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ABSTRACT A better understanding of the environmental and genetic contribution to migratory behavior
and the evolution of traits linked to migration is crucial for fish conservation and fisheries management. Up
to date, a few genes with unequivocal influence on the adoption of alternative migration strategies have
been identified in salmonids. Here, we used a common garden set-up to measure individual migration
distances of generally highly polymorphic brown trout Salmo trutta from two populations. Fish from the
assumedly resident population showed clearly shorter migration distances than the fish from the assumed
migratory population at the ages of 2 and 3 years. By using two alternative analytical pipelines with
22186 and 18264 SNPs obtained through RAD-sequencing, we searched for associations between individ-
ual migration distance, and both called genotypes and genotype probabilities. None of the SNPs showed
statistically significant individual effects on migration after correction for multiple testing. By choosing a less
stringent threshold, defined as an overlap of the top 0.1% SNPs identified by the analytical pipelines, GAPIT
and Angsd, we identified eight candidate genes that are potentially linked to individual migration distance.
While our results demonstrate large individual and population level differences in migration distances, the
detected genetic associations were weak suggesting that migration traits likely have multigenic control.

KEYWORDS

Life-history
strategies

RADseq
GWAS
salmonids

Genome-wide association studies (GWAS) aim to reveal links between
genotypes and phenotypes. Originally developed for case-control com-
parisons in medical sciences (Ku et al. 2010), association mapping
has been subsequently adopted for use on other organisms and for

addressing agricultural, evolutionary and ecological questions. Recent
studies have described genetic determinants for economically and
ecologically important traits. For example, vgll3 locus affects matura-
tion age in Atlantic salmon Salmo salar in sex-dependent fashion
(Ayllon et al. 2015; Barson et al. 2015) and greb1l affects migration
timing in Pacific salmonids Onchorynchus spp. (Prince et al. 2017).
These studies have revealed that traits that were traditionally thought
to be influenced by tens or hundreds of genes (Waples et al. 2004;
Johnston et al. 2014; Gutierrez et al. 2015) can actually be influenced
by loci with major effect. Identification of these genotype-phenotype
associations have helped to further understand the evolution of
these traits in response to both natural and human-induced selec-
tion pressures (Czorlich et al. 2018).

Salmonids display a variety of anadromous and potamodromous
migratory strategieswithpopulations ranging fromfully resident to fully
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migratory (Klemetsen et al. 2003; Chapman et al. 2012; Dodson et al.
2013). Prior to migration, some juvenile salmonids usually undergo a
series of physiological and morphological changes, known as smol-
tification, that prepare the fish for seawater migration and entry to
novel environments (Folmar and Dickhoff 1980; McCormick 2009;
McCormick et al. 2013). During recent years, the genetic components
underlying the dichotomy between resident and migratory forms have
been increasingly studied, particularly in the genus Onchorhynchus
(e.g., Hale et al. 2013; Nichols et al. 2016; Veale and Russello 2017).
A single genomic region in chromosome 5 has been linked to the
migration differences between resident “rainbow trout” and migra-
tory “steelhead” populations of O. mykiss (Hecht et al. 2012; Pearse
et al. 2014; Leitwein et al. 2017a), yet not in all (Hale et al. 2013). In
addition, an extensive list of candidate genes for migration propensity
has been identified for O. mykiss (Hecht et al. 2013; Hess et al. 2016)
as well as for other species within the genus (Nichols et al. 2016; Veale
and Russello 2017). To obtain a representative view of genetic variants
influencing propensity to migrate, genome wide markers with as good
coverage as possible should optimally be used. However, any signif-
icant indications for genetic control would be important in answering
the question whether migration propensity can evolve in response to
natural and human-induced selection pressures.

Brown trout Salmo trutta is an ecologically and economically im-
portant salmonid native to Europe, Asia and Northern Africa, and
occurs currently as migratory, resident and partially migratory pop-
ulations in all continents except for Antarctica (MacCrimmon and
Marshall 1968). Migratory (anadromous and potamodromous)
populations are frequently threatened by anthropogenic factors
such as dam building and overfishing, while many resident popula-
tions are often isolated and occur mainly in small headwaters with
lesser human impact. It is crucial to gain knowledge about the un-
derlying causes of migration in brown trout to understand the historical
and contemporary interactions between resident and migratory forms,
and resolve the evolvability of migration tendency in both hatchery
breeding and fisheries that may impose selection on migration traits.
Traditionally, brown trout have been considered an extreme example of
phenotypic plasticity when it comes to migration, with food availability
and conspecific density reportedly driving migratory behavior in empir-
ical field-studies (Olsson et al. 2006; Wysujack et al. 2009; Kendall et al.
2015). However, by comparing migratory and resident brown trout
populations using genome-wide genetic markers, we have recently iden-
tified a subset of outlier genes that potentially influence migration pro-
pensity (Lemopoulos et al. 2018). However, the extent of genetic control
over this trait, as well as whether a common basis for migration exists
among different populations of brown trout or among salmonids, has
yet to be determined (Ferguson et al. 2019).

