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Abstract Developments in technology have shifted the focus of medical practice
from treating a disease to prevention. Currently, a significant enhancement in health-
care is expected to be achieved through the Internet of Things (IoT). There are var-
ious wearable IoT devices that track physiological signs and signals in the market
already. These devices usually connect to the Internet directly or through a local
smart phone or a gateway. Home based and in hospital patients can be continuously
monitored with wearable and implantable sensors and actuators. In most cases, these
sensors and actuators are resource constrained to perform computing and operate for
longer periods. The use of traditional gateways to connect to the Internet provides
only connectivity and limited network services. With the introduction of the Fog
computing layer, closer to the sensor network, data analytics and adaptive services
can be realized in remote healthcare monitoring. This chapter focuses on a smart
e-health gateway implementation for use in the Fog computing layer, connecting a
network of such gateways, both in home and in hospital use. To show the applica-
tion of the services, simple healthcare scenarios are presented. The features of the
gateway in our Fog implementation are discussed and evaluated.

1 Introduction

The Internet of Things (IoT) is already around us. We can see it in many areas of
our daily life; from wearable fitness tracking gadgets, smart home appliances, to
smart self-driving cars [1, 2]. Healthcare is expected to be among the domains that

Behailu Negash, Tuan Nguyen Gia, Arman Anzanpour, Iman Azimi, Mingzhe Jiang, Tomi West-
erlund, Pasi Liljeberg, and Hannu Tenhunen
University of Turku, Turku - Finland, e-mail: {behneg, tunggi, armanz, imaazi, mizhji, tovewe,
pakrli }@utu.fi, hannu@kth.se

Amir M. Rahmani
University of California, Irvine - USA & TU Wien - Austria, e-mail: amirr1@uci.edu

1



2 Authors Suppressed Due to Excessive Length

will be remodeled through IoT by enhancing its penetration and lowering the ser-
vice cost [3, 4]. IoT offers potential to uninterrupted and reliable remote monitoring
due to its ubiquitous nature while allowing freedom of movement for individuals.
Activity tracking and following up of the heart rate and calorie intake are some of
the application areas of commercially available IoT devices. In professional medical
environments also, the quality of healthcare services can be enhanced by automat-
ing patient monitoring [5, 6, 7]. This enables a coherent healthcare system at home
and in the hospital through the cloud [4, 8]. It is predicted that the current hospital-
centered practice of medical care will be balanced by its home-based counterpart
in 2020. This progress is expected to reach home-centered approach in the next
decade[9]. To support such a shift and scaling, new computing approaches need to
be developed.

Integration of currently available fragmented solutions towards all inclusive
healthcare is a critical requirement, and at the same time potential, in IoT. This in-
tegration allows the synchronization of data from wearable and implantable devices
with cloud based services [10, 11, 12]. One of the main areas of focus in achieving
this integration is the architecture enabling such an interoperability. A common ap-
proach is to directly connect the sensor devices to Cloud services. However, due to
the resource constraints of the end user devices, monitoring and actuating devices,
an architecture with an intermediate computing layer is becoming the most widely
used approach. This intermediate layer, known as Fog computing or edge computing
[13, 14, 15, 16, 17], provides both generic and domain specific services for devices
to enhance usability, reliability, performance and scalability among others.

Several unique characteristics of healthcare demand the use of Fog computing
in IoT-based health monitoring systems. First, the nature of the sensor devices (es-
pecially many wearable or implantable ones) require resource efficiency more than
many other domains. Second, the nature of communication required by these sen-
sors is often streaming type of transmission. For instance, Electrocardiogram (ECG)
signal collection requires a continuous communication with 4kbps bandwidth per
channel. Third, due to the criticality of the application domain, immediate response
to important events gathered by sensor nodes is mandatory. The overall system needs
a high level of reliability where patterns of physiological signals need to be rec-
ognized in real-time. Moreover, providing the freedom of movement of individual
under a medical supervision through IoT devices is also a key requirement. These
functions can be mainly supported by services in the Fog computing layer. Some
of these services provided by the Fog layer are presented in this chapter focusing
on the healthcare application domain. In general, this chapter concentrates on the
following main areas:

• Healthcare IoT system requirements, along with services of the Fog computing
layer to address them, are described.

