binomial, multinomial, and 
gamma distributions). In this research, the gamma family was selected, which involved a set of default parame-
ters, as specified in Table 2. The estimator mode of the GLM model constructed in this study uses the Iteratively 
Reweighted Least Squares Method (IRLSM), which applies the Gram matrix approach as the Hermitian matrix 
of inner products28.

Distributed random forest – DRF. DRF connects multivariable inputs to outputs in their predictor mode, 
which generates a forest of regression trees, rather than a single regression tree, each of which is a weak learner. 
Its past applications are wide but to the best of our knowledge it has not yet been applied to investigate SSC. 
Regression takes on the average prediction over all of their trees to make a final prediction, as more trees reduce 
variance. DRF is an ensemble of the decision forest algorithms in terms of bagging29 and random subspace. In 
the regression context, Breiman30 recommends setting the mean of the tree to be one-third of the number of 

Figure 5. Laboratory setup. (a) Experimental setup at the laboratory of hydraulics in the University of 
Tabriz and the Islamic Azad University of Tabriz, (b) downstream of the flume.

Figure 6. Sample images of water flowing in the flume with different sediment concentrations of (a) 0.3, (b) 1.5, 
(c) 2.5, (d) 5, (e) 7.6 and (f) 10 gr/l (flow direction is from left to right).
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predictors. For regression models, the prediction error is returned as a mean squared error (MSE). The four tun-
ing parameters used by DRF are specified in Table 2.

Preparation of data. The primary data comprise experimental images from water flowing through the lab-
oratory flume and their corresponding measured SSC. These are transferred into the Mathematica software to use 
the function: ImageMeasurements, which calculates their mean, mean intensity, entropy, and standard deviation 
for each image.

In colour images, measures like mean are given per channel (Red, Green, Blue) and therefore have 3 values for 
an image. The value of a pixel is its intensity, which refers to the amount of light with reference to a global measure 
of that image, e.g. means pixel intensity. A relative measure of image intensity can express the brightness (mean 
pixel intensity) of one image compared with another image. Entropy is a measure of image information content, 
which is interpreted as the average uncertainty of information source. It is used in quantitative analyses, which 
provides better comparison of the image details. Standard deviation (SD) gives the deviation of pixel intensity. 
These values together form 8 variables and are derived from images in the form of image analytics to serve as 
input data to the models for predicting SSC.

The experimental data, described above, comprise 166 observations, which and their basic statistics is given 
in Table 1. The two models of GLM and DRF were constructed in the H2O platform through training and testing 
phases using the input data extracted from image analytics, as outlined in Fig. 1. The default parameters of each 
of these models are given in Table 2.

Performance metrics. The following metrics are used to evaluate the performance of the two models: (i) 
Root Mean Squared Error (RMSE), which shows the discrepancy between observed and predicted values. A 
value of zero reflects a ‘perfect’ prediction. The lower the RMSE value, the better the model performance. (ii) 
Correlation Coefficient (CC) shows the correlation structure between observed and modelled values and the 
higher its value, the greater the correlation and the lesser the deviation. (iii) Relative Error (RE) is the ratio of the 
absolute error (modelled value minus measured value) by the modelled value and provides an indication of how 
good a measurement is relative to the size of the measured variable, which is a good reflection of the maximum 
error. The paper also used the Taylor diagram30, which provided a visual representation of observed and modelled 
data through a single diagram to summarise multiple aspects of observed and modelled values incorporating 
RMSE and CC.

Ethical approval. This article does not contain any studies with human participants or animals performed 
by any of the authors.

Received: 25 September 2019; Accepted: 14 April 2020;
Published: xx xx xxxx

References
 1. Bureau of Reclamation. Erosion and Sedimentation Manual (U.S. Department of the interior, Technical Service Centre, 

Sedimentation and River Hydraulics Group Denver, Colorado, 2006).
 2. Gyr, A. & Hoyer, K. Sediment Transport (Springer, Dordrecht, the Netherlands, 2006).
 3. Joshi, S. & Xu, Y. J. Bed Load and Suspended Load Transport in the 140-km Reach Downstream of the Mississippi River Avulsion to 

the Atchafalaya River. J. Water (Switzerland) 716, 2–28 (2017).
 4. Hajigholizadeh, M., Melesse, A. M. & Fuentes, H. R. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on 

Approaches, Models and Applications. Int. J. Environ. Res. Public Health 518, 2–24 (2018).
 5. Tauro, F., Olivieri, G., Petroselli, A., Porfiri, M. & Grimaldi, S. Surface water velocity observations from a camera: a case study on the 

Tiber River. Hydrol. Earth Syst. Sci. Discuss. 11, 11883–11904 (2014).
 6. Leduc, P., Ashmore, P. & Sjogren, D. Stage and water width measurement of a mountain stream using a simple time-lapse camera. 

Hydrol. Earth Syst. Sci. 22, 1–11 (2018).
 7. Chandler, J.H., et al. Water surface and velocity measurement-river and flume. In: ISPRS Technical Commission V Symposium, Riva 

del Garda, Italy (2014).
 8. Oxford, M. S. Remote sensing of suspended sediments in surface waters. Photogramm. Eng. Remote Sens. 42, 1539–1545 (1976).
 9. Rai, A. K. & Kumar, A. Continuous measurement of suspended sediment concentration: Technological advancement and future 

outlook. Measurement 76, 209–227 (2015).
 10. Goddijn-Murphy, L. & White, M. Using a digital camera for water quality measurements in Galway Bay. Estuar. Costal Shelf Sci 66, 

429–436 (2006).
 11. Goddijn-Murphy, L., Dailloux, D., White, M. & Bowers, D. Fundamentals of in situ digital camera methodology for water quality 

monitoring of coast and ocean. Sensors 9, 5825–5843 (2009).
 12. Leeuw, T. & Boss, E. The HydroColor App: Above Water Measurements of Remote Sensing Reflectance and Turbidity Using a 

Smartphone Camera. Sensors 18, 256 (2018).
 13. Turley, M. D. et al. Quantifying submerged deposited fine sediments in rivers and streams using digital image analysis. River Res. 