Studying individual-level migration patterns in wild populations is
challenging for a number of reasons, including high cost, intensive
workloadandpotentialnegativeeffectsof telemetry tagsonfocal animals
(Thorstad et al. 2013). Moreover, natural populations are subject to
different environmental pressures and any genetic signatures of se-
lection can reflect processes that are independent of, or completely
confounded with, the adaptations directly linked to migration. Ex-
perimental common-garden designs can overcome these challenges
by providing uniform environmental conditions for all genotypes
(Liedvogel et al. 2011; de Villemereuil et al. 2015). Migration ten-
dency consists of overall probability to migrate (migration propen-
sity) and eventual migration distance. Because migration tendency
can be a difficult trait to measure per se, experimental studies have
often focused on smoltification-related traits such as growth, condition,
body coloration, morphology and osmoregulatory enzyme activities

(Nichols et al. 2008; Hecht et al. 2012; Baerwald et al. 2016). Despite
the potential advantage of using a common-garden design to create
uniform environmental conditions and the power of genome-wide
markers to reveal genetic determinants of migratory behavior, only
few studies to date have successfully combined these two approaches
(e.g., Nichols et al. 2008; Narum et al. 2011; Hecht et al. 2014).

Here, we performed a multi-year common garden experiment to
investigate the genetic basis of migration tendency, measured as mi-
gration distance in brown trout. We artificially propagated brown trout
from one predominantly migratory and one predominantly resident
population (Lemopoulos et al. 2018) originating from a single water
system using a replicated full factorial 3 males · 3 females matrix de-
sign, and continuously followed the movements of F1 individuals over
two smolt migration seasons at the ages of two and three years. Re-
striction site associated DNA sequencing (RADseq) was used to geno-
type 116 individuals from the tails of the estimated distribution of
migration distances (i.e., individuals showing the longest and shortest
migration distances).We used two complementary association analyses
to identify candidate genes for migration tendency in data corrected for
population differences. Since brown trout migratory behavior has been
recently found to associate with several outlier markers (Lemopoulos
et al. 2018), we anticipated that the outliers and/or genomic regions
identified by the earlier genome scan would associate with the experi-
mentally determined individualmigration distance. Thus, we aimed to a)
identify novel candidate genes that would explain individual migration
distance, and b) validate the functional links between previously detected
and overlapping outlier SNPs and migration tendency.

MATERIAL AND METHODS

Common garden experiment
Weusedtwostrainsofbrown troutoriginating fromasingle river system
discharging to Lake Oulujärvi, Northern Central Finland, for this study:
1) hatchery-bred migratory fish originating from rivers Varisjoki and
Kongasjoki (referred as OUV), and 2) wild resident fish collected via
electrofishing from a small headwater tributary (Vaarainjoki, VAA; see
Lemopoulos et al. 2018). The wild fish were transported and held in
seminatural ponds at the Kainuu Fisheries Research Station (Natural
Resources Institute Finland (LUKE): www.kfrs.fi; see Lemopoulos
et al. 2019) until artificial fertilization on 16th October 2013. The
wild (females: n = 9, length 357 mm6 30.8 mm (mean6 SD), mass
520.3 g 6 126.0 g; males: n = 9, length 400.4 mm 6 82.3 mm, mass
795.8 g 6 412.0 g) and hatchery (n = 9 males and 9 females, year
class 2008, individual sizes missing, mean weight 1794 g) fish were
crossed in fully factorial 3 · 3 matrices in three replicates (within and
between population crosses). The eggs were pooled within strains
(equal proportions between families) and incubated in four replicates
per strain. After hatching, the progeny was raised in the hatchery in
3.2 m2 fiberglass tanks (four replicate tanks per strain, 1595-2109 fish
per tank on 20th February 2014) according to standard methods and
fed ad libitum with size-adjusted commercial dry feeds (Raisioagro,
www.raisioagro.com) until tagging (Hyvärinen and Rodewald 2013).
On 18th September 2015, twenty individuals were randomly dip-netted
from each rearing tank (n = 80 per strain including the hybrid strain, n =
240 total) and tagged with a 12 mm half duplex passive integrated tran-
sponder (HDX-PIT) tags under benzocaine anesthesia (40 mg L21). The
fish (mean length6 SD 159.9 mm6 18.1 mm, mean body mass6 SD
47.5 g 6 16.7 g) were randomized evenly into eight circular migration
channels (n = 10 per group, n = 30 per channel) (Fig. S1).