• System architecture of a Fog-enabled healthcare IoT system is presented.
• Performance and advantages of the Fog computing layer services via a proof-of-

concept full system implementation are demonstrated.
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Fig. 1 Services provided by the Fog layer

2 Healthcare Services in the Fog layer

Fog computing layer provides computing, networking, storage and other domain
specific services for IoT systems. The healthcare domain has a set of requirements
that uniquely identify it from other IoT applications; for instance, one of the use
cases of healthcare IoT is remote monitoring, which demands a high degree of re-
liability. Unlike other domains, the security and privacy aspects of healthcare are
also of critically important. This section highlights the services that can be provided
by the Fog layer with a focus on healthcare. The physical proximity of Fog layer
to Body Area Network (BAN) of sensors and actuators allows us to address the re-
quirements of healthcare IoT. Some of these services are generic and can be used
by any application domain. Figure 1 show a generalized view of the services of the
Fog layer, which are discussed separately in the following sections.
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2.1 Data Management

Data management has an important role in Fog computing by which the sensory data
is locally processed to extract meaningful information for user feedback and notifi-
cations along with system plan adjustments. According to the system architecture,
Fog layer continuously receives a large amount of sensory data in a short period of
time from the sensor network, so it should manage the incoming data to provide a
fast response regarding various user and system conditions. This task becomes more
significant in healthcare scenarios since latency and uncertainty in decision making
might cause irreversible damages for the patients. According to the different func-
tionalities of the data management task, we introduce it in five different units, all of
which are essential in a smart e-health gateway. These units are local storage, data
filtering, data compression, data fusion and data analysis.

2.1.1 Local Storage

The gateway needs to store received data from several sources in a local storage to
be able to utilize it in the near future analysis. The operating system of the gateway
has a file server and a database to store and recover data. The local storage in the
gateway can be used to store files in encrypted or compressed format based on the
type, size, and importance of data. Using local storage, the gateway is able to export
data to medical standard formats such as Health Level Seven (HL7) [18] if required.
Other functionalities of the gateway such as data analysis, compression, filtering,
and encryption are also dependent on a temporary storage. The speed of data transfer
between cloud layer and Fog layer is limited to network speed and most of the local
calculations in the gateway are limited by its processing power. So, in case of any
imbalance in computation time and transfer time, the local storage acts as a local
cache memory to make data flow continuous. Local storage also helps saving data
while the Internet connection between gateway and cloud server is not available.
The gateways sends saved data to the cloud when it connects to Internet again. This
local storage is shown in Figure 1 as database manager.

2.1.2 Data Filtering

Data filtering is the first data processing unit to implement filtering methods at
the edge after receiving data from the sensor network. To obtain patient medical
condition, various bio-signals such as electrocardiogram (ECG), electromyography
(EMG) and photoplethysmogram (PPG) are collected using relevant probes. These
signals usually include complex shapes with a small amplitude (i.e., milivolts) and
consequently are susceptible to some unavoidable noises and distortions accumu-
lated during the health monitoring. Such noises are thermal noise, electromagnetic
interference noise and electrode contact noise. Available light-weight filtering in
some of the sensor nodes reduces these accumulated noises although it might be in-
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sufficient in practical cases. Therefore, the data filtering unit in the Fog layer enables
to remove noise and to increase aspects of the signals (e.g., signal-to-noise ratio) us-
ing various filters (e.g., finite impulse response (FIR) filter) before any other local
data analysis.

2.1.3 Data Compression

For reducing a large amount of transmitted data over a communication network,
data can be compressed by lossless or lossy compression methods. In healthcare
IoT applications, lossless compression is more preferable in most of cases because
lost data can cause inappropriate disease diagnosis. Although lossless compression
algorithms can recover original data accurately, they are often complex. Correspond-
ingly, they are not suitable for sensor nodes which are resource-constrained regard-
ing to battery capacity, computation and memory capacity. For example, lossless
ECG compression methods [19, 20, 21] cannot be run in many types of sensors. In
some cases, these lossless algorithms can be successfully operated at sensor nodes
but they cause a large power consumption and latency. Thanks to Fog computing, all
mentioned limitations at sensors can be avoided by switching all burdens of sensor
nodes to the gateway which handles these burdens efficiently while respecting the
real-time requirement.

