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Abstract

Receiver operating characteristic analysis is widely used for evaluating diagnostic systems. Recent studies have shown

that estimating an area under receiver operating characteristic curve with standard cross-validation methods suffers from

a large bias. The leave-pair-out cross-validation has been shown to correct this bias. However, while leave-pair-out

produces an almost unbiased estimate of area under receiver operating characteristic curve, it does not provide a

ranking of the data needed for plotting and analyzing the receiver operating characteristic curve. In this study, we

propose a new method called tournament leave-pair-out cross-validation. This method extends leave-pair-out by

creating a tournament from pair comparisons to produce a ranking for the data. Tournament leave-pair-out preserves

the advantage of leave-pair-out for estimating area under receiver operating characteristic curve, while it also allows

performing receiver operating characteristic analyses. We have shown using both synthetic and real-world data that

tournament leave-pair-out is as reliable as leave-pair-out for area under receiver operating characteristic curve

estimation and confirmed the bias in leave-one-out cross-validation on low-dimensional data. As a case study on

receiver operating characteristic analysis, we also evaluate how reliably sensitivity and specificity can be estimated

from tournament leave-pair-out receiver operating characteristic curves.
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1 Introduction

Diagnostic systems, such as binary classifiers, are used to predict outcomes that support decision making.
In medicine, these systems help prognosis by predicting outcomes such as healthy or disease, follow-up
treatment response or anticipated relapse. Diagnostic systems are usually built from data that combine events,
test results and variables with the objective of discriminating between two alternatives. Often the quality of data
used to generate a system is uncertain, affecting its accuracy. Hence, a good assessment of the system degree of
accuracy is crucial.1

To evaluate the discrimination ability of a binary classifier, the receiver operating characteristic (ROC) analysis
is a popular approach. It allows visualizing, comparing and selecting classifiers based on their performance.
The ROC curve depicts the performance of a classifier across various decision thresholds, while the area under
the ROC curve (AUC) quantifies the classification error. The AUC value can be interpreted as the probability
of the classifier ranking a randomly chosen positive unit (e.g. diseased subject or case) higher than a randomly
chosen negative unit (e.g. healthy subject or control).2 In contrast to many other performance measures, AUC is
invariant to skewed class distribution and unequal classification error costs.3
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In medical studies, classifiers are usually obtained from data sets where variables are measured from relatively
small numbers of sample units and the classes are often highly imbalanced. These data sets are challenging when
training and testing classifiers and ROC analysis must be used with caution in this scenario.4 Ideally, the performance
of a classifier should be evaluated on independent data (i.e. data not used for training the classifier). In practice, large
enough independent data may not be available or cannot be spared when building the classifier. Therefore, in many
cases, cross-validation methods such as leave-one-out (LOO) and K-fold are used to estimate the performance of a
classifier. However, several experimental studies have shown that LOO and many other cross-validation methods are
biased for AUC estimation. This bias is caused by the pooling procedure, where predictions from different rounds of
cross-validation are pooled together in order to compute the ROC curve and AUC. The pooling thus violates the
basic assumption that the predictions are made by a single classifier, often leading to systematic biases.5–9 As an
alternative, a leave-pair-out (LPO) cross-validation that results in an almost unbiased AUC estimation was proposed
and tested.7 Moreover, a study that used real-world clinical data sets also examined LPO and confirmed it being a
reliable cross-validation method for estimating AUC.9 However, LPO only produces AUC estimate without
providing the ranking of the data needed for performing full ROC analysis.

In this study, we propose a variant of LPO cross-validation, the tournament leave-pair-out (TLPO)
cross-validation. TLPO constructs a tournament from paired comparisons obtained by carrying out LPO
cross-validation over all sample unit pairs. The ROC analysis can be then subsequently carried out on the
scores determined by the tournament.10,11 In the literature, it is shown that such tournament scores are
guaranteed to produce a good ranking for the data (see e.g. Coppersmith et al.12 for a formal analysis and
proof). Furthermore, through experiments on both synthetic and real medical data, we evaluate LOO, LPO,
and TLPO AUC estimates from two well-established classification methods: ridge regression and k-nearest
neighbors (KNN). The experimental results show that the TLPO is as reliable as LPO for estimating AUC,
while enabling full ROC analysis.

2 Preliminaries

ROC analysis is commonly used to assess the accuracy of classifiers that produce real-valued outputs. We assume a
set of m sample units, divided into the so-called positive and negative classes. In a typical application, the sample
units would correspond to patients and the classes to absence or presence of a certain disease. We denote by
I ¼ f1, 2, . . . ,mg the index set of these sample units, and by Iþ � I and I� � I the indices of the positive and the
negative sample units, respectively. Note that we refer to the sample units only by their indices i 2 I , since their
other properties, such as possible feature representations, are irrelevant when studying cross-validation techniques.