The experimental migration channels (width 1.5 m, mean length
26.15m) were built in 75m2 circular outdoor concrete ponds with dark
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green plastic tarpaulin tent covers allowing natural but shaded light
conditions inside the tanks (Fig. S1). The water input (�55 l s-1) was
adjacent to the water outlet to create unidirectional flow (average depth
0.3 m, water flow�0.11 m s-1). The channels were equipped with four
stationary PIT-tag antennae (reading rate 9 s-1) at equal intervals. An
antenna was constructed of five coil inductor loops made of PVC-
coated multithread copper wire (ø = 4 mm) (1350 mm · 300 mm,
length · width), with each antenna connected to one of four computers
configured to run and save (TIRIS datalogger program, Citius solutions
Oy 2009) ASCII data (for further details see Janhunen et al. (2011)).

Smolt experiment with 2-year old fish
Because smolt migration is expected to be influenced by food avail-
ability (Vainikka et al. 2012), we used two feeding regimes: half of the
fish groups (n = 4) were transferred to the experimental channels
supplied only with natural food on 5th November 2015 (Figure 1),
and the rest of the groups (n = 4) were transferred into a 50 m2

concrete rearing pond in order to be fed with commercial fish feeds
ad libitum until April 2016. The feed-augmented fish (and one VAA
fish tagged on 25th February 2016 replacing one accidental mortality)
were recovered on 14th April 2016 and transferred to the four exper-
imental channels the next day. Continuous PIT-telemetry in all eight
streams (see also Vainikka et al. 2012 for more details) was started on
16th April 2016 at midnight and continued until the end of the ex-
periment at midnight on 26th June 2016. The fish were measured for
body length and body mass and sampled for a piece of caudal fin
tissue for DNA extraction under anesthesia on 28th June 2016. After
the measurements, four random samples of thirty fish within the
natural food treatment (amended with three fish from the spring
stocking group to replace mortalities) were returned back to the smolt
migration ponds where they were maintained with natural food until
the end of the experiment in following summer 2017. The rest of the
fish were transferred to a 50 m2 concrete pond to be maintained with
commercial dry food until the spring release in 2017 (see below).

Smolt experiment with 3-year-old fish
Brown trout augmentedwith commercial feed tested in 2016 (n = 115 +
five reserve fish with no previous test) were held in a 50 m2 concrete

rearing ponds with additional fish from the same cohort (n = 444 in
total) over winter. The fish were recovered and measured for length
(to 1mm,mean6 SD 275.26 32.2mm) and bodymass (to 0.1 g,mean
6 SD 238.76 91.0 g) under anesthesia on 14th March 2017. These fish
were then transferred into four migration channel ponds after one
night’s recovery in four 3.2 m2 indoor fiberglass tanks on 15.3.2017
at 10:00 (ten fish per strain, n = 30 per pond). The migration
experiment was ended at two occasions: one random pond per
feeding regime was emptied on 7th June 2017 to collect lethal
physiological samples from killed fish and the rest of the ponds
were emptied on 21th June 2017. All recovered fish were measured
for length and body mass (within the subset of sequenced fish,
OUV: 267.2 mm 6 62.4 mm (average 6 SD), 211.7 g 6 139.7 g;
VAA: 231.6 mm 6 39.8 mm, 123.2 g 6 60.8 g) under anesthesia,
and fish in good condition were transferred back to the rearing
ponds under standard rearing and feeding protocols. The fish sam-
pled on 7th June 2017 were analyzed for their migration behavior
from 16th March 2017 at midnight to 6th June 2017 at midnight.
All the other fish were analyzed for their migration behavior from
16th March 2017 at midnight to 20th June 2017 at midnight.