2.1.4 Data Fusion

Data fusion is the data processing unit to integrate sensory data from multiple
sources to obtain more robust data and meaningful information. This processing
unit efficiently decreased the volume of sensory data by removing redundant data
and replacing new information. Consequently, this data reduction improves local
data analysis and data transmission to the remote servers.

Data fusion can be divided into three classes as complementary, competitive, and
cooperative [22]. First, complementary data fusion combines (at least) two differ-
ent data from different sources to obtain a more comprehensive knowledge in the
Fog layer. For instance, combination of patient health parameters with surrounding
context data provides more data about patient condition. Second, competitive data
fusion improves data quality as well as system decision making by integrating data
collected from one source with (at least) two sensors. For example, a more robust
heart rate value is extracted using values from a ECG signal and values from a res-
piration signal. Third, cooperative data fusion provides new information from one
source using different sensors. Determination of the patient medical state using vi-
tal signs (e.g., heart rate and respiration rate) is an example of an cooperative data
fusion.
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2.1.5 Data Analysis

Data analysis unit at the edge enables the healthcare system to process the sensory
data locally. This unit improves the system performance by decreasing response la-
tency and data transmission to the cloud servers. For example, in case of patient
health deterioration, the emergency event is detected and responded early and effec-
tively since the data is processed locally instead of being transmitted to the cloud
and awaited for the appropriate response.

In addition, the data analysis unit improves data reliability as well as system
consistency. Connectivity losses and limited bandwidth for data transmission are
unavoidable events in long-term remote health monitoring because the patient might
engage various activities in different environments. Hence, data analysis at the edge
could manage the system’s functionality locally, store the sensory data as well as
the calculations in a local storage and subsequently synchronize the Fog layer with
the remote cloud after reconnecting to the network.

2.2 Event Management

Several important events happen during patient monitoring which may be a change
in vital signs, activities or environment of the patient. Each event triggers a spe-
cific action in gateway or switches to a learned behavior in personalized systems.
Fog computing provides low latency communication which helps to notify health
experts, caregivers and even patient very fast in case of a serious event. In such
case when an immediate response is necessary in form of medical actions or auto-
matic system actuation, the event management service ensures on time and proper
signal delivery. The real-time and fast response of actuators are important in some
medical events like changing the frequency of nerve stimulation according to heart
rate or adjusting automatic insulin pump with blood glucose level. Other emergency
events might also happen which required to notify rapid response team, caregivers
or family members of the patient.

2.3 Resource Efficiency

In healthcare IoT applications, resource efficiency is one of the most essential re-
quirements because failure in resource management can cause serious consequences
from sensor nodes’ malfunction to imprecise disease diagnosis. Particularly, energy
consumption of sensor nodes and latency of gathered data presented at end-users’
terminals must be attentively considered. They are discussed in details as the fol-
lowings:
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2.3.1 Energy efficiency of nodes

Sensor nodes in health monitoring systems are typically small and resource-constrained,
such as small battery capacity, but it is required that sensor nodes must be able to
operate in an appropriate duration such as a whole day or even a few days. In order
to fulfill these requirements, sensor nodes must operate efficiently in terms of energy
consumption. Several methods including software and hardware-based techniques
can be applied for achieving the task. For instance, sensor node’s hardware should
be designed for particular purposes instead of general tasks. This method helps to
save energy consumption by avoiding unused components or high power consuming
components. However, it is more challenging for designing an energy efficient nodes
than customizing software running at the nodes. Particularly, the software must be
able to perform primary tasks sensor nodes while it must be extremely simple for
reducing computation time. For example, sensor nodes in IoT-based fall detection
systems only gather digital data and transmit the data to Fog layer which runs com-
plex fall detection algorithms [23]. Accordingly, sensor nodes’ power consumption
can be reduced dramatically. In another example, several approaches [24, 25] show
high levels of energy efficiency at sensors nodes when running ECG feature extrac-
tions at Fog layer instead of sensor nodes.