Let f : I ! R denote a prediction function, that maps each sample unit to a real-valued prediction indicating
how likely they are to belong to the positive class. By sorting the predicted values f ð1Þ, f ð2Þ, . . . , f ðmÞ, the sample
units may then be ordered from the one predicted most likely to belong to negative class, to the one predicted most
likely to belong to positive class. In order to transform the predictions into binary classes, a threshold t may be set
so that the sample units with smaller predictions are classified as negatives, and higher as positives. This can be
described as a classifier

CtðiÞ ¼
1 if f ðiÞ4 t
0 otherwise

�

The classification performance of Ct is often evaluated by measuring the true positive rate (TPR), also known as
sensitivity or probability of detection, and the false positive rate (FPR) as t is varied. Formally, these are defined as
the probabilities of a positive unit getting correctly identified as positive and a non-positive unit getting wrongly
identified as positive, that is

TPR ¼
1

jIþj

X
i2Iþ

CtðiÞ and FPR ¼
1

jI�j

X
i2I�

CtðiÞ ð1Þ

These can be considered either as empirical estimates on finite samples or as the actual probabilities on the
population level, e.g. on all future observations by letting m!1.

The ROC curve plots the TPR versus FPR of a classifier for all possible values of t. A curve that represents a
perfect classifier is the one with a right angle at (0, 1), which means that there is a t that perfectly separates positive
units from negative ones. Likewise, a classifier that makes random predictions is represented by a diagonal line
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from (0, 0) to (1, 1). The area under the curve or AUC is the metric that quantifies the performance of the classifier
independently of t. A perfect classifier has AUC of 1.0, while a classifier that makes random predictions or predicts
a constant value has AUC of 0.5.

There are different approaches for computing the AUC.2,4,13 A common approach is to plot the ROC curve by
connecting the points (TPR, FPR) with straight lines and then estimating the AUC using the trapezoid rule.
An equivalent way is through Wilcoxon-Mann-Whitney (WMW) statistic,14 which consists of making all possible
comparisons between pairs of positive and negative units and scoring each comparison according to the Heaviside
step function. Then, the WMW statistic can be computed on a finite sample I as

Âð f Þ ¼
1

jIþjjI�j

X
i2Iþ

X
j2I�

H f ðiÞ � f ð j Þð Þ ð2Þ

where

HðaÞ ¼
1 if a4 0
0:5 if a ¼ 0
0 if a5 0

8<
:

is the Heaviside step function. Again its limit

Að f Þ ¼ lim
m!1

Âð f Þ

is the true AUC of f also covering all future observations.
Performing ROC analysis of machine learning-based classifiers is simple when having access to large amounts

of data. The prediction function is learned from a training set, and the ROC curve and AUC are computed on an
independent test set. Usually in small sample settings, a separate test set cannot be afforded. Testing a prediction
function directly on the same data it was learned from (i.e. resubstitution) leads to highly overoptimistic results.
Rather, methods such as bootstrapping and cross-validation are used in order to provide reliable performance
estimates in small sample settings.

Bootstrapping methods, such as the one described by Harrell et al.15 or the .63216 and .632þ17 estimates, allow
adjusting the optimistic bias present in the resubstitution estimate. It consists of estimating the amount of bias by
using a large number of bootstrap samples drawn with replacement from the original sample and correcting the
resubstitution estimate accordingly. Bootstrap methods may be expected to provide reliable performance estimates
when using classical statistical approaches, such as generalized linear models, with modest amount of features.
However, they are known to be vulnerable to overoptimism when high-dimensional data or complex non-linear
models are used. This is because they are partly based on the resubstitution estimate, which can become arbitrarily
biased when using flexible enough models that can always be fitted to predict their own training data almost
perfectly, such as the KNN method. Previously, Kohavi18 and Smith et al.9 have experimentally confirmed the
optimistic bias of bootstrap compared to cross-validation. This is further confirmed in our study by experimental
results presented in the supplementary materials.

Cross-validation involves splitting the available data repeatedly into two non-overlapping parts, training and
test set. The training set is used to train or build the classifier and the test set to evaluate its performance. In K-fold
cross-validation, the data are split in K mutually disjoint parts (i.e. folds) of equal size. Then, in turns, each fold is
held out as test data, while the rest of folds (K-1) are used to train a classifier for performing predictions on the test
data. In the so-called pooled K-fold cross-validation, the predictions for all the folds are combined together, and
the AUC is then computed using the combined set of predictions. In averaged K-fold cross-validation, a separate
AUC is computed for each test fold, and the final AUC is the average of these fold-wise estimates. While a full
ROC analysis is possible in pooled K-fold, the averaged K-fold only provides an AUC estimate. A disadvantage
shared by both the pooled and averaged K-fold is that with large fold sizes they are negatively biased, because a
substantial part of the training set is left out in each round of cross-validation.