Quantification of individual migration tendency
PIT detection data were transformed to individual movements per
hour by counting the PIT-specific detections at each antenna using
application-specific software (by Niko Vuokko, http://pitdata.net/).
Based on the order of detections, the movement distances were
calculated for each individual as quarter rounds up- and down-
stream. The hourly data were further analyzed by calculating the
total individual distance moved downstream using custom codes in
AV Bio-Statistics 5.2 (written by A.V.). The recording computers
had to be restarted on a weekly basis, and when calculating migra-
tory distances, the fish were assumed to have maintained their pre-
vious position during these maintenance breaks (, 30 min).

To maximize phenotypic variance between the limited number of
samples that could be sequenced, we initially chose the four most and
least migratory individuals (based on total downstream distance on
equal time periods) in each channel (n = 128) and prioritized the pres-
ence of data from both years. This selection procedure resulted a subset
of 116 individuals (out of 160 in total, n = 58 from both strains) that is
not representative of all individuals in the experiment but provided
extreme phenotypic values for the GWAS. Because individual migra-
tion distances could have been influenced by the test channel (which
was confounded with diet treatment), rearing tank, year, sex (see below
for the determinationmethod) and feeding treatment, we removed their
effects using a linearmixed effects (LME)model including sex, year (also
as repeated), test pond and year · pond –interaction as fixed factors and
rearing tanks / test pond during the previous year as a random factor.
Prior to the analysis, migration distances were ln-transformed to meet
normality. The model was fitted in SPSS 23.0.0.2 (IBM Corp.) using
restricted maximum likelihood with random terms based on variance
components and temporal covariance matrix based on diagonal struc-
ture with heterogenous variance. The residuals from this model were
used to represent individual tendency to migrate (Fig. S2). The values
were comparable between the channels, sexes and years, but included
the effect of strain and fish size as these variables could mechanistically
explain the originally genetic effect on migration. For the GWAS, the
residual values for the two years were averaged; whenmigration distance
was available for one year only (n = 12 fish, including five migratory
strain fish that died during 2016 and seven residents that died during
2017), that value was used. This was justified as the inter-year averages
were zero and migration residuals showed high individual repeatability

Figure 1 Diagram of the rearing of 8 fish groups used for a 2-year
common garden experiment.
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between years (ICC = 0.608, 95% C.I. 0.473 – 0.714, ICC package in
R environment (Wolak et al. 2012)). To test the effect of strain on the
phenotypic migration distance, we also fitted a model with strain as an
additional fixed factor.

Library preparation and genotyping
DNA samples were extracted from the 116 individuals usingMacherey-
Nagel NucleoSpin Tissue kit and quantified by fluorescence using
Qubit 2.0. Sex of individuals was obtained through amplification and
gel visualization of the sexually dimorphic sdY locus (Quéméré et al.
2014). Sbf1 restriction enzyme was used in the library preparation,
and the single-end sequencing was performed on two lanes on an
Illumina HiSeq 3500 platform. Final DNA concentration measures,
library preparation and sequencing were obtained from a commercial
provider, Plateforme MGX - Montpellier GenomiX (Montpellier,
France) that delivered the sequences in FastQ format for bioinfor-
matics analyses. Process_radtags function in Stacks v1.40 software
(Catchen et al. 2013) was used to demultiplex, quality check and clean
the data. Reads of 120 base pairs (average of 1643201 reads per indi-
vidual, average 13.2X coverage Table S1) were aligned to the Atlantic
salmon genome (GenBank: GCA_000233375.4) (Lien et al. 2016) using
bowtie2 v2.3 (-p2, -sensitive, other parameters at default) (Langmead
and Salzberg 2013).

Association analyses
To reduce Type I error, association analyses were performed using
two complementary pathways based on genotype probabilities (Angsd,
Korneliussen et al. 2014) and called genotypes (Stacks, Catchen et al.
2013).

