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Abstract: Several small molecule biomarkers have been reported in the literature for prediction and
diagnosis of (pre)diabetes, its co-morbidities, and complications. Here, we report the development
and validation of a novel, quantitative method for the determination of a selected panel of
34 metabolite biomarkers from human plasma. We selected a panel of metabolites indicative of various
clinically-relevant pathogenic stages of diabetes. We combined these candidate biomarkers into a
single ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)
method and optimized it, prioritizing simplicity of sample preparation and time needed for analysis,
enabling high-throughput analysis in clinical laboratory settings. We validated the method in terms of
limits of detection (LOD) and quantitation (LOQ), linearity (R2), and intra- and inter-day repeatability
of each metabolite. The method’s performance was demonstrated in the analysis of selected samples
from a diabetes cohort study. Metabolite levels were associated with clinical measurements and kidney
complications in type 1 diabetes (T1D) patients. Specifically, both amino acids and amino acid-related
analytes, as well as specific bile acids, were associated with macro-albuminuria. Additionally, specific
bile acids were associated with glycemic control, anti-hypertensive medication, statin medication,
and clinical lipid measurements. The developed analytical method is suitable for robust determination
of selected plasma metabolites in the diabetes clinic.

Keywords: clinical diagnostics; diabetes; metabolomics; mass spectrometry

1. Introduction

The incidence of type 2 diabetes (T2D) is rising globally, currently estimated to exceed 450 million
patients worldwide. In addition, the prevalence of prediabetes is approximately two to three times
higher than for diabetes. Prediabetes is a condition with a high risk of progression to T2D, with a
yearly conversion rate of 5–10% [1,2]. It is also known that excessive hepatic fat accumulation is a
typical feature of T2D patients and plays an important, pathogenic role in disease development and
progression. Particularly, non-alcoholic fatty liver disease (NAFLD) may have an important, deleterious
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impact on diabetic patients, increasing the risk of cardiovascular complications. Moreover, there is
evidence of associations between prediabetes and complications of diabetes such as early nephropathy,
small fiber neuropathy, early retinopathy, and risk of macrovascular disease [2]. Therefore, there is a
need for predictive tools for efficient and accurate tracking of the progression from the state of normal
glucose tolerance (NGT) to prediabetes and finally to T2D, as well as a need for the identification of
those individuals with T1D and T2D who are at risk of developing diabetic complications. There is also
a need for improved stratification of those individuals who already have the disease based on their
risk of developing complications. Finally, there is a pressing need to then tailor intervention strategies
to these individuals. Ideally, knowledge about the underlying pathophysiological characteristics
associated with either fasting or postprandial glucose dysregulation would be utilized in order to
optimize the efficacy of any interventions [3].

The complex etiology of diabetes makes effective screening, diagnosis, prognosis, and intervention
challenging [4]. Several studies have shown changes in the circulating levels of specific metabolites prior
to an individual developing overt T2D. For example, the Framingham Offspring, European Investigation
into Cancer and Nutrition (EPIC) Potsdam, Metabolic Syndrome in Men (METSIM), Cardiovascular Risk
in Young Finns (CRY), and Southall and Brent Revisited (SABRE) studies have replicated the finding of
increased levels of branched-chain amino acids and their derivatives, aromatic amino acids, even years
ahead of conversion to overt T2D [5–10]. Amino acids, particularly tyrosine, were found to be associated
with risk of microvascular disease [11]. Additionally, other metabolites (e.g., 1,5-anhydroglucitol,
norvaline and l-aspartic acid) were found to be associated with macroalbuminuric diabetic kidney
disease [12,13], while glutamine, glutamic acid, and symmetric dimethylarginine (ADMA) were
suggested as potentially-predictive biomarkers of diabetic complications [14–16]. Several metabolites
(e.g., β-hydroxypyruvate and 1,5-anhydroglucitol (1,5-AG)), were associated with regulation of
glycemic control [17,18]. Many lipids were identified as predictive biomarkers of diabetes. Specifically,
triglycerides of low carbon number and double-bond count as well as lysophosphatidylcholine,
LPC(18:2), were identified as early predictors of T2D [19,20]. Notably, these markers were unaffected
by obesity [19]. Additionally, bile acids has been associated with T2D and insulin resistance [21,22].
Mannose [23], 2-aminoadipic acid [24,25], as well as indoxyl-sulfate and cresyl-sulfate [26] were
suggested as possible biomarkers and creatinine [27] is already routinely implemented as an estimate
of renal function. In addition to creatinine, several other metabolites, mainly amino acids and lipids,
have been suggested as specific biomarkers for early diagnosis and assessment of the diabetic kidney
disease (DKD), as summarized in a recent meta-analysis [28,29].

Most of the studies described above have been performed with non-targeted metabolomics
methods, using workflows which are difficult to apply in routine clinical laboratory settings. Herein,
our goal was to develop a fast and robust method for quantitative analysis of a selected panel of
metabolite biomarkers, which are informative as to the prediction and diagnosis of (pre)diabetes and its
co-morbidities/complications, as well as in follow-up of interventions. We developed a method which
includes 34 metabolites, representing several metabolite classes, including amino acids, bile acids,
carnitines, phenolic compounds, and small organic acids. The method is based on simple sample
preparation and fast, quantitative ultra-high-performance liquid chromatography coupled to tandem
mass spectrometry (UHPLC-MS/MS) analysis. Both sample preparation and the subsequent analyses
were optimized and validated. Additionally, the method was demonstrated in a subset of samples from
a cohort of diabetic patients, who were observed at the Steno Diabetes Center Copenhagen between
2009 and 2011 [30].

2. Results

Based on our earlier diabetes-related studies, as well as on the results published in the
literature, we selected 34 specific metabolites for this study (Table 1, Supplementary Materials,
Figures S1–S3) [2,5–8,10,11,14,17–21,23,24,28,31–34]. Our aim was to develop a robust and fast analytical
assay in terms of both sample preparation and analysis, for quantitative determination of these selected
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metabolites. However, analyzing both highly polar and nonpolar metabolites in a single method is
highly problematic. As some of the candidate biomarkers (e.g., very polar sugar derivatives and
neutral lipids such as triacylglycerols) would have required a second sample preparation step and/or
analytical method, these were excluded from the final method. The method was validated in terms of
(a) limit of detection (LOD), (b) limit of quantitation (LOQ), (c) linearity (R2) and linear range, and (d)
intra- and inter-day repeatability of each analyte.

Table 1. Standard compounds acquired for quality control and for quantitation.