In the case of LOO cross-validation, each unit constitutes its own fold, and the AUC estimate is calculated
using the pooling approach. Formally, the AUC estimated by LOO is

ÂLOOð f Þ ¼
1

jIþjjI�j

X
i2Iþ

X
j2I�

H fInfigðiÞ � fInfjgð j Þ
� �

,

where f I\{i} and f I\{j} are prediction functions trained without the ith and jth sample units, respectively.

Perez et al. 3



In the pooling approach, the predictions for the ith and the jth sample units may originate from different
prediction functions. This may produce biased AUC estimates with unstable learning algorithms—the ones whose
predictions functions undergo major changes in response to small changes in the training data.

Many learning algorithms produce prediction functions that can be decomposed into two components, that is
f ðiÞ ¼ gðiÞ þ c, where the first depends on the unit i and the second that is independent of it. In the context of linear
models, the prediction function often has a constant term referred to as the intercept. These constant terms may
bias the pooling AUC estimate. This problem is particularly severe for LOO. For example, if the training
algorithm infers from the data a constant valued prediction function f ðiÞ ¼ 1=pi � 1=ni consisting of the
difference between the inverse frequencies of positive pi and negative ni units in the training set during the ith
round of LOO, then the LOO predictions for positive units will all have a larger predictions than the negative ones,
resulting to AUC value 1, even though the constant functions are not of any use for prediction.

An analogous negative bias can also emerge, when the learning algorithms tend to produce prediction functions
whose values correlate with the class proportions.8 In addition, experiments performed on synthetic and real-data
sets have shown that both pooled K-fold and LOO cross-validation estimates suffer from a high negative bias
when used for AUC estimation.5,7,9 Hence, using pooling for AUC estimation is very risky as it may produce
arbitrarily badly biased results.

When using averaging to estimate the AUC, as in averaged K-fold cross-validation, the negative bias caused by
pooling disappears.5 However, it has been shown that averaging leads to high variance in the AUC estimates when
using small data sets.7 Another issue in K-fold is that the value of K is constrained by the number of units in the
minority class. For example, if there are more folds than positives units, the AUC for the folds without positives
cannot be calculated affecting the averaged AUC.

For a more reliable AUC estimate, LPO cross-validation has been proposed.7 This cross-validation method
combines the strengths of pooling and averaging approaches. In LPO, each positive-negative pair is held as test
data, and the cross-validation AUC is computed by averaging over all these pairs predictions, as in equation (2).
This ensures that only pairs from the same round of cross-validation are compared, while it makes maximal use of
the available training data. Formally, the LPO cross-validation estimate is defined as

ÂLPOð f Þ ¼
1

jIþjjI�j

X
i2Iþ

X
j2I�

H fInfi, jgðiÞ � fInfi, jgð j Þ
� �

where fI\{i,j} is the prediction function trained without the ith and jth sample units.

3 TLPO cross-validation

In order to perform ROC analysis, we need a predicted ranking for the data set, where the sample units ranked
higher are considered more likely to belong to the positive class. As indicated previously, LPO cross-validation
produces an almost unbiased AUC estimate, but it does not provide such ranking. In this section, we describe the
proposed TLPO cross-validation method, a variant of LPO that applies pair comparison method10 and round
robin tournament theory11 to produce a ranking over the data set.

A tournament is a complete asymmetric directed graph, that is, a graph containing exactly one directed edge
between each pair of vertices. In TLPO, we consider a round robin tournament in which the vertices correspond to
sample units and the directions of the edges are obtained from a complete LPO cross-validation—where every
possible pair of sample units is held out as test data at the time, including those pairs that belong to the same class.
The edge connecting sample units i and j goes from the former to the latter if fInfi, jgðiÞ4 fInfi, jgð j Þ, that is, its
direction is determined by the order of predictions performed during a train-test split with test set {i, j}.