In Angsd, SNP a-value of 126 (p-value for being variable) was used
for a SNP to be processed. In addition, a minimum mapping quality
of ten, minimum base score of 20, a minor allele frequency of 0.05
(Roesti et al. 2012) and a minimum of presence in 87 individuals were
required for a SNP to be called. In addition, SNPs were filtered to
exclude loci deviating from Hardy-Weinberg equilibrium with a ge-
nome-wide threshold accounting for multiple test correction (-do
HWE1, -minHWEpval 0.05 / total number of loci). In order to correct
for population stratification, we used Pcangsd (Meisner and Albrecht-
sen 2018) to perform principal component analysis and to obtain a
covariance matrix accounting for population structure (one axis was
retained). The association study was performed using the -doAsso
2 function (-doMaf 2 -do MajorMinor 1 -do Post 1), corresponding
to an association analysis using a quantitative phenotype. Individual
LME residuals represented relative migration distances as quanti-
tative trait measures. SNPs that passed all quality filter steps (n =
24330) were ranked based on the likelihood ratio test (LRT) scores.
This association test was based on genotype probabilities (see
Korneliussen et al. 2014) and used a linear regression to give likeli-
hood scores for each SNP individually (see Skotte et al. 2012 for
more details).

In the alternative pathway, Stacks 2.0 (Catchen et al. 2013) and its
functions Refmap and populations were used for SNP calling. In addi-
tion to the filtering criteria listed above, loci had to present a maximum
heterozygosity of 0.5 (Hohenlohe et al. 2011), a minor allele frequency
of 0.05 (Roesti et al. 2012), be present in both populations and in at least
eighty-seven individuals to be processed. Finally, the dataset obtained
in Stacks was tested for Hardy-Weinberg equilibrium in R version 3.4.4
(R Core team 2016) using the hw.test function of adegenet (v2.1.1;
Jombart 2008). Loci that deviated from Hardy-Weinberg equilibrium
(a = 0.05/number of loci) were excluded. A compressed mixed linear
model (MLM) was fitted using the GAPIT package in R environment

(Zhang et al. 2010; Lipka et al. 2012). 18 264 SNPs were associated with
the phenotype scores that were treated as a continuous variable. We
corrected for population stratification by using a covariance matrix
based on the genetic structure between the populations (“PC.total =1”
option in GAPIT). Correction for kinship was performed by obtaining
a kinship matrix based on VanRaden method (VanRaden 2008) in
GAPIT and using it as a covariance matrix.

The associationmethod in the first pathway (Angsd) is based on a
linear regression while the second (Stacks) relies on a linear mixed
model. The linear regression association method takes the uncer-
tainty of the genotypes into account while performing the associa-
tion and is thus a powerful method than can still control for false
positive (Skotte et al. 2012). The linear mixed model used called
genotypes and is based on the EMMA algorithm (Kang et al. 2008)
which is arguably the mostly used algorithm used in association
studies. As such, the two pathways are based on different assump-
tions inherent to their methods (Zhang et al. 2010; Skotte et al.
2012) and overlapping markers, identified in both pathways, are
particularly interesting to examine.

Candidate gene identification
There is a trade-off between identifying trueGWASsignals (minimizing
false positives) and ignoring more subtle, but real, associations (Type II
error) due to low power and multiple testing burden (Kuo 2017). As a
consequence, it has been suggested that multiple test corrections are too
conservative in a GWAS context (Kuo 2017). For instance, statistically
“non-significant” putative candidate genes with sound functional prop-
erties have been proposed for different diseases such as essential hy-
pertension (Fowdar et al. 2017) or stroke protection in patients with
sickle cell anemia (Flanagan et al. 2013). Moreover, candidate genes,
even when not meeting conservative genome-wide significance after
multiple test corrections, can a) indicate potential true and functional
association with the studied traits, and b) serve as basis for targeted
GWAS (e.g., Rivas et al. 2011; Sarzynski et al. 2011; Demontis et al.
2019).

In order to correct statistical significances for multiple testing, we
used a false discovery rate correction (Benjamini and Hochberg 1995)
separately for both GWAS approaches. The lack of significant associ-
ations after correction for multiple testing can be caused by multiple
factors such asmarkers being too far from the causative variant, limited
sample size or variant being at too low frequency in a population to
reach genome-wide significance. Therefore, we further identified SNPs
that showed the strongest genotype-phenotype associations (top 0.1%)
based on both Angsd and GAPIT, even if these SNPs did not pass
significance in multiple testing. Some of these markers can still repre-
sent true genotype-phenotype associations particularly in combination
with other markers with small effects. As studied markers likely do not
represent causative SNPs affecting migration, we identified the closest
genes to the observed SNPs based on the Atlantic salmon reference
genome.