Compound Abbreviation Group Vendor Solvent, Stock Solution

L-Glutamine Gln

Amino acids +
related

metabolites

Sigma-Aldrich

H2O

Glycine Gly

0.1 M HCl

L-Alanine Ala
L-Leucine Leu

L-Isoleucine Ile
L-Phenylalanine Phe

L-Tryptophan Trp
L-Tyrosine Tyr

L-Glutamic Acid Glu
L-Citrulline Cit

L-Homocitrulline HCit
SCBAsymmetric dimethylarginine ADMA

Symmetric dimethylarginine SDMA

DL-2-Aminoadipic Acid AADA
Sigma-AldrichL-Kynurenine Kynu

Taurine Taurine

Deoxycholic Acid DCA

Bile acids

Sigma-Aldrich

MeOH

Glycochenodeoxycholic Acid GCDCA
Glycodeoxycholic Acid GDCA

Glycocholic Acid GCA
Taurodeoxycholic Acid TDCA

Taurochenodeoxycholic Acid TCDCA
Deoxychenocholic Acid CDCA

Cholic Acid CA
Taurocholic Acid TCA

Glycoursodeoxycholic Acid GUDCA
CILUrsodeoxycholic Acid UDCA

Tauroursodeoxycholic Acid TUDCA

Creatinine Crea
Other

metabolites

Sigma-Aldrich
10% MeOH

Indoxyl Sulfate IndS

N-methyl-nicotinamide N-MNA
SCBGamma-butyrobetaine GBB

Azelaic Acid AzelA
Small organic

acids
Sigma-Aldrich

MeOH

L-3-hydroxybutyric Acid β-OHB
10% MeOHR-2-hydroxybutyric Acid α(R)-OHB

S-2-hydroxybutyric Acid α(S)-OHB

Vendor information: Sigma-Aldrich (Steinheim, Germany); SCB: Santa Cruz Biotechnology, Inc. (Dallas, TX, USA);
CIL: Cambridge Isotope Laboratories Inc. (Tewksbury, MA, USA).

2.1. Sample Preparation

Here, we combined a simple protein precipitation with acid followed by derivatization of amino
acids and structurally-related compounds (Figure S4). For the protein precipitation, acidic conditions
were chosen, as protein precipitation with methanol or acetonitrile would have required evaporation
of the solvent prior to derivatization and analysis. The amount of derivatization reagent, the amount
and type of the solvent and buffer as well as the time for the derivatization reaction were optimized.
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Since the derivatization reagent has an impact on the MS detection, the conditions were optimized
to decrease ion suppression as well as to improve the overall robustness of the method. Dry ACN
was used for dissolving the AQC-reagent, as even trace amounts of water in the solvent can react
with the reagent. The final sample preparation conditions included protein precipitation with SSA,
followed by neutralization and pH adjustment using a mixture of carbonate buffer and NaOH) prior to
the derivatization with AQC in anhydrous ACN. The MS spectra showed that only amino acids and
related compounds with amino acid functionality (namely the amino acids, AADA, ADMA, SDMA,
kynurenine, and taurine) were derivatized and not any of the other targeted compounds.

2.2. LC-MS

MS- and MS/MS-spectra were acquired for each of the analytes in order to select optimal precursor
and product ions for selected reaction monitoring (SRM) analyses (Figures S5–S9). Depending on
the ionization properties of the different analytes, protonated ([M+H]+) or deprotonated ([M–H]−)
molecules were chosen as precursor ions. MS/MS-spectra were acquired and the most selective and
intense product ions were selected for SRM analyses. When possible, one ion transition was chosen for
quantification and another ion transition was chosen as the qualifying ion transition to ensure correct
measurements of the analytes. Finally, the analysis parameters (fragmentor voltage, collision energy,
cell accelerator voltage) were optimized for each ion transition (Table 2). All the derivatized amino
acids and related compounds produced the product ion [M-H-170]−. These were then selected for
SRM analyses together with one other diagnostic product ion (where possible). Among the bile acids,
CDCA and UDCA were not fragmented and; therefore, the only chosen product ions for these two
analytes were their deprotonated molecules. For isomeric compounds (GCDCA, GDCA, and GUDCA;
TCDCA, TDCA, and TUDCA) the MS and MS/MS-spectra are similar to the same three main product
ions and their separation depends on chromatographic separation. In addition, TCA shows the same
three main product ions as TCDCA, TDCA, and TUDCA, but has different precursor ions.

In the optimization of the LC-MS method, different columns (Ascentis Express RP-Amide,
Poroshell 120 SB-AQ, Acclaim RSLC PolarAdvantage, Acclaim Trinity P2, and Kinetex® F5 column)
and different LC modes were tested. Based on the resolution of the chromatographic separation,
the Kinetex® F5 column was chosen for further optimization. The conditions were optimized to
include sufficient retention for the most polar compounds, and a short overall analysis time. Therefore,
the gradient elution was initiated at 99% of the aqueous eluent. The UHPLC method showed good
chromatographic performance (Figure 1), fulfilling general acceptance criteria for an analytical method
(Section 4.4). For a few of the analytes, the resolution was; however, insufficient to achieve baseline
separation and due to very similar MS/MS-spectra these metabolites (Leu and Ile, TDCA and TCDCA,
GCDCA, and GDCA, ADMA, and SDMA) were quantified together.
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Table 2. Optimized fragmentor voltages, collision energies (CE), and cell accelerator voltages for each ion transition of the analytes and internal standards. The ion
transition used for quantification is marked with an *.

Compound Molecular Weight
(MW) Ion Transition Polarity Fragmentor Voltage (V) Collision Energy (V) Cell Accelerator Voltage (V)

AADA 161.2 330.2–160.1 Negative 150 10 1

ADMA and SDMA 202.3
371.2–201.2 * Negative 150 5 5

371.2–156.1 Negative 150 20 1

Ala 89.1 258.1–88.1 Negative 100 15 3

AzelA 188.2
187.2–169 Negative 150 10 1

187.2–125.2 * Negative 150 15 1

β-OHB 104.1 103.2–59.2 Negative 100 5 1

CA 408.6
407.3–407.3 * Negative 250 0 1

407.3–343.3 Negative 250 35 3

CDCA 392.6 391.3–391.3 Negative 250 0 3

Cit 175.2 344.4–174.2 Negative 150 4 7

Crea 113.1
114.1–86.2 Positive 150 11 4

114.1–44.1 * Positive 150 15 4

DCA 392.6
391.2–345.3 * Negative 200 35 4

391.2–327.2 Negative 200 40 4

GBB 146.2
147.2–88.1 * Positive 100 16 1

147.2–60.2 Positive 100 13 1

GCA 465.6
464.3–402.1 Negative 250 40 4

464.3–74.1 * Negative 250 45 7

GCDCA 449.6 448.3–386.3 Negative 150 40 2

GDCA 449.6 448.3–402.1 Negative 250 40 2

GCDCA and GDCA 449.6 448.3–74.2 Negative 200 55 2

Gln 146.1 315.3–145.1 Negative 100 9 6
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Table 2. Cont.