Given the tournament graph, the tournament score S(i) for the ith sample unit is computed by counting the
number of outgoing edges (i.e. out-degree) in the tournament graph starting from the corresponding vertex

SðiÞ ¼
Xm
j¼1

H fInfi, jgðiÞ � fInfi, jgð j Þ
� �

the TLPO AUC estimate can then be computed from the tournament scores, for example, by using equation (2)

ÂTLPOð f Þ ¼ ÂðSÞ
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The TLPO ranking is generated by ordering the sample units according to their scores or number of wins. It has
been shown in the literature concerning tournaments that the above considered tournament scores provide a good
ranking of the data. For the theoretical results backing this claim, we refer to literature.12,19 This ranking can then
be used for ROC analysis to evaluate the classifier performance, as described in the previous section. In Figure 1,
we present an example of a ROC curve obtained using TLPO cross-validation on a randomly selected sample of 30
units (15 positives and 15 negatives) from the real medical data set (described in section 4.3) and an ROC curve
using the rest of this data set as test data. The classification method used in this example was ridge regression.

We next analyze the TLPO and compare it to the ordinary LPO. It is said that a tournament is consistent if
the corresponding graph is acyclic. Otherwise, it is inconsistent, indicating that there are at least one circular triad
(i.e. cyclic triple) of sample units h, i and j such that

fInfh, igðhÞ5 fInfh, igðiÞ

fInfi, jgðiÞ5 fInfi, jgð j Þ

fInfh, jgðhÞ4 fInfh, jgð j Þ

In TLPO cross-validation, this inconsistency rises when the learning algorithm is unstable on the sample.
From the three above cases, we can see that the training data sets differ from each other only by a single
sample; however, this is enough to make the three learned prediction functions so different from each other
that a circular triad emerges.

The level of inconsistency can be measured by counting the number of circular triads in the tournament graph,
as explained in literature.10,11,20 Based on the number of circular triads, a coefficient of consistency (�) was
proposed by Kendall and Babington Smith.10 This coefficient takes a value between 1 and 0. If �¼ 1, then the
tournament has no circular triads; as the number of circular triads increases, � tends to zero. If �¼ 0, the
tournament has as many circular triads as possible. The equations for computing number of circular triads and
coefficients of consistency are provided in the supplementary material.

A typical example of a perfectly stable learning algorithm, which produces a consistent tournament, is the one
that always outputs the same real valued prediction function, that is, fInfh, ig ¼ fInfi, jg, for any h, i, j 2 I . In this case,
properties of the well-known ordinary WMW statistics hold, so that the obtained AUC equals to the WMW
statistic calculated for the function fInfh, ig on the sample. As an example of extreme inconsistency, we consider
what we call a random learning algorithm. This algorithm ignores the training set and randomly infers a prediction
function so that they are independent of each other during different rounds of the TLPO cross-validation, which is

Figure 1. Example of ROC curves of a classifier evaluated by tournament cross-validation (TLPO) and by a large test data set (Test).

The TLPO curve was obtained from 30 random sample units (15 positives and 15 negatives) and the rest of the data was used for the

Test curve. The real medical data set and ridge regression were used.
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likely to cause high inconsistency. See supplementary material for more information on tournament inconsistency
when a random learning algorithm is used.

The instability of the learning algorithm depends on the combination of the learning algorithm and the
available data. Therefore, the behavior of even the standard learning methods may drift towards one of the
previous extreme examples with certain type of data.

The ordinary LPO and TLPO produce exactly the same AUC value, if the tournament in TLPO is consistent.
This is obvious as a consistent tournament determines a strict total order on the sample by the edge directions and
expressed by the score sequence 0, 1, . . . , jI j � 1, and hence fInfh, igðhÞ5 fInfh, igðiÞ indicates SðhÞ5SðiÞ. TLPO in a
consistent case then enjoys the same unbiasedness properties as the ordinary LPO. However, the inconsistencies
may make the two AUC estimates drift away from each other depending of its severity.

In the next section, the accuracy of the AUC estimated by LOO, LPO, and TLPO in different settings are
presented. Moreover, through our experiments, we study to which extent inconsistencies in tournaments affect the
reliability of TLPO AUC estimates.

4 Experimental study

We performed a set of experiments on synthetic and real medical data to evaluate the quality of ÂLOOð f Þ, ÂLPOð f Þ
and ÂTLPOð f Þ, using two different classification methods. In these experiments, we computed the mean and
variance of the difference between the estimated and true AUC, over a number of repetitions.7,21 Ideally, both
quantities should be close to zero. The difference is formally defined as �ÂCVð f Þ ¼ ÂCVð f Þ � Að f Þ, where CV
refers to one of LOO, LPO, or TLPO. In addition, we carried out an analogous analysis to evaluate the quality of
the sensitivity (i.e. TPR) estimated by TLPO at a given specificity (i.e. 1-FPR).