2.3.2 Latency

In health monitoring applications, latency is critical because it can cause inappropri-
ate disease analysis and delay in decision making. Latency in IoT-based application
comes from both processing and transmitting of data such as transmission latency
from sensor nodes to end-users via gateways, Cloud, and processing at sensor nodes,
gateways. In many cases, transmission latency and processing latency are often in
a trade-off relationship. However, processing data does not always guarantee to re-
duce the total latency. In some cases, data processing even increases the total la-
tency. In order to reduce the total latency and fulfil time requirements of real-time
health monitoring, a distinct method must be applied for a particular sensor nodes
and applications. In other cases, simple filtering methods for eliminating noise and
invalid data can help to reduce a large amount of data transmission as well as the
total latency. For example in an ECG feature extraction application, the feature ex-
traction algorithm must be run at Fog instead of sensor nodes for reducing the total
latency[25].

2.4 Device Management

Device management encompasses many areas of IoT infrastructure. In this section,
the focus of the discussion is on device management from the point of view of device
discovery and maintaining connectivity during mobility.



8 Authors Suppressed Due to Excessive Length

2.4.1 Discovery and mobility

The resource constraints of devices in the sensor and actuator network has been
mentioned briefly earlier. For battery powered devices, the life time of the battery
is precious and needs a proper management. Devices should go to sleep state in a
controlled way whenever they become idle. Any communication that occurs when
the device is in the sleep state needs to be taken care of by the Fog layer. In health-
care scene, a patient wearing medical sensors and moving from a location to another
changes the corresponding gateway that handles communication. This means that a
sleeping sensor can wake up at a vicinity of different gateway, i.e. it was connected
to another gateway when it entered to the sleep mode. Device discovery service
helps another device that requires connection to a sleeping sensor node to discover
it and gracefully handle the sleeping cycle. A detailed function of this service can
be found at [26].

To provide the freedom of mobility for the patient, and to do so without con-
suming much of the scarce resources, the Fog layer service is used to handover
the locally retained information from one gateway to another. Once the device is
discovered in a new location, the handover takes place to seamlessly continue the
monitoring process at the new place. A simplified implementation of mobility and
device discovery working together is presented in [26]. These services, like some of
the other Fog computing services, can also be used for other domains as well.

2.4.2 Interoperability

The Internet of Things is composed of heterogeneous set of communication proto-
cols, platforms and data formats. There are many standardization efforts to establish
uniformity among the different components. The current vertical segmentation of
applications need to be bridged to ease the creation of holistic healthcare applica-
tions. Traditionally interoperability face the challenge the resource constraints of the
majority of end devices. The Fog computing layer plays a significant role in provid-
ing services that leverage the proximity of this layer to end devices and hence ease
interoperability. These services act as an adapter among different communication
protocols, data formats and platforms. Preliminary work can also be accomplished
at the Fog layer to provide semantic interoperability at the cloud to give meaning to
the data collected through the sensors.

2.5 Personalization

System behavior can be configured for different applications of Fog computing in
advance or at the run time. This, however, might be insufficient for healthcare sce-
narios since users might have various medical conditions and engage different acti-
vates in different environments. Therefore, a dynamic plan for the system is required
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to not only personalize the system behavior according to the user requirements but
also adaptively adjust the system over time, especially in emergency situations. In
this regard, it improves the health applications (e.g., local decision making) as well
as optimizing the system performance (e.g., energy efficiency).

Personalized system behavior can be defined for various health applications us-
ing rule-based techniques and machine learning algorithms. To this end, different
priorities and modes are defined for the system parameters (e.g., sensor sampling
rate and data transmission rate), and according to the patient conditions, the appro-
priate values are selected. In addition, the priorities become personalized regarding
the medical history of the patient. In a simple example, if a heart failure was de-
tected for a patient during the monitoring, the system would learn to increase the
priorities to heart related parameters.