Compound Molecular Weight
(MW) Ion Transition Polarity Fragmentor Voltage (V) Collision Energy (V) Cell Accelerator Voltage (V)

Glu 147.1 316.1–146.1 Negative 100 6 6

Gly 75.1 244.1–74.1 Negative 200 7 4

GUDCA 449.6
448.3–386 Negative 250 40 2

448.3–74.1 * Negative 250 45 2

HCit 189.2
358.3–188.1 Negative 200 10 1

358.3–145 * Negative 150 25 2

IndS 213.2
212–132 * Negative 100 15 2

212–80 Negative 100 20 2

Kynu 208.2
377–316.1 Negative 150 5 2

377–207 * Negative 150 5 5

Leu and Ile 131.2 300.2–130.2 Negative 100 10 1

N-MNA 136.2
137.1–108.1 Positive 100 15 2

137.1–80.2 * Positive 100 26 2

Phe 165.2 334.2–164 Negative 100 10 1

Taurine 125.2
294.1–124.1 * Negative 100 10 2

294.1–80.1 Negative 100 55 2

TCA 515.7
514.3–123.8 Negative 300 65 5

514.3–80.2 * Negative 300 95 1

TDCA and TCDCA 499.3
498.3–107.1 Negative 250 80 1

498.3–80.1 * Negative 300 90 1

Trp 204.2 373.2–203.1 Negative 150 7 2

TUDCA 499.7
498.3–107.1 Negative 300 65 5

498.3–80.1 * Negative 300 85 1
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Table 2. Cont.

Compound Molecular Weight
(MW) Ion Transition Polarity Fragmentor Voltage (V) Collision Energy (V) Cell Accelerator Voltage (V)

Tyr 181.2 350.2–180.1 Negative 100 7 5

AADA-d3 164.2 333.2–145.2 Negative 100 20 2

ADMA-d7 209.8 378–208.3 Negative 100 10 5

Ala-d4 93.1 262.1–92.1 Negative 100 5 6

α-OHB-d3 107.1 106.1–59.1 Negative 100 10 1

AzelA-d14 202.3 201.2–137.2 Negative 150 10 2

β-OHB-d4 108.1 107.1–59.1 Negative 100 5 1

CA-d4 412.3 411.3–411.3 Negative 250 0 3

CDCA-d4 and
DCA-d4 396.6 395.2–395.2 Negative 300 0 4

Cit-d4 179.2 348.1–135.1 Negative 100 25 2

Crea-d5 118.2 119.2–49.3 Positive 100 20 1

GBB-d9 154.7 155.2–87.3 Positive 100 15 6

GCA-d4 469.6 468.3–74.1 Negative 250 45 1

GCDCA-d4 and
GUDCA-d4 453.6 452.3–74.1 Negative 250 40 1

GDCA-d6 455.7 454.3–408.2 Negative 250 55 4

Gln-d5 151.2 320.1–150.1 Negative 100 5 1

Glu-d5 152.1 321.1–151.1 Negative 100 5 1

Gly-13C,d2 78.1 247–77.1 Negative 100 5 7

HCit-2H4 193.2 362.2–192.2 Negative 100 5 6

IndS-d4 217.3 216–136.1 Negative 100 15 2

Kynu-13C6 214.2 383.1–195.8 Negative 100 10 6
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Table 2. Cont.

Compound Molecular Weight
(MW) Ion Transition Polarity Fragmentor Voltage (V) Collision Energy (V) Cell Accelerator Voltage (V)

Leu-d10 and Ile-d10 141.2 310.1–140 Negative 125 10 2

N-MNA-d4 140.2 141.2–84.2 Positive 100 20 7

Phe-d5 170.2 339.1–169.1 Negative 150 5 1

Taurine-d4 129.2 298.3–128.2 Negative 100 10 3

TCA-d4 519.7 518.3–80 Negative 340 100 7

TCDCA-d9 508.3 507.4–80.1 Negative 300 95 1

Trp-d8 212.3 381.2–211.2 Negative 100 10 5

TUDCA-d4 503.7 502.3–80.1 Negative 300 100 1

Tyr-d7 188.2 357.1–187.2 Negative 100 10 1

UDCA-d4 396.6 395.3–395.3 Negative 250 0 4
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and TCDCA, (15) CA, (16) CDCA, (17) GCDCA and GDCA, (18) UDCA, (19) DCA, (20) Gly, (21) Gln, 
(22) ADMA and SDMA, (23) taurine, (24) Phe, (25) Gln, (26) HCit, (27) Ala, (28) AADA, (29) IndS and 
(30) Tyr. 

2.3. Method Validation 

The quantitative performance of the developed UHPLC-ESI-MS/MS method was evaluated with 
respect to (a) limit of detection (LOD), (b) limits of quantitation (LOQ), (c) linearity (R2) and linear 
range, and (d) intra- and inter-day repeatability (Table 4). LOQs were determined as the lower and 
upper limits of quantitation (LLOQ and ULOQ), reported also as linear range, according to guidelines 
of International Council for Harmonisation of Technical Requirements for Pharmaceuticals for 
Human Use (ICH). The LODs (at S/N ≥ 3) were measured from standard samples and are remarkably 
different for different analytes, with the lowest LOD being < 2.5 ng mL−1 (being the lowest measured 
concentration) for Ala, AzelA, GCDCA, GDCA, Leu, Ile, N-MNA, Phe, and TCA. These results 
indicate an acceptable sensitivity, as the typical concentrations of the target compounds in human 
blood samples have a large range and the sensitivity of the method developed here is within the 
concentration ranges normally detected in blood samples [35]. Calibration curves and the intra- and 
inter-day repeatability were determined by using normalized peak areas. For the analytes which were 
quantified together (i.e., GCDCA and GDCA, ADMA and SDMA, and TDCA and TCDCA), only one 
ISTD was used. The ISTDs used for GCDCA and GDCA, ADMA and SDMA, and TDCA and TCDCA 
were GDCA-d6, ADMA-d7, and TCDCA-d9, respectively. Additionally, for three analytes (i.e., GBB, 
Crea, and β-OHB), the ISTD signal was not repeatable and; therefore, the validation parameters of 
these analytes were measured without normalization to an ISTD. The calibration curves were 
determined within a concentration range of 2.5–75,000 ng mL−1. The linear ranges showed a broad 
variation between the different analytes (Table 3). The coefficients of determination (R2) were within 
the accuracy demand of 80–120% and they were higher than 0.97 for all analytes and above 0.99 for 
most analytes.