4.1 Classification methods

In our experiments, the classification methods used were ridge regression and KNN. These methods are widely
used learning algorithms due to their simple implementation and high performance. Ridge regression is a
representative example of linear and parametric methods, whereas KNN is both a non-linear and non-
parametric method. Both methods have the advantage of very fast computation of cross-validation estimates,
which makes running the large number of repetitions needed in the simulations computationally feasible.
Previously, Airola et al.7 compared the behavior of ridge regression and support vector machine in cross-
validation-based AUC estimation and showed that the methods behaved very similarly.

Ridge regression, also known as regularized least-squares (RLS), is a method that minimizes a penalized version
of the least-squared function.22,23 This method has a regularization parameter that controls the trade-off between
fitting the data and model complexity. The prediction function inferred by this method can be presented in
vectorized form as f(x)¼wTxþ b, where w 2 R

n holds the coefficients of the linear model, x 2 R
n holds the

variables measured from a sample unit for which the prediction is to be made and b is the intercept. In the
simulations that applied ridge regression, we used the RLS module from RLScore machine learning library24

freely available at https://github.com/aatapa/RLScore. The regularization parameter was fixed to the value of one,
following the same reasons as in Airola et al.7

KNN is perhaps the simplest and most intuitive of all nonparametric classifiers.25,26 It was originally
studied by Fix and Hodges25 and Cover and Hart,26 and it continues to be a popular classifier. Its
classification output is based on the majority votes or the average value of the k nearest neighbors. In our
experiments, a weighted version of KNN was implemented using the Neighbors and the KDtree modules in
the scikit-learn library.27 The number of neighbors (k) was set to three, and the output was computed by
subtracting the sum of the inverse distance of the negative neighbors from the sum of the inverse distance of
the positive neighbors.

4.2 Synthetic data set

In the experiments performed on synthetic data, we generated data that reflected the following characteristics:
small sample size, class imbalance, low or high dimension, and large number of irrelevant features. The sample size
for training the classifier was set to 30 units. The fraction of positives and negatives units in the sample was varied
between 10% and 50% in steps of 10%. We considered low-dimensional data with 10 and high-dimensional data
with 1000 features. Moreover, both non-signal and signal data were considered.

6 Statistical Methods in Medical Research 0(0)
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In the simulations where no signal occurs in the data, sample units for both positive and negative class were
drawn from a standard normal distribution. In the signal data simulations, we considered 10 features with one or
four containing signal, and 1000 features with 10 or 50 containing signal. For the discriminating features, the
sample units belonging to the positive class were drawn from normal distribution with 0.5 mean and variance one,
while for the negative class the mean was �0.5.

The A(f) of a classifier trained on non-signal data is always 0.5, as this classifier can do neither better nor worse
than random chance. In contrast, with signal data, the A(f) of a classifier trained on a given training set is not
known in advance, but it can be estimated from a large test set drawn from the same distribution using
equation (2). Therefore, in our signal experiments, we used a test set of 10,000 units (5000 positives and
5000 negatives) to compute A(f). Moreover, in order to obtain stable estimates, corresponding mean and
variance of ÂLOOð f Þ, ÂLPOð f Þ, ÂTLPOð f Þ and A(f) were calculated by repeating each simulation 10,000 times.
In each repetition, a new training data set with same characteristics was sampled.

Figure 2(a) presents mean �ÂCV values of each cross-validation method on non-signal simulations. When using
ridge regression, we observe that LPO and TLPO estimates have mean �ÂCV close to zero and behave similarly
regardless of dimensionality or class distribution. LOO estimate compared to LPO and TLPO has a significant
negative bias on low-dimensional data. All three estimators behave similarly on high-dimensional data and the
negative bias of LOO disappears. The results for LOO agree with the ones reported by Parker et al.,5 Airola et al.,7

and Smith et al.9 With KNN, LPO mean �ÂCV is close to zero making it a nearly unbiased estimator for this type
of classifier. TLPO estimate for KNN shows some negative bias compared to LPO; however, the bias is much
smaller than the one shown by LOO. Moreover, supplementary material Figures S2 and S3 show that TLPO with
ridge regression had higher consistency in most of our experiments than TLPO with KNN, which may explain the
bias for KNN.

Figure 2(b) displays the mean �ÂCV values of the estimators with signal data. From �ÂCV means, we can
observe that in this setting all estimators show some bias towards zero, which depends somewhat on the class
fraction/sample size and the number of features. This negative bias is inherent to the cross-validation procedure
applied to signal data, since the training sets during the cross-validation are slightly smaller than that used to train
the final model.