Data availability
Supplementary materials are available on Figshare. These include
filtered genotypes for bothpathways, individual phenotypes, population
structure andassociation results ofbothanalyses. FigureS1 is a pictureof
the circular channels. Figure S2 is a boxplot of the residuals (i.e., phe-
notypic scores) between the populations. Figure S3 is a comparison
between SNPs obtained for each pipeline. Raw sequence data are de-
posited on NCBI (PRJNA552287). Movement data and all codes used
in this study are available upon request. Supplemental material avail-
able at FigShare: https://doi.org/10.25387/g3.7660295.
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RESULTS

Phenotypic results
According to the LME added with the strain effect, the assumed
migratory OUV strain moved significantly farther downstream than
the resident VAA strain (F1, 7.34 = 22.34, P, 0.001, average 160.5 km
vs. 69.1 km), indicating the presence of genetic or epigenetic compo-
nent affecting migration. The type III fixed effect tests indicated that
smolt migration was affected by year (F1, 16.59 = 7.08, P = 0.017) and
testing pond (F7, 105.56 = 2.98, P = 0.007) but not by sex of the fish
(F1, 179.22 = 0.40, P = 0.526) or the testing pond · year interaction
(F7, 105.08 = 1.26, P = 0.278). Because the used fish represented a subset
of fish in the smolt migration experiment, these results are technical
for the purpose of this work, but representative with respect to pop-
ulation differences due to stratified sampling within each test pond.

GWAS - Angsd
The Q-Q plot showed that there was no inflation in the dataset and
the correction for population stratification was adequate (Figure 2).
24430 SNPs were initially obtained in Angsd, but 2114 of them did

not pass the filtering criteria of the association function (LRT= -999 in
Angsd).

None of the individual SNPs showed statistically significant associ-
ation with migration scores after the multiple test correction (FDR) in
the finalAngsd dataset of 22186 SNPs. The top 0.1% percent of markers
corresponded to 22 SNPs.

GWAS – Stacks/GAPIT
Q-Q plots with the Stacks dataset showed a conservative pattern with
slightly right-skewed distribution indicating that the statistical frame-
work used for correcting for various factors was slightly too conserva-
tive (Figure 2). In total, 18 264 SNPs were identified. Similar to Angsd,
none of the SNPs showed statistically significant individual association
with migration distance after the multiple test correction (FDR). The
top 0.1% percent of markers corresponded to 18 SNPs.

Overlap
87.4% of the 18264 SNPs identified in Stacks were found among the
24330 SNPs identified by Angsd. The overlap was consistent across

Figure 2 Manhattan plots based on a) 24330 (Angsd)
and b) 18264 (Stacks) SNPs. Overlapping SNPs are
marked in red. The horizontal significance line corre-
sponding to the top 0.1% of the SNPs is drawn in blue.
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chromosomes (Fig. S3). Despite of different analytical approaches, the
estimated P-values for Stacks and Angsd showed very high correlation
(Pearson’s r = 0.92, Figure 3). Out of the top 0.1% markers of both
pipelines (24 and 18 SNPs respectively), nine SNPs were overlapping
(Table 1). These SNPs mapped to two chromosomes (Chr 2 and 9)
based on the Atlantic salmon reference genome (Figure 2, Table 1).
Four SNPs were found within genes, while five SNPs were found from
2565 to 48527 bp from the closest known coding regions.

DISCUSSION
This common garden study demonstrated divergentmigratory patterns
between twopopulationsbutdidnotfindgenome-wide significantSNPs
with strong effect on migratory distance. However, smolt migration
distance was individually highly repeatable between the test years and
showed strong differencesbetween twopopulations,which suggests that
the trait could be heritable, as repeatable behavioral traits typically show
reasonably high heritability (Dochtermann et al. 2015). The two statis-
tical analysis pipelines used for association analysis revealed nine
shared SNPs that could potentially affect migratory behavior but none
of them overlapped with outlier SNPs identified by Lemopoulos et al.
(2018). Together these results suggest that the migration distance in
brown trout has underlying genetic components implying evolvability,

but the genetic architecture is likely multigenic and the potentially
existing regulatory genes with major effects remain to be identified.

Nine migration-associated candidate SNPs were identified by both
bioinformatic methods. These markers mapped to two separate chro-
mosomes in Atlantic salmon genome (Chr 2 and 9) and clustered
together in relatively narrow genomic regions (Figure 2; Chr 2: 18.8Mb,
Chr 9: 55.6 Mb) indicating that the observed signals most likely reflect
real associations, rather than random noise. According to a previous
linkage map (Leitwein et al. 2017b), these chromosomes corresponded
to brown trout linkage groups 20, 34 and 23.Within the 18.8Mb region
in chromosome 2, 559 genes are annotated in the Atlantic salmon
genome. Three of the markers identified in chromosome 9 were
mapped within a 7.6 Mb region consisting of 196 genes.