Figure 1. Chromatograms representing the chromatographic separation of the analytes. The peak
numbers correspond to the following analytes: (1) Crea, (2) GBB, (3) β-OHB, (4) N-MNA, (4) Kynu,
(6) Leu and Ile, (7) Phe, (8) AzelA, (9) Trp, (10) TUDCA, (11) TCA, (12) GCA, (13) GUDCA, (14) TDCA
and TCDCA, (15) CA, (16) CDCA, (17) GCDCA and GDCA, (18) UDCA, (19) DCA, (20) Gly, (21) Gln,
(22) ADMA and SDMA, (23) taurine, (24) Phe, (25) Gln, (26) HCit, (27) Ala, (28) AADA, (29) IndS and
(30) Tyr.

2.3. Method Validation

The quantitative performance of the developed UHPLC-ESI-MS/MS method was evaluated with
respect to (a) limit of detection (LOD), (b) limits of quantitation (LOQ), (c) linearity (R2) and linear
range, and (d) intra- and inter-day repeatability (Table 4). LOQs were determined as the lower
and upper limits of quantitation (LLOQ and ULOQ), reported also as linear range, according to
guidelines of International Council for Harmonisation of Technical Requirements for Pharmaceuticals
for Human Use (ICH). The LODs (at S/N ≥ 3) were measured from standard samples and are remarkably
different for different analytes, with the lowest LOD being < 2.5 ng mL−1 (being the lowest measured
concentration) for Ala, AzelA, GCDCA, GDCA, Leu, Ile, N-MNA, Phe, and TCA. These results indicate
an acceptable sensitivity, as the typical concentrations of the target compounds in human blood samples
have a large range and the sensitivity of the method developed here is within the concentration
ranges normally detected in blood samples [35]. Calibration curves and the intra- and inter-day
repeatability were determined by using normalized peak areas. For the analytes which were quantified
together (i.e., GCDCA and GDCA, ADMA and SDMA, and TDCA and TCDCA), only one ISTD was
used. The ISTDs used for GCDCA and GDCA, ADMA and SDMA, and TDCA and TCDCA were
GDCA-d6, ADMA-d7, and TCDCA-d9, respectively. Additionally, for three analytes (i.e., GBB, Crea,
and β-OHB), the ISTD signal was not repeatable and; therefore, the validation parameters of these
analytes were measured without normalization to an ISTD. The calibration curves were determined
within a concentration range of 2.5–75,000 ng mL−1. The linear ranges showed a broad variation
between the different analytes (Table 3). The coefficients of determination (R2) were within the accuracy
demand of 80–120% and they were higher than 0.97 for all analytes and above 0.99 for most analytes.
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Table 3. Linearity (R2) with lower and upper limits of detection (LLOD and ULLOQ), linear range, repeatability of retention times (Rt) and intra- and inter-day
repeatability of concentrations at different concentrations.

Compound
Linearity (R2) Range

(LLOQ-ULOQ)
(ng mL−1)

LOD
(ng/mL−1)

%RSD_Rt,
Intra-Day

%RSD_Area, Intra-Day (N = 4) %RSD_Rt,
Inter-Day

%RSD_Area, Inter-Day (N = 15)

100 ng mL−1 1000 ng mL−1 10,000 ng mL−1 100 ng mL−1 1000 ng mL−1 10,000 ng mL−1

AADA 0.984
5000–75,000 500 0.2

(N = 4) - - 9.1 0.1
(N = 15) - - 8.7

ADMA and
SDMA

0.992
2500–50,000 500 0.2

(N = 8) - 5.6 0.8 0.2
(N = 30) - 8.5 4.2

Ala 0.996
500–50,000 <2.5 0.2

(N = 8) - 4.5 3.0 0.1
(N = 30) - 9.8 13.6

AzelA 0.995
500–10,000 <2.5 0.5

(N = 8) - 11.4 3.9 - - 15.8 8.4

β-OHB 0.970
2500–75,000 75 0.6

(N = 4) - - 20.9 1.2
(N = 15) - - 24.5

CA 0.996
10–10,000 7.5 0.2

(N = 12) 2.4 3.1 5.2 0.7
(N = 45) 20.8 18.1 20.2

CDCA 0.999
25–2500 7.5 0.2

(N = 8) 4.0 4.9 - 0.2
(N = 45) 4.3 5.1 14.2

Cit 0.984
500–10,000 250 0.2

(N = 8) - 7.7 6.7 0.2
(N = 30) - 9.1 8.3

Crea 0.973
250–7500 25 0.8

(N = 4) - 17.8 - 0.0
(N = 15) - 3.5 -

DCA 0.996
5–2500 2.5 0.2

(N = 8) 5.8 6.1 - 0.3
(N = 30) 4.3 8.3 -

GBB 0.974
250–10,000 50 0.5

(N = 8) - 18.7 15.9 1.5
(N = 30) - 27.3 28.5

GCA 0.997
50–25,000 25 0.1

(N = 12) 4.6 4.2 4.2 0.4
(N = 45) 6.8 5.1 7.3

GCDCA and
GDCA

0.997
25–2500 <2.5 0.2

(N = 8) 1.9 4.2 - 0.5
(N = 30) 16.4 16.1 -

Gln 0.987
750–50,000 5 0.1

(N = 8) - 5.0 7.7 0.5
(N = 30) - 10.5 11.5

Glu 0.990
750–75,000 500 0.2

(N = 8) - 13.9 10.7 0.3
(N = 30) - 10.9 5.2
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Table 3. Cont.