2.6 Privacy and Security

In general, security is critical for all applications and it is more essential in cases of
healthcare because a single insecure point in a system might cost a human life. For
example, it is reported that a insulin pumper in a IoT glucose management system
can be hacked within 100 feet [27]. In order to provide a secure IoT healthcare sys-
tem, the whole system including sensor nodes, gateways, Fog and Cloud must be
attentively considered. If one of devices or components is hacked, the entire system
can be controlled or manipulated by hackers. For example, several methods such
as AES-128 or CMAC-AES-128 can be applied at sensor nodes and gateways for
data encryption and decryption, respectively. At gateways, IPtable offered by Linux
can be used for configuring IP tables giving grant permissions to particular com-
munication ports [28]. Although these methods can improve some security levels, it
cannot be seen as robust methods for protecting the entire system. On the other hand,
other approaches in the literature [29, 30, 31] provide a high level of security. How-
ever, they cannot be applied in IoT systems because their complex cryptographic
algorithms are not suitable to resource-constrained sensor nodes. To address the se-
curity issues in IoT healthcare systems, Rahimi et al. [32, 33] recently introduce
end-to-end secure framework. The framework can provide efficient authentication
and authorization for Health-IoT systems while the main parts, consisting of several
complex security algorithms, are run at Fog layer.

3 System Architecture of Healthcare IoT

The architecture of a system provides information about the components, interac-
tions and the organization of the parts. It is one of the key elements for achieving
graceful scaling and performance. Moreover, it is designed to meet the functional
requirements of the application domain. Among the non-functional requirements
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Fig. 2 Healthcare IoT system architecture

that constrain the system architecture design, few of these are scalability, usability
and performance. One of the main challenges is the huge number of devices that are
getting connected to the Internet. Connecting more devices cause the available re-
sources, such as bandwidth and computing power, to be shared by more nodes lead-
ing to quality and performance degradation. However, the criticality of the appli-
cation domain makes this degraded infrastructure unacceptable. In addition, a large
proportion of these devices are resource constrained. This shortage of resources add
more design constraints to the architecture design.

The introduction of Fog computing layer between the end devices and the cloud
has contributed to a design shift towards IoT based systems thereby alleviating the
challenges mentioned above. The Fog layer can be used to provide a wide vari-
ety of services to support the resource constrained nodes [13]. In a healthcare IoT
application, an overview of the architecture is shown in Figure 2, where resource
constrained nodes can be wearable or implantable sensors and actuators. A patient
can be at home or in hospital and the sensors send the values of the physiological
signals they read to a local gateway in the Fog layer. The Fog layer has local ser-
vices handling data, events, devices and the network. In healthcare scenario, this
architecture is composed of the following three main parts in each layer.

1. Medical sensors and actuators: Mainly connected through low power wireless
communication protocols, serves in identifying subject, reading physiological
signals and act in response to a command from the Fog layer.

2. Smart e-health gateways: Distributed network of gateways form the Fog layer
and serve the underlying sensor and actuator network. It usually has multiple
interfaces that enable it to communicate with different protocols. It hosts a wide
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variety of services and act as a bridge to the cloud. This is the main focus of the
chapter.

3. Cloud platform: Back-end system where the data persists and stakeholders get
access to the system, through web or mobile interface. It is the point of inter-
face with other systems, such as hospital information system and patient health
records.

4 Case study, Experiments and Evaluation

Previous sections discussed theoretical aspects of Fog computing and highlight its
benefits in healthcare IoT systems. In this section, we discuss the detailed imple-
mentations and experiments conducted in our work.

The architecture of our system consists of three layers, shown in Figure 4. The
first layer is sensor network containing three group of sensors: a set of medical
sensors to record vital signs (heart rate, respiration rate, body temperature, blood
pressure, blood oxygen level, and ECG), a set of environment sensors to find the
situation of the patient (light, temperature, and humidity), and activity sensors to
find the body movements, posture, and step count.