The nine migration-associated candidate SNPs mapped adjacent to
eight genes involved indiversebiological functions relevant tomigration
(Table 1). For example, FYXDa gene, which located 48527 bp from the
migration-associated SNP, is an important ion transporter that regulates
Na+/K+ ATP-ase pumps. The function of these pumps is well docu-
mented in salmonids (e.g., Zaugg 1982; Nielsen et al. 1999; Larsen et al.
2008) as they play significant role for osmoregulation. Similarly, PLEC
plays a role in coping with osmotic stress (Osmanagic-Myers et al. 2006)
and has been shown to be upregulated in seawater-exposed whitefish
Coregonus lavaretus (Papakostas et al. 2012) while ABCF3 is differen-
tially expressed in gills of freshwater or seawater exposed rainbow trout,
demonstrating its putative role in acclimation to seawater (Leguen et al.
2015). Among the other candidate genes, LSAMP is part of the limbic
system, which itself is important for memory and spatial orientation, via
the hypothalamus (Portavella and Vargas 2005; Catani et al. 2013).
Nervous system development and memory are key factors in migratory
behavior and especially for homing, as shown by differential gene ex-
pression and DNA methylation patterns in O. mykiss (McKinney et al.
2015; Baerwald et al. 2016). Moreover, PAQR6 is also expressed in the
hypothalamus and other regions of the brain (Thomas and Pang 2012;
Morini et al. 2017). The hypothalamus and thalamus regions could play
an important role in the migratory behavior of salmonids through dif-
ferent pathways. In particular, circadian rhythms (see Prince et al. 2017;
Pritchard et al. 2018), osmoregulatory mechanisms (Prunet et al. 1989;
Hourdry 1995) and memory (Carruth et al. 2002; Ebbesson et al. 2003),
are all potentially (inter)linked (Kim et al. 2015) within the hypotha-
lamic region. Finally, PCDHGA11 is part of the cadherin gene family
that has been identified both in a previous study comparing resident and
migratory brown trout (Lemopoulos et al. 2018), and in rainbow trout

Figure 3 Correlation between P-values of two different GWAS based
on different pathways (Stacks and Angsd). The nine candidate SNPs
identified by both association methods are highlighted in red.

n Table 1 Candidate migration genes and protein products identified by both Stacks and Angsd. Chromosome number refers to Atlantic
salmon genome

Chromosome SNP position Distance to closest gene (bp) Predicted protein Gene symbol

2 13725458 48527 - 39end FXYD domain containing ion transport
regulator 5a precursor

FXYD5A

2 19563669 2565 – 39end flotillin 1 FLOT1
2 24989435 0 progestin and adipoQ receptor family

member 6-like isoform X2
PAQR6

2 27622691 1460 – 39end free fatty acid receptor 2-like FFAR2
2 32550984 14430 – 59end plectin-like isoform X14 PLEC
9 48392079 16589 – 59end protocadherin gamma-A11-like PCDHGA11
9 96081278 0 ATP-binding cassette sub-family

F member 3-like
ABCF3

9 103885594 0 limbic system-associated membrane
protein-like isoform X

LSAMP

9 103988881 0 limbic system-associated membrane
protein-like isoform X

LSAMP
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(Hale et al. 2013; Baerwald et al. 2016). Cadherins play an important
role in brain function and our results, together with earlier findings,
support the role of cadherins affecting salmonid migratory behavior
(Lemopoulos et al. 2018). The functions of the last two candidate genes
(FFAR2, FLOT1) are linked to several diverse cellular processes but also
exhibit plausible links to migratory behavior. In particular, FFAR2 is
involved in lipid metabolism and autoimmune functions (Bjursell et al.
2011; D’Souza et al. 2017), while FLOT1 is involved in signal trans-
duction and vesicular transport processes in the brain (Bickel et al.
1997; Volonté et al. 1999) corroborating earlier studies suggesting that
lipid metabolism (Boel et al. 2014), immunity (Sutherland et al. 2014)
and brain-related functions (McKinney et al. 2015) may play key roles
in affecting migratory strategies.