(a)

Figure 2. Mean �Âcv of each cross-validation method over 10,000 repetitions as class fraction balanced on (a) non-signal data

(b) signal data. �Âcv: difference between estimated and true AUC; LOO: leave-one-out; LPO: leave-pair-out; TLPO: tournament leave-

pair-out; Ridge: ridge regression; KNN: k-nearest neighbors; F-signal: signal features.
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The variances of �ÂCV on non-signal data are presented in Figure 3(a). These results show that �ÂCV variances
of all three estimators are higher when there is high-class distribution imbalance (only 10% of positive units in the
sample), despite the classification method used. Moreover, there are no notable differences between LOO, LPO
and TLPO variances for the more balanced class distributions.

Figure 3(b) shows the variances of �ÂCV on signal data. Compared to the variances on non-signal data, we
observe some similarity when ridge regression is used. However, with KNN and low-dimensional data LOO
variances are higher than LPO and TLPO, but these differences disappear in high-dimensional data.

To summarize our results on synthetic data, LPO and TLPO AUC estimates are similar on non-signal and
signal data when using ridge regression as classification method. When using KNN, TLPO estimates slightly
deviate from LPO estimates, showing some negative bias. LOO estimates compared to LPO and TLPO present

(b)

Figure 2. Continued.
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a much larger negative bias in most of our simulations settings. The variance of the estimates shown in all three
cross-validation methods decrease when the class fraction increases.

4.3 Real data set

In addition to synthetic data, we have performed experiments using prostate magnetic resonance imaging (MRI)
data to compare A(f) against ÂLOOð f Þ, ÂLPOð f Þ and ÂTLPOð f Þ, and to confirm the results obtained on the
synthetic data simulations. MRI plays an increasingly important role in the detection and characterization of
prostate cancer (PCa) in men with a clinical suspicion of PCa28 and those diagnosed with it.29 Diffusion weighted
imaging (DWI) is the corner stone of prostate MRI. However, validation of DWI post-processing methods is
limited due to lack of robust cross validation method.30–33 Thus, in this study, DWI data of 20 patients with
histologically confirmed PCa in the peripheral zone were evaluated. Each patient gave written inform consent, and
the study was approved the ethical committed of the Turku University Hospital (TYKS) located in Turku,
Finland. The DWI data included in this study were part of prior studies focused on the development and
validation of novel DWI post-processing methods.32–36

In these experiments, the task was to classify DWI voxels belonging to prostate tumors or non-malignant tissue.
The DWI data set consisted of 85,876 voxels (9268 marked as cancerous and 76,608 as non-cancerous) obtained
from the corresponding parametric maps of 20 patients with PCa. The voxel-wise features were the parameters
derived using DWI signal decay modeling: ADCm, ADCk and K as detailed in Toivonen et al.34 In addition,
Gabor texture was extracted as feature for each parametric map (Gabor-ADCm, Gabor-ADCk, Gabor-K). These
six features have shown to have signal in distinguishing tumor voxels from non-tumor voxels.34–38 Patient
characteristics (Table 1) and image examples are shown in supplementary material (Figures S5 and S6).

With this data set, we performed experiments varying the class fraction as we did in the synthetic data set

simulations. To compute ÂLOOð f Þ, ÂLPOð f Þ and ÂTLPOð f Þ, we used 30 voxels that were drawn without
replacement from the data set. The voxels not drawn were used to calculate A(f). Each experiment was
repeated 617 times, as every time a different set of 30 voxels was sampled.

The results of these experiments allow us to compare the A(f) to ÂCVð f Þ of each cross-validation method using
real data setting. Figure 4 shows the corresponding mean and standard deviation of A(f), ÂLOOð f Þ, ÂLPOð f Þ and
ÂTLPOð f Þ as the class fraction varies. In these settings, we observe that LOO estimates have a strong negative bias

(a)

Figure 3. �Âcv variance of each cross-validation method over 10,000 repetitions as class fraction balanced on (a) non-signal data (b)

signal data. �Âcv: difference between estimated and true AUC; LOO: leave-one-out; LPO: leave-pair-out; TLPO: tournament leave-

pair-out; Ridge: ridge regression; KNN: k-nearest neighbors; F-signal: signal features.

Perez et al. 9



when ridge regression is used as classification rule, although the bias decreases with KNN. In contrast, LPO and
TLPO estimates are almost unbiased and only affected by great imbalance among the classes when ridge regression
is used. With KNN, LPO and TLPO estimates are unbiased and class imbalance seems not to be affecting the
estimates.

The mean �ÂCV values of the estimators are presented in Figure 5(a). The results with ridge regression
corroborate those obtained on low-dimensional synthetic data. Moreover, the negative bias in TLPO estimates
with KNN in the synthetic signal data simulations disappear and there is no significant difference between LPO
and TLPO estimates, while LOO estimates still show some negative bias. In Figure 5(b), the variances of �ÂCV are
presented. With ridge regression, we observe high variance in LOO, LPO, and TLPO when the class proportion is
highly imbalance, but it tends to disappear when the classes are balanced, in same way as in the synthetic data
simulation. When KNN is used, the variances of all three estimators are close to zero and stable.