The Fog computing takes place in the second layer where a network of gateways
collect data from sensor nodes via Bluetooth and Wi-Fi wireless communication.
A Bluetooth service and Node.js UDP server receive and store the data in separate
files for each sensor and each patient. An Apache server also runs a service in the
background which calls a Python script to read and process data from local files. Be-
cause data is collected from several sources with different properties, the gateway
performs an adaptation to the data. The adaptation includes handling different com-
munication protocols (in UDP server script) and unifying the sampling rate which
varies from 5 samples per day for step count to 250 samples per second for ECG
(via Python script). The python script is also responsible for preliminary data anal-
ysis to detect abnormalities before in-depth analysis at the cloud layer. This service
first reduces the signal noise from ECG signal using a bandpass filter (0.5 Hz – 100
Hz) with Finite Impulse Response (FIR). Then using RR intervals the heart rate is
calculated. The raw and filtered ECG signal are demonstrated in Figure 3.

Data fusion is implemented on the sensory data in the Fog layer. In this case,
two heart rate signals are acquired from the user using two different devices. As
illustrated in Figure 5 with blue and red dots, the heart rate values from two devices
may not be identical due to the noise and measurement inaccuracy. In our approach,
first, we remove outliers and out-of-range heart rate values (e.g., zero values) from
the data. These outliers are mainly because of loose probe connections over the
course of monitoring. Second, we implement a weighted average on the two heart
rate values to improve the signal-to-noise ratio. The green line in Figure 5 shows the
calculated heart rate. In the calculation, the average weights are defined with respect
to the sensor accuracy mentioned in data-sheets.
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Fig. 3 Raw and filtered ECG data

Fig. 4 Healthcare IoT system architecture

In addition to the aforementioned data processing, data compression is imple-
mented in the Fog layer. Before transmitting data to a remote cloud, the data is
compressed and stored in the local storage of the Fog layer to provide a backup in
case of Internet connectivity is lost. In this case study, tar method is utilized to cre-
ate a temporary file for the sensory data, and then the file is compressed using tar.gz
method while the size of the file is increased to a certain value. We set this value to
500 KBytes. The relation between the compression ratio and the file size is repre-
sented in Table 4. As illustrated, in larger file size, the compression ratio is higher
although this improvement is insignificant for the files larger than 500 KByte.

In order to improve the data security, an asymmetric encryption method using
Crypto library [34] in Python is implemented in the Fog layer. With this method,
the compressed data is encrypted with a public key in the Fog layer and is decrypted
with a private key by the data collector service in the cloud.

There is also a local storage service in the Fog layer which consists of a file server
to store the files and a MySQL database to keep the indexes and attributes of them.
One objective of this case study is to store data in the cloud and use the benefit of
available processing power of the server.
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Fig. 5 Heart rate data fusion

The gateway in the Fog layer transmits collected data to the cloud server when the
Internet connection is available. When the Internet is unavailable, the gateway marks
unsent files in the database and tries to re-transmit once the Internet connection
is re-established. The local storage service periodically synchronises the database
with the cloud server and removes out-dated and duplicated files from the gateway
storage and database.

The third layer in the architecture of our system is the cloud server which is
responsible for receiving data from the Fog layer, processing and storing. Cloud
server uses stored data together with the history of the patient to analyse the health
status of a patient. An interface for caregivers is created to send alerts, reports and
plot vital signs and other sensory data in real-time. Figure 6 shows the web-based
user interface developed by HTML5 WebSocket. The cloud server provides also
information and notifications via a mobile application for patients and caregivers.

4.1 Performance measures

The entire system, including sensor nodes, smart gateways with Fog, Cloud and
client back-end parts is implemented. The sensor nodes are able to gather bio-
signals i.e. ECG, EMG and contextual data i.e. temperature and humidity. The sen-
sor nodes are created by a combination of medical sensors, micro-controller and
wireless communication IC. For evaluating interoperability of our gateways, several
types of sensor nodes are used such as Bluetooth nodes, Wi-Fi nodes, and 6LoW-
PAN nodes. These nodes are formed into a mesh or star network depending on
particular wireless communication protocols. In detail, Bluetooth nodes, including
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Fig. 6 Live control panel web interface