The present study aligns with the previous ones by suggesting
that the migration propensity is likely a polygenic trait in brown trout
(Lemopoulos et al. 2018; Ferguson et al. 2019). This is plausible given
that smolt migration is associated with changes in the expression of
multitude of genes (e.g., Giger et al. 2006; Seear et al. 2010; Hecht et al.
2014) with multiple physiological functions, such as osmoregulation
(Hecht et al. 2014), immunity (Sutherland et al. 2014), and growth
(Boel et al. 2014). Surprisingly, while fish ascending toward spawning
grounds often have female-biased sex-ratio (Dodson et al. 2013), indi-
vidual sex was not found to be significant with regard to migration
distance in our experiment. This could potentially reflect population
specific patterns or suggest that rather demographic effects than true
biological differences between the sexes drive the patterns observed
in nature. As we included individuals originating from both resident
and migratory populations, population structure was inherently con-
founded with the individual traits inducing migration. While the anal-
ysis was performed at the individual level, the removal of population
stratification from the GWAS could have led to discarding functionally
relevant population-specific variation. Thus, further experiments using
multiple populations or populations with mixed origin should be per-
formed to increase the likelihood of finding a signal inherent to species-
specific rather than population-specific genes.

Similar to many other studies on non-model species, our experi-
mental design likely suffered from non-optimal statistical power due to
limitedsample sizeand limitednumberofmarkers.Ontheotherhand, it
plausible that the multiple testing correction was too conservative to
single out loci with real but small biological effects (e.g., Lantieri et al.
2010; Fowdar et al. 2017). Genomic data typically consist of thousands
of markers tested for potential association and in most cases, very few -
if any - markers reach the required level of statistical likelihood for a
significant effect (e.g., Correa et al. 2017; Barría et al. 2018). This is
particularly true when a) the studied traits are under the control of
multiple loci of small effects (i.e., a polygenic trait, see Boyle et al. 2017)
and b) when the studied populations are structured in terms of the trait
of interest (Zhao et al. 2011), as in our case. As an alternative strategy,
we searched for overlapping candidate genes that were identified as
potentially interesting by two analytical approaches (Stacks andAngsd).
Depending on data structure and method assumptions different ap-
proaches can perform differently (Wojcik et al. 2015; Zhu et al. 2018),
and thus combining methods can potentially reduce both Type I and
Type II error, analogously to genome-scans (Vasemägi and Primmer
2005). In this regard, the association results from Stacks andAngsdwere
similar, but not identical, demonstrating the usefulness of complemen-
tary statistical approaches in GWAS (Figure 3).

Compared to previous comparative work (Lemopoulos et al. 2018),
none of the top migration-associated SNPs were overlapping between
studies. Given that different enzymes were used in the RAD protocol
(Sbf1 vs. PstI-BamHI respectively) this is hardly surprising, as these

studies analyzed to large extent non-overlapping parts of brown trout
genome. Yet, the lack of statistically significant individual SNPs after
FDR correction is not valid counterevidence for migration being ge-
netically influenced, because SNPs identified using RADSeq cover only
a small proportion of the whole genome. Thus, it is possible that many
causative variants affecting migration were not captured, given the low
level of linkage disequilibrium in brown trout (Ahmad et al. 2018). To
address this issue, the use of hundreds of thousands rather than tens of
thousands of markers screened using genome-wide SNP arrays, high
frequency RADseq (e.g., using four cutters instead of six or eight cutter
enzymes) or whole-genome sequencing would be necessary.

Our study shows how brown trout individuals and populations
differing in their migration strategies could bear genetic signatures
associated with their life-history. This alone is a valuable result for
management and conservation purposes, as it indicates that ecotypes
should be managed differently in order to maintain the life-history
diversity (Waples and Lindley 2018). These results are also valuable in
gene-targeted conservation plans perspective. While clear-cut diagnos-
tic candidate genes are still needed for sound conservation plans and
application for conservation practitioners (Shafer et al. 2015; Kardos
and Shafer 2018), these results expand the existing knowledge of brown
trout migration and can thus serve as a basis for future conservation-
oriented studies.

To conclude, our study demonstrates that migration in brown trout
has a genetic or epigenetic component but does not fully resolve the
mechanistic andcausal pathways forvariation inmigration tendency.By
linking telemetry in common garden with genomic data, we identified
two promising genomic regions and eight candidate genes potentially
associated with migratory behavior. However, additional testing using
higher number of SNPs and analysis of inter-population hybrids is still
needed for validation of the putative association signals and for better
understanding of the molecular function and adaptive significance
of the identified candidate genes.
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