Compound
Linearity (R2) Range

(LLOQ-ULOQ)
(ng mL−1)

LOD
(ng/mL−1)

%RSD_Rt,
Intra-Day

%RSD_Area, Intra-Day (N = 4) %RSD_Rt,
Inter-Day

%RSD_Area, Inter-Day (N = 15)

100 ng mL−1 1000 ng mL−1 10,000 ng mL−1 100 ng mL−1 1000 ng mL−1 10,000 ng mL−1

Gly 0.993
7500–75,000 1000 0.03

(N = 4) - - 16.2 0.6
(N = 15) - - 19.6

GUDCA 0.994
75–10,000 25 0.1

(N = 12) 5.0 9.0 10.6 0.3
(N = 45) 13.1 10.9 6.2

HCit 0.995
500–25,000 250 0.2

(N = 8) - 8.3 2.6 0.5
(N = 30) - 11.1 16.4

IndS 0.986
5000–75,000 750 0.3

(N = 4) - - 11.3 0.3
(N = 15) - - 15.4

Kynu 0.993
500–75,000 250 0.2

(N = 8) - 11.2 7.4 0.4
(N = 30) - 7.7 4.4

Leu and Ile 0.997
25–75,000 <2.5 0.4

(N = 12) 4.6 4.3 1.5 0.5
(N = 45) 13.0 14.0 5.7

N-MNA 0.998
25–10,000 <2.5 0.5

(N = 12) 1.6 6.4 3.7 1.0
(N = 45) 20.1 18.5 6.5

Phe 0.995
250–25,000 <2.5 0.4 (N =

0.4) - 5.9 6.6 0.4
(N = 30) - 10.1 4.6

Taurine 0.994
250–25,000 10 0.2

(N = 8) - 8.3 5.7 0.5
(N = 30) - 8.4 8.7

TCA 0.983
2500–25,000 <2.5 0.1

(N = 4) - - 4.5 0.3
(N = 15) - - 15.5

TDCA and
TCDCA

0.984
1000–25,000 10 0.7

(N = 8) - 0.4 5.7 0.7
(N = 30) - 2.6 4.2

Trp 0.996
25–25,000 25 0.4

(N = 12) 9.0 2.9 4.7 0.5
(N = 45) 18.8 5.4 5.3

TUDCA 0.990
250–10,000 10 0.1

(N = 8) - 5.5 4.5 0.7
(N = 30) - 1.8 3.0

Tyr 0.992
50–75,000 25 0.2

(N = 12) 10.3 9.1 4.4 0.3
(N = 45) 5.7 8.4 3.4

UDCA 0.991
50–50,000 25 0.2

(N = 12) 1.5 3.5 3.3 0.2
(N = 45) 3.5 10.3 5.6
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For the repeatability studies, three standard samples (c = 100, 1000, and 10,000 ng mL−1) were
analyzed in four consecutive runs and in three runs on five consecutive days for intra-day and inter-day
repeatability measurements, respectively. Relative standard deviations (%RSD) were calculated for
both the intra- and inter-day studies (Table 3). The %RSDs for the intra-day repeatability studies were
generally below 1.5% and 20.8% for the retention times and normalized peak area ratios, respectively.
There are a few exceptions to these results for the analytes with no internal standards (Crea, GBB,
and β-OHB). The %RSDs for the intra- and inter-day repeatability for these three analytes was between
17.8% and 20.9% and between 3.5% and 24.5%, respectively.

2.4. Feasibility of the Method for the Analysis of Samples from a Diabetes Cohort

In total, 50 samples were selected from a previously-described study cohort of a total of 676
participants who has a wide range of albuminuria [36]. The subset was created with computational
sampling, aiming at finding a small random subset of the cohort, where the distributions of potentially
confounding clinical variables are as similar as possible between the two study groups. This allowed us
to study associations between metabolites and albuminuria even in this small sample set whilst avoiding
the confounding effects of other factors. The clinical variables assessed were age, antihypertensive
medication, BMI, duration of diabetes, glycated hemoglobin (HbA1c), insulin day dose, sex, smoking,
systolic blood pressure, total cholesterol, and total triglycerides.

Selection of the best random subsample was done in four steps: (1) In total, 1 million N = 25 + 25
sub-samples were drawn with random sampling, (2) the correlation between each clinical variable and
the albuminuria group variable was computed for each subsample, (3) the highest absolute value of
correlation in each subsample was identified, and (4) the random subsample with the lowest value of
maximum correlation was selected for being the least-confounded random subset for analysis.

Computational selection resulted in a balanced subset of samples from 25 normo-albuminuric
and 25 macro-albuminuric participants. The highest Pearson correlation to the albuminuria group
variable among the clinical variables was 0.21 for total triglycerides. All other clinical variables had a
lower absolute correlation to the group variable, suggesting that the selected small subset was not
confounded by imbalance in the clinical characteristics.

Associations between metabolite concentrations and relevant clinical variables were tested with
metabolite-specific mixed-effects models using the R-package limma [37]. Metabolite concentrations
entered the model as the dependent variable, participant identity as the random effect and the following
clinical variables as fixed effects: albuminuria group, age, BMI, estimated globular filtration rate
(eGFR; kidney function), glycated hemoglobin (HbA1c; glycemic control), sex, systolic blood pressure,
total cholesterol, total triglycerides. Significance tests of coefficients were corrected for multiple testing
over the metabolites with the Benjamini–Hochberg method [38].

Associations indicated by significant model coefficients (multiple-testing-corrected p < 0.05)
were visualized as a bipartite network (Figure 2) between clinical variables and metabolites with the
R-package ggplot2 [39]. Strength (log-10-transformed coefficients) and the signs of each association
were shown in the width and the color of the line, respectively. Metabolomic associations to albuminuria
group and eGFR, which are the key variables of the present study, were highlighted with opaque lines.
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kidney functions. The analysis resulted in concentrations of the measured metabolites in 50 
participants with T1D. For the statistical analyses, only metabolites that were detected in over 70% of 
the samples were included, resulting in 20 metabolites. Macro-albuminuria, which is an indicator of 
kidney disease, was associated with elevated GCDCA and GDCA, Tyr, Trp, and decreased Kynu 
(Table 4, Figure 2). Estimated globular filtration rate (eGFR; kidney function), was associated with 
ADMA and SDMA, Cit, Gln, taurine, and Tyr. Glycated hemoglobin (HbA1c; glucose control) was 
associated with decreased GCDCA and GCDA, Glu, and HCit. Smoking was associated with elevated 
Glu and decreased Gln as well as to a disruption in the balance of the bile acids GCDCA and GDCA. 
Although no metabolomic associations were found with age or BMI in this small sub-study, several 
metabolites were associated with sex, statin medication, systolic blood pressure, total cholesterol, and 
total triglycerides. It should; however, be noted that as our target panel is based on reported markers 
of (pre)diabetes and diabetic complications, and does not cover the entire metabolome, a 
comprehensive pathway analysis could be biased and not fully reliable. The quantitative results are 
presented in Table 4.