(b)

Figure 3. Continued.
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4.4 Sensitivity at a given specificity

To demonstrate a typical case of ROC analysis made possible by the tournament scores, we considered the
estimation of sensitivity of a classifier at given specificity. We studied the TLPO sensitivity ( bSeTLPO) at a given
specificity for all of our experiments using ridge regression and KNN and compared the estimates with the values

Table 1. Characteristics of the patients included in the real medical data set. The tumors are

located in the prostate peripheral zone.

Patient no. Age (years) PSA(ng/ml) Gleason score

1 67 11 3þ 4

2 66 9.3 4þ 3

3 68 30.0 5þ 4

4 66 15.0 4þ 5

5 67 12.0 3þ 4

6 68 3.9 3þ 4

7 60 28.0 4þ 3þ 5

8 62 7.7 3þ 4

9 67 5.1 4þ 4

10 65 5.7 3þ 4

11 65 9.9 3þ 4

12 70 12.0 3þ 4þ 5

13 62 4.1 4þ 5

14 67 4.6 4þ 5

15 67 8.3 4þ 3þ 5

16 66 6.6 4þ 3

17 45 12 3þ 4

18 60 8.6 4þ 5

19 65 4.5 3þ 4

20 68 3.2 3þ 4

PSA: prostate-specific antigen.

Figure 4. Mean and standard deviation of A(f), ÂLOOð f Þ, ÂLPOð f Þ and ÂTLPOð f Þ over 617 repetitions as the class fraction varies. AUC:

area under the receiver operating characteristic curve; A(f): true AUC of the classifier; ÂLOOð f Þ: leave-one-out AUC estimate; ÂLPOð f Þ:

leave-pair-out AUC estimate; ÂTLPOð f Þ: tournament leave-pair-out AUC estimate; PCa: prostate cancer.
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obtained from the true ROC curve of the corresponding classifier. The sensitivity values ranged from 0% to 100%
and specificity from 10% to 90% in steps of 10%. The quality of bSeTLPO was measured by the mean and variance
of the difference between bSeTLPO and true sensitivity (Se), defined as � bSe ¼ bSeTLPO � Se, over a number of
repetitions. Equation (1) was used to compute Se, bSeTLPO and the specificity (1�FPR).

Figure 6(a) presents the mean of � bSe computed over 10,000 repetitions from non-signal data with 10 and 1000
features and balanced class fraction. In a setting with non-signal data, our results show that there is positive bias
for high specificity values and a negative bias for low specificity values. This behavior did not depend on the
number of features or classification method used.

The mean of � bSe computed over 10,000 repetitions from our synthetic signal data is presented in Figure 6(b).
For both ridge regression and KNN, we considered the following settings: low signal in low and high dimension
(e.g. 10 features one with signal, 1000 features 10 with signal) and high signal in low and high dimension (e.g. 10
features four with signal, 1000 features 50 with signal). In low signal data, for both classification methods, we
observe that mean � bSe at 90% specificity is positively biased, but as specificity value decreases the bias
also decreases following a similar behavior as in non-signal data. In contrast, when the signal in the data is
strong (i.e. the number of features with signal is large), the mean of � bSe tends to be close to zero when
specificity value decreases from 90% to 10% with ridge regression, while with KNN there is a negative bias in
high specificity values.

Figure 6(c) displays the mean of � bSe computed over 617 repetitions from our real medical data set. In this case,
we analyzed the effect of having balanced classes (i.e. fraction of positives¼ 0.5) against some degree of
imbalanced (i.e. fraction of positives¼ 0.3) on mean � bSe. From our results with ridge regression, we note that
for both fractions of positives at 90% specificity, there is some positive bias which decreases and goes close to zero
for lower specificity values. With KNN, at specificity of 90% for both class fractions, there is a positive bias greater
than the one observed in ridge regression. However, similar to ridge regression, the bias for both class fractions

(a)

(b)

Figure 5. (a) Mean �ÂCV of each cross-validation method on real data as class fraction varies. (b) �ÂCV variances. �ÂCV : difference

between estimated and true AUC; LOO: leave-one-out; LPO: leave-pair-out; TLPO: tournament leave-pair-out; Ridge: ridge

regression; KNN: k-nearest neighbors; PCa: prostate cancer.
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decreases as specificity decreases. Furthermore, in this setting, the negative bias for class fraction 0.5 for 80%, 70%
and 60% specificity is much greater than the one observed for class fraction 0.3, which is close to zero.