App 33, 1585–1595, https://doi.org/10.1002/rra.307 (2017).
 14. Moirogiorgou, K., et al. Color Characteristics for the Evaluation of Suspended Sediments. IEEE International Conference on 

Imaging Systems and Techniques (IST), Macau, pp. 1–5. (2015).
 15. Hoguane, A. M., Green, C. L., Bowers, D. G. & Nordez, S. A note on using a digital camera to measure suspended sediment load in 

Maputo Bay, Mozambique. Remote Sensing Letters 3(3), 259–266 (2012).
 16. Nelder, J. A. & Wedderburn, R. W. M. Generalized Linear Models. Journal of the Royal Statistical Society. 135(3), 370–384 (1972).
 17. NASA, https://www.nasa.gov/sites/default/files/trl.png, (2012) – accessed in August 2019.
 18. Tian, L., Huang, F., Fang, L. & Bai, Y. Intelligent Monitoring System of Cremation Equipment Based on Internet of Things. In: Y., Jia, 

J., Du, W., Zhang (eds) Proceedings of 2018 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering, vol 
528. Springer, Singapore (2019).

 19. Shen, X. & Maa, J. P.-Y. A camera and image processing system for floc size distributions of suspended particles. Marine Geology 376, 
132–46, https://doi.org/10.1016/j.margeo.2016.03.009 (2016).

 20. Klassen, I. et al. Flocculation processes and sedimentation of fine sediments in the open annular flume – experiment and numerical 
modeling. Earth Surface Dynamics Discussions 1, 437–81, https://doi.org/10.5194/esurfd-1-437-2013 (2013).

https://doi.org/10.1038/s41598-020-64707-9
https://doi.org/10.1002/rra.307
https://www.nasa.gov/sites/default/files/trl.png
https://doi.org/10.1016/j.margeo.2016.03.009
https://doi.org/10.5194/esurfd-1-437-2013


9Scientific RepoRtS |         (2020) 10:8589  | https://doi.org/10.1038/s41598-020-64707-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

 21. Ramalingam, S. & Chandra, V. Determination of suspended sediments particle size distribution using image capturing method. 
Marine Georesources & Geotechnology. 36(8), 867–874, https://doi.org/10.1080/1064119X.2017.1392660 (2018).

 22. Graham, G. W. & W. Nimmo Smith, A. M. The application of holography to the analysis of size and settling velocity of suspended 
cohesive sediments. limno. Oceano. Methods 8, 1–15 (2010).

 23. Landry, M. et al. Machine learning with R and H2O: seventh edition machine learning with R and H2O by Mark Landry with 
assistance from Spencer Aiello, Eric Eckstrand, Anqi Fu, & Patrick Aboyoun. Tech. rep. (2018). http://h2o.ai/resources/.

 24. Team, R.C.T.R.C. A language and environment for statistical computing. R Foundation for statistical computing, Vienna. (2013).
 25. Francke, T., López-Tarazón, J. A. & Schröder, B. Estimation of suspended sediment concentration and yield using linear models, 

random forests and quantile regression forests. Hydrol. Process. An Int. J. 22, 4892–4904 (2008).
 26. Cox, N. J., Warburton, J., Armstrong, A. & Holliday, V. J. Fitting concentration and load rating curves with generalized linear models. 

Earth Surf. Process. Landforms 33, 25–39 (2008).
 27. Nykodym, T., Kraljevic, T., Hussami, N., Rao, A. & Wang, A. Generalized Linear Modeling with H2O (H2O.ai, Inc., 2016).
 28. Schwerdtfeger, H. Introduction to Linear Algebra and the Theory of Matrices (Noordhoff, Translated from German, 1950).
 29. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 30. Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 

(2001).

Acknowledgements
Some of the laboratory facilities were shared by the University of Tabriz and Islamic Azad University, Tabriz. This 
research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit 
sectors.

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.A.G. or R.K.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-64707-9
https://doi.org/10.1080/1064119X.2017.1392660
http://h2o.ai/resources/
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Continuous monitoring of suspended sediment concentrations using image analytics and deriving inherent correlations by mach ...
	Modelling results
	Datasets. 
	Model results of generalized linear machine – GLM. 
	Model results of distributed random forest – DRF. 
	Inter-comparison of models. 

	Discussion and further works
	Conclusion
	Methods
	Laboratory procedure. 
	Specification of modelling techniques. 
	Generalised linear models – GLM. 
	Distributed random forest – DRF. 
	Preparation of data. 
	Performance metrics. 
	Ethical approval. 

	Acknowledgements
	Figure 1 Prototype capability for continuous SSC monitoring in three steps.
	Figure 2 Results of GLM for the testing phases: (a) Relative error plot (b) scatter diagram (c) PDF plot of residuals.
	Figure 3 Results of DRF for the testing phase: (a) Rlative error plot (b) scatter diagram (c) PDF plot of residuals.
	Figure 4 Inter-comparison of the r esults - testing and training phases: (a) Scatter diagram of residuals of the models (b) Taylor diagram.
	Figure 5 Laboratory setup.
	Figure 6 Sample images of water flowing in the flume with different sediment concentrations of (a) 0.
	Table 1 Statistical characteristics of measured SSC.
	Table 2 Default model parameters.