Figure 2. Associations between clinical measurements (left) and the quantified analytes (right) in the
type 1 diabetes T1D cohort. The lines indicate statistical associations (red—positive association and
blue—inverse/opposite association; line width—strength of the association). Associations directly
related to diabetic kidney disease are highlighted with bold lines.

The target panel included metabolites which have previously been associated particularly with
kidney functions. The analysis resulted in concentrations of the measured metabolites in 50 participants
with T1D. For the statistical analyses, only metabolites that were detected in over 70% of the samples
were included, resulting in 20 metabolites. Macro-albuminuria, which is an indicator of kidney disease,
was associated with elevated GCDCA and GDCA, Tyr, Trp, and decreased Kynu (Table 4, Figure 2).
Estimated globular filtration rate (eGFR; kidney function), was associated with ADMA and SDMA, Cit,
Gln, taurine, and Tyr. Glycated hemoglobin (HbA1c; glucose control) was associated with decreased
GCDCA and GCDA, Glu, and HCit. Smoking was associated with elevated Glu and decreased Gln as
well as to a disruption in the balance of the bile acids GCDCA and GDCA. Although no metabolomic
associations were found with age or BMI in this small sub-study, several metabolites were associated
with sex, statin medication, systolic blood pressure, total cholesterol, and total triglycerides. It should;
however, be noted that as our target panel is based on reported markers of (pre)diabetes and diabetic
complications, and does not cover the entire metabolome, a comprehensive pathway analysis could be
biased and not fully reliable. The quantitative results are presented in Table 4.

Table 4. Concentrations of metabolites in the validation cohort and their p values.

Metabolite Name
Normo-Albuminuria,

Mean c (Standard
Deviation)

Macro-Albuminuria,
Mean c (Standard

Deviation)
p Value adj. p Value

Glycochenodeoxycholic
Acid and

Glycodeoxycholic Acid
4.33 (11.74) 2.10 (6.58) 0.00012 0.0021

L-Kynurenine 383.23 (249.28) 309.03 (86.53) 0.00043 0.0034

Tyrosine 6185.75 (1865.87) 7012.51 (2076.69) 0.00057 0.0034

Tryptophan 5913.04 (1705.38) 6388.34 (1346.28) 0.031 0.14

Asymmetric
dimethylarginine and

Symmetric
Dimethylarginine

165.73 (51.07) 153.35 (18.60) 0.26 0.57

Leucine and Isoleucine 6393.48 (3159.65) 7303.02 (3656.17) 0.28 0.57

Chenodeoxycholic Acid 1101.07 (7.10) 1099.58 (6.38) 0.29 0.57

Glycine 9696.30 (5174.24) 10,313.80 (3604.96) 0.32 0.58
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Table 4. Cont.

Metabolite Name
Normo-Albuminuria,

Mean c (Standard
Deviation)

Macro-Albuminuria,
Mean c (Standard

Deviation)
p Value adj. p Value

Glutamine 31,651.43 (8920.90) 29,020.85 (6798.27) 0.4 0.63

L-Citrulline 2235.88 (1160.64) 2253.08 (852.27) 0.42 0.63

Alanine 16,925.72 (4875.55) 16,087.19 (3345.81) 0.58 0.75

Indoxyl Sulfate 907.87 (493.53) 920.80 (561.30) 0.6 0.75

Homocitrulline 11.36 (25.76) 10.21 (20.90) 0.62 0.75

Taurine 4741.00 (2046.23) 4128.35 (1424.84) 0.77 0.86

Phenylalanine 9337.50 (2600.13) 8949.64 (2062.99) 0.86 0.91

Glutamic Acid 8164.60 (3588.71) 9304.01 (7562.67) 0.93 0.93

3. Discussion

The main goal in the selection of conditions for sample preparation was the development of a
workflow that is simple, robust, and feasible to automate, while taking into consideration the LC-MS
method as well. The optimized sample preparation procedure, including the derivatization of amino
acids and related compounds, was fast, and, by optimization of the solvent composition, we could
improve the sensitivity and robustness of the derivatization step in comparison with the conventional
derivatization procedures. Overall, the sample preparation is very fast, as the derivatization takes
place immediately after addition of the reagent and all steps of the sample preparation can be done
with automated robotic sample preparation systems. The advantage of the derivatization is that it
increases the retention of the amino acids and thus allows the use of reversed-phase LC, which is more
robust than, for example, hydrophilic interaction chromatography, particularly when the goal is to
simultaneously analyze very polar (e.g., small amino acids) and relatively non-polar compounds (e.g.,
bile acids).

The linear range of the method as well as the LODs were in the range of the biological concentrations
typically detected in blood-based samples. This shows that the method has both good linearity and
quantitation ability for each analyte, with accuracies well within the general requirement of 80–120%.
Moreover, the method developed here proved to be fast (with a sample analysis time of less than
10 min) and robust. Thus, in terms of throughput, the method is suitable for large-scale analysis.
Currently, LC-MS techniques are applied in endocrinology, screening for inborn errors of metabolism,
therapeutic drug monitoring/toxicology confirmation, vitamin analysis, and, more recently, the peptide
and protein quantitation [40]. It should be noted that introducing a LC-MS/MS method into patient
care requires that the methodology should undergo rigorous and systematic validation, including all
steps of the analytical workflow, starting from the chemicals, solvent quality, columns and maintenance
of the system to data processing and interpretation, in addition to traditional validation parameters
that have been covered here. It should be also noted that trained personnel is a prerequisite in the use
of LC-MS in clinical laboratory.

The feasibility of the developed UHPLC-ESI-MS/MS method for the analysis of biological samples
was demonstrated by analyzing plasma samples from individuals with diabetes who had a wide
range of albuminuria. Albuminuria is a pathological condition where the protein albumin is present
in the urine in abnormal amounts. In healthy subjects (normo-albuminuric), only trace amounts of
albumin (<30 mg/24 h) are present in the urine while subjects with elevated amounts of albumin
in the urine, on the other hand, can be classified as either micro-albuminuric (c = 30–299 mg/24 h)
or macro-albuminuric (c ≥ 300 mg/24 h) [41]. Albuminuria is a sign of diabetic kidney disease,
which often occurs especially in subjects with type 1 diabetes [36,41,42]. In type 2 diabetes (T2D),
microalbuminuria is an independent risk factor for the prevalence of diabetic retinopathy [42,43]. In the
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general population, predictors of incident albuminuria include age, male sex, smoking, and low HDL
cholesterol level [44].