The variance of � bSe for all our experiments is presented in Figure 7. In non-signal data, the variance of � bSe at
a given specificity is greater than zero and behaves in a similar manner regardless of the number of features or
classification method. On the other hand, the variance of � bSe in signal data depends somewhat on the number of
features with signal and the classification method used. For example, in Figure 7(b), we observe that with ridge
regression, high dimension and strong signal the variance of � bSe is almost zero for all given specificities.

From all results, we observe that sensitivity tends to be more biased near the ends of the ROC curve. This is easily
seen from the experiments with the non-signal data, in which the sensitivity is positively biased for large specificity
values and negatively for the small ones. This is a property of ROC curves calculated from a small sample, which can

(a)

(b)

Figure 6. Mean �Ŝe at a given specificity for Ridge and KNN on (a) non-signal data with 10 or 1000 features, (b) signal data with

10 features (one or four have signal) and with 1000 features (10 or 50 have signal) and (c) PCa data with six features for positive

class fraction equal to 30% and 50%. For (a) and (b) the classes are balanced and the mean value is computed over 10,000 repetitions.

In (c), the number of repetitions is 617. �Ŝe: TLPO and true sensitivity difference; Ridge: ridge regression; KNN: k-nearest neighbors;

Class-fraction: proportion of positive units; F-Signal: number of features with signal; PCa: prostate cancer.
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(c)

Figure 6. Continued.

(a)

(b)

Figure 7. �Ŝe variance at a given specificity for Ridge and KNN on (a) non-signal data with 10 or 1000 features, (b) signal data with

10 features (one or four have signal) and with 1000 features (10 or 50 have signal) and (c) PCa data with six features for positive class

fraction equal to 30% and 50%. For (a) and (b), the classes are balanced and the mean value is computed over 10,000 repetitions. In (c),

the number of repetitions is 617. �Ŝe: TLPO and true sensitivity difference; Ridge: ridge regression; KNN: k-nearest neighbors; Class-

fraction: proportion of positive units; F-Signal: number of features with signal; PCa: prostate cancer.
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be easily observed from the example case in Figure 1. There, sensitivity of the true ROC always approaches zero for
100% specificity in the limit, but it can be considerably larger for finite samples depending on how many positive
units are in the top of the ranking that determines the ROC curve. Accordingly, the amount and direction of the bias
depend considerably on how much room for variability there is below and above the true ROC curve.

5 Discussion and future work

This study proposes TLPO cross-validation for performing ROC analysis and estimating AUC. Our experiments
on synthetic data and real data showed that TLPO provides close to unbiased AUC estimates, similarly to the
previously proposed LPO method. The advantage of TLPO over LPO is that the former produces also ranking of
the data, necessary for computing the ROC curve. Further, our experiments confirmed the substantial negative
bias in LOO AUC estimates. Thus, our results suggest that TLPO provides the most reliable cross-validation
method for performing ROC curve analysis. This is further backed by an experimental evaluation on computing
sensitivity for a given specificity value.

In contrast to using only the positive–negative pairs as when computing AUC with ordinary LPO, we used a
complete round robin tournament (or all-play-all tournament) to compute scores for TLPO. This was done for the
following reasons. Firstly, it provides simple and convenient consistency analysis tools enabling us to investigate
the stability properties of the learning algorithms with respect to LPO by counting the circular triads in the
tournament graph. Secondly, the recent theoretical results19 provide good guarantees for determining a
bipartite ranking from a possibly inconsistent tournament. However, in ROC analysis literature, the so-called
placement values39,40 that are based only on the positive–negative pairs have been traditionally used for estimating
the variance of AUC, comparing two ROC curves or calculating confidence interval for the estimated AUC.41–43

This type of use of placement values together with LPO would be an interesting study of its own, as the effects of
the possible inconsistencies in LPO results on these tools is not yet well known. Especially so, since deriving proper
confidence intervals for cross-validation is known to be a challenging problem.44

Future work is required to ascertain to what extent our results generalize to different methods, data
distributions, and learning methods than those considered in this work. Yet, we find it encouraging that similar
behavior was observed for the cross-validation methods both on the real and the simulated data. Further, our
results about the bias and variance of the LOO and LPO methods are similar to those presented in earlier works,7,9

where similar results were shown also for larger sample sizes.
Overall, our signal data and real data experiments suggest that if the available data have strong signal TLPO is

highly consistent; thus, LPO and TLPO AUC estimates tend to be the same regardless of the classification method.
However, it is a good practice to compute both estimates and verify their similarity before performing ROC
analysis with TLPO scores.
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