Several target metabolites showed either up- or downregulation in the T1D patients with
albuminuria, although not all differences reached statistical significance. More specifically, we observed
that several of the metabolites showed statistical associations related to the measured kidney functions
and eGFR. We observed alterations in many of the amino acids measured, although not all changes
reached statistical significance. Our results agree with a recent study that showed altered plasma
amino acid profiles in DKD, showing that tyrosine was significantly increased in T2D patients with
microalbuminuria [45]. Tyrosine has, in a recent meta-analysis, been shown to be one of the risk factors
for T2D with 36% increased risk [46]. Several studies have indicated that abnormal amino acids levels
are associated with diabetic kidney disease, although with somewhat contrary patterns of amino
acids [28,35,45,47]. Indeed, changed amino acids metabolites might actually be more contributable to
the dysregulated renal filtration state, which is unlikely to be revealed in the early pathologies of DKD,
as suggested in a recent systematic review of metabolic biomarkers of DKD [28]. We also observed
associations between the eGFR and ADMA, glutamine, taurine, and citrulline, in agreement of several
previous studies [16,48]. Particularly, ADMA has been suggested as a candidate biomarker for diabetic
kidney complications, whilst elevated levels of ADMA have been shown to predict a more accelerated
course of renal function loss and promoted the development of renal damage [15,16,48]. Bile acids
which have important roles as signaling molecules controlling glucose, lipid, and energy metabolism
were significantly different in subjects with macro-albuminuria, and they were further associated with
glycemic control. Altered bile acid metabolism has been observed particularly in T2D patients [49],
but there are no earlier studies of bile acids metabolism in subjects with albuminuria. Interestingly,
the main possible confounders previously linked with albuminuria, both in the general population
and in diabetic patients, such as smoking, sex, or age, showed no significant associations with the
metabolites most strongly linked with macro-albuminuria or kidney functions. Overall, our results
suggest that the developed analytical method is feasible for performing targeted metabolomic analysis
of plasma samples from diabetic patients, and that it can be used for more accurate stratification of
diabetic patients—making it; thus, suitable for the use in the diabetes clinic.

Validation of the method showed that the selected panel of markers can be effectively used for
classification of subjects with diabetic complications, such as macro-albuminuria. However, several
of the metabolites in the current panel are related to a wide range of complications, both in T1D
and T2D. Further evaluation of the clinical relevance of the method is clearly needed, in order to
evaluate the full potential of this diagnostic panel in the stratification of prediabetes, metabolic,
and diabetic complications.

4. Materials and Methods

4.1. Chemicals and Standard Solutions

LC-MS grade water (H2O), methanol (MeOH), isopropanol (IPA), and acetonitrile (ACN) were
purchased from Honeywell International Inc. (Morristown, NJ, USA). HPLC grade dichloromethane
(DCM), anhydrous ACN, analytical grade formic acid (HCOOH), and reagent grade potassium
carbonate (K2CO3), potassium bicarbonate (KHCO3), sodium hydroxide (NaOH), hydrochloric acid
(HCl), and 5-sulphosalisylic acid dehydrate (SSA) were purchased from Sigma-Aldrich (Steinheim,
Germany). 6-aminoquinoline-N-hydroxy-succinimidyl carbamate (AQC) for derivatization of amino
acids was purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA).

Stock solutions (4.0 mg mL−1) of the analytes and internal standards (Tables 1 and 5) were prepared
by dissolving in 0.1 M HCl, H2O, H2O:MeOH (90:10, v/v) or in MeOH and further diluting them with
0.6 M carbonate buffer (pH 8.9) and 1 M NaOH (3:1, v/v) (in order to subsequently neutralize and adjust
the pH) to the following concentration levels: 2.5, 5.0, 7.5, 10.0, 25, 50, 75, 100, 250, 500, 750, 1000, 2500,
5000, 7500, 10,000, 25,000, 50,000, and 75,000 ng mL−1. A total of 20 µL of an internal standard solution
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(ISTD MIX) containing each of the internal standards (Table 5) was added to all samples. The samples
were vortex mixed and 20 µL of a 5 mg mL−1 AQC-reagent, which was dissolved in anhydrous ACN
(at 55 ◦C) was added for derivatization of the amino acids and related metabolites (Supplementary
Figure S4). Finally, the samples were vortex mixed and stored at −80 ◦C until analysis. The calibration
curves were constructed using at least five measuring points and linear regression with 1/x weighing.
For α(R)-OHB and α(S)-OHB, only three measuring points could be used due to the high LOD of
these analytes.

Table 5. Internal standards, with concentrations in ISTD MIX, acquired for quality control and
for quantitation.

Internal Standard Abbreviation Group Vendor
Solvent,

Stock
Solution

Concentration
in ISTD MIX

(ng mL−1)

d5-Glutamine d5-Gln

Amino acids
+ related

metabolites

CIL H2O 30,000

d10-L-Leucine d10-Leu CDN

0.1 M HCl

5000

2H4-L-Homocitrulline 2H4-HCit Alsachim

Glycine-1-13C,2,2-d2 13C, d2-Gly
Sigma-Aldrich

d4-DL-Alanine d4-Ala

d5-L-Glutamic Acid d5-Glu

d10-Isoleucine d10-Ile

CIL

d5-L-Phenylalanine d5-Phe 500

d8-Tryptophan d8-Trp
5000

d7-Tyrosine d7-Tyr

d4-Citrulline d4-Cit 500

d3-L-2-Aminoadipic Acid d3-AADA 10,000

d7-Asymmetric dimethylarginine d7-ADMA 5000
13C6-Kynurenine 13C6-Kynu

Alsachim
30,000

d4-Taurine d4-Taurine 500

d4-Deoxycholic Acid d4-DCA

Bile acids

CDN

MeOH

500

d4-Glycocholic Acid d4-GCA 250

d4-Deoxychenocholic Acid d4-CDCA 500

d4-Glycoursodeoxycholic Acid d4-GUDCA 5000

d4-Cholic Acid d4-CA 500

d4-Ursodeoxycholic Acid d4-UDCA 250

d4-Glychochenodeoxycholic Acid d4-GCDCA

CIL

5000

d6-Glycodeoxycholic Acid d6-GDCA 30,000

d9-Taurochenodeoxycholic Acid d9-TCDCA
500

d4-Taurocholic Acid d4-TCA

d4-Tauroursodeoxycholic Acid d4-TUDCA 250

d5-Creatinine d5-Crea
Polar

metabolites
CDN 10% MeOH

10,000

d4-N-methyl-nicotinamide d4-N-MNA 250

d9-Gamma-butyrobetaine d9-GBB 500

d4-Indoxyl Sulfate d4-IndS Sigma-Aldrich 5000

d14-Azelaic Acid d14-AzelA
Small organic

acids
CDN

MeOH 5000

d4-3-Hydroxybutyric Acid d4-β-OHB
10% MeOH 100,000

d3-2-Hydroxybutyric Acid d3-α-OHB

Vendor information: Sigma-Aldrich (Steinheim, Germany); CDN: C/D/N Isotopes, Inc. (Quebec, Canada); CIL:
Cambridge Isotope Laboratories Inc. (Tewksbury, MA, USA); Alsachim (Illkirch Graffenstaden, France); SCB: Santa
Cruz Biotechnology, Inc. (Dallas, TX, USA).
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4.2. Samples

Plasma samples from a previously-described cohort [30,36] were used for validation of the
method. In short, during 2009–2011, a total of 1285 patients were invited to enter a study examining
diabetic complications at the Steno Diabetes Center Copenhagen (SDCC). The study conformed to
the Declaration of Helsinki and was approved by the Danish National Committee on Biomedical
Research Ethics (2009-056; NCT01171248). Additionally, all patients gave written, informed consent.
Of the invited 1285 patients, 676 accepted to participate and for our purposes, to demonstrate method
functionality, a subset of 50 patient samples was analyzed. In addition to these plasma samples, pooled
plasma samples from the SDCC were used for method development and validation as well as for
quality control. All plasma samples were stored at −80 ◦C until analysis.

4.3. Sample Preparation

Sample preparation included protein precipitation and derivatization (see 4.1. for details of
standards, stock solutions and derivatization reagent). A total of 10 µL of 1 M 5-sulphosalisylic
acid dehydrate (SSA) solution was added to 30 µL of plasma sample, samples were vortex mixed
and centrifuged at 9000 RCF (5 min at 4 ◦C) after which 20 µL of the upper phase was collected.
After, addition of 20 µL of the ISTD MIX 20 µL of a 6-aminoquinoline-N-hydroxy-succinimidyl
carbamate-reagent (AQC-reagent) (5 mg mL−1, at 55 ◦C) was added, and the samples were vortex
mixed and stored at −80 ◦C until analysis.

The samples in the validation study were randomized before sample preparation and again before
analysis. Calibration curves were created at the beginning and at the end of the sample analyses.
Additionally, blank samples and pooled plasma samples were included in the analytical sequence
for quality control purposes. Samples were injected three times, resulting in three technical replicate
measurements for each of the 50 samples.

4.4. Ultra High-Performance Liquid Chromatography (UHPLC)-Mass Spectrometry

The UHPLC system was 1290 Infinity system from Agilent Technologies (Santa Clara, CA, USA)
and it was equipped with a multi-sampler (maintained at 10 ◦C), a binary solvent manager, and a
column thermostat (maintained at 40 ◦C). The multi-sampler was set to utilize the multi-wash option
as the needle wash. Here two mixtures, ACN:MeOH:IPA:H2O (1:1:1:1, v/v/v/v) + 0.1% HCOOH and
10% DCM in MeOH, were used for 8 s after each injection in order to clean the needle and the needle
seat. Finally, the needle and the needle seat were flushed with the initial gradient conditions for
8 s. Separations were performed on a Kinetex® F5 column (100 × 2.1 mm, particle size 1.7 µm) from
Phenomenex (Torrance, CA, USA) with a flow rate of 0.4 mL min−1 and an injection volume of 2 µL.
H2O + 0.1% HCOOH (A) and ACN:IPA (2:1, v/v) + 0.1% HCOOH (B) were used as the mobile phases
for gradient elution. The gradient was as follows: from 0 to 1 min 1% B, from 1 to 1.8 min 1–18% B,
from 1.8 to 3.4 min 18–21% B, from 3.4 to 7 min 21–65% B, from 7 to 7.1 min 65–100% B and from 7.1 to
8.9 min 100% B. Each run was followed by a 2.5 min re-equilibration period under initial conditions
(1% B).

The mass spectrometer was a 6460 triple quadrupole system from Agilent Technologies. It was
interfaced with an Agilent Jet Stream electrospray ionization source. The analytes were ionized in
positive or in negative ion mode depending on the properties of the analyte. Nitrogen generated by
a Genius 3010 nitrogen generator from PEAK Scientific Instruments Ltd. (Inchinnan, Scotland, UK)
was used as the nebulizing gas (pressure 29 psi) and as the sheath gas at 250 ◦C and 6 L min−1 and
at 310 ◦C and 9 L min−1, respectively. Pure nitrogen (6.0) from Praxair (Fredericia, Denmark) was
used as the collision gas. The capillary voltage was set to 3000 V and the nozzle voltage to 1000 V.
MS- and MS/MS-spectra (scan range m/z 40–600) were acquired for each analyte to select the best
precursor and product ions for selected reaction monitoring (SRM) analyses. The fragmentor voltages,
collision energies (CE), and cell accelerator voltages were separately optimized for each ion transition
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of the analytes (Table 3) and the internal standards (Table 4). MassHunter LC/MS Data Acquisition
Software (version B.08.02) was used for all data acquisition. For data processing different software
were used: MassHunters Quantitative Analysis Software (version B.07.00), Skyline Daily (version
4.1) [50], and R [51].

Data from the diabetes cohort were processed as follows: (i) Peaks were picked in Skyline [50],
(ii) resulting peak areas were normalized to matching internal standard peak areas in R, and (iii) the
resulting peak area ratios were calibrated to concentrations in R based on metabolite-specific calibration
curves run during the analysis sequence.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/9/184/s1,
Figure S1: Derivatization reaction. Figure S2: Structures of compounds of interest, amino acids, and amino
acid-related compounds, Figure S3: Structures of compounds of interest, bile acids, Figure S4: Structures
of compounds of interest, small organic acids and other metabolites of interest, Figure S5: (a) MS-spectrum
and (b) MS/MS-spectrum of taurine, Figure S6: (a) MS-spectrum and (b) MS/MS-spectrum of azelaic acid,
Figure S7: (a) MS-spectrum and (b) MS/MS-spectrum of gamma-butyrobetaine, Figure S8: (a) MS-spectrum and
(b) MS/MS-spectrum of glycolic acid, Figure S9: (a) MS-spectrum and (b) MS/MS-spectrum of L-homocitrulline.
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