Bluetooth Classic and Bluetooth low energy (BLE), are created by integrating low-
cost HC-05 and BLE ICs into micro-controllers (i.e. ATMEGA128, ATMEGA328P,
ARM Cortex M3), respectively. Similarly, Wi-Fi nodes are constructed by using the
same micro-controllers and low cost ESP8266 boards supporting a high speed Wi-Fi
communication while the 6LoWPAN node is built from a CC2538 module. For gath-
ering data, these nodes are connected with several sensors via SPI, I2C or UART.
For example, in order to collect EEG and EMG signals, these devices are connected
with analog front end devices (i.e., TI ADS1292 [35] and TI ADS1298 [36]). With
the purpose of efficient managing resources of sensor nodes i.e. power consump-
tion and hardware distribution, embedded operating systems are installed in sensor
nodes. For instance, RTX, FreeRTOS and Contiki are used in Wi-Fi, Bluetooth and
6LoWPAN nodes, respectively [37, 38, 39]. Specification and power consumption
of these sensor nodes when transmitting data at 8.7kbps are presented in Table 1 and
Table 2.

Gateway of the system is built from several devices such as Pandaboard [40]
and Texas Instruments (TI) SmartRF06 board integrated with CC2538 module [41]
and MOD-ENC28J60 Ethernet Module [42]. Due to the Pandaboard’s advantages
of high performance 1.2Ghz dual ARM Cortex-A9 core processors, large amount of
memory and hard disk capability, the Pandaboard is used as a core component of the
gateway for performing algorithms and services [40]. In addition, Pandaboard can
support several operating systems comprising of Windows CE, WinMobile, Sym-
bian, Linux, and Palm. By applying one of the operating systems, resources can
be managed efficiently. For example, collision caused by simultaneous access to
the same hardware can be avoided by hardware abstraction in Windows and Linux.
Although the Pandaboard cannot support all wireless communication protocols, it
support popular wireless and wire communication protocols such 802.11 b/g/n ,
Bluetooth and Ethernet. For dealing with other wireless protocols, the Pandaboard
is equipped with Texas Instruments (TI) SmartRF06 board which is integrated with
CC2538 module for supporting Zigbee and 6LoWPAN [41].
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Table 1 Hardware specification of sensor nodes and UT-GATE

Device Micro-
controller

Flash
(KB)

RAM
(KB)

EEPROM
(KB)

Clock
(MHz)

Voltage
(V)

Zigduino R2 ATMega 128 128 16 4 16 3.3
Arduino Uno R3 ATMega 328P 32 2 1 16 5
Arduino Mega ATMega 1280 128 8 4 16 5
Arduino Due ARM CortexM3 512 86 - 84 3.3
Zolertia Z1 MSP430 92 8 - 16 3.3
TI-CC2538 ARM Cortex M3 Up to 512 32 - 32 3.3
Pandaboard Dual-core ARM Up to 32000 1000 - 1200 5

Cortex-A9

Table 2 Power consumption of sensor nodes when transmitting at 8.7kbps

Communication type Current (mA) Voltage (V) Power consumption (mW)
6LoWPAN node 24.6 3.3 81.2

Wi-Fi node 114 3.3 376.2
Bluetooth 2.0 node 56.9 3.3 187.7

BLE node 31.6 3.3 104.4

Table 3 Sensing to actuation latency comparison for local Fog computing based vs. remote cloud
based scenarios

Latency of the sensing-to-actuation loop using Wi-Fi (ms) using BLE (ms)
Fog-based (locally via UT-GATE) 21 33
Cloud-based (remotely via the Cloud) 161 176

Although Fog computing is capable of providing a large number of advanced ser-
vices such as local storage and push notification, roles of Cloud can not be lessened.
For example, limitations of the local storage of Fog computing units, such as a lim-
ited storage capacity and limited accessibility, can be solved by Cloud connection. In
our implementation, the remote server is built in Cloud for handling client requests,
running complex algorithms and enhancing Fog layer services. and responding with
data by providing the requested data along with graphical user interface. The free
service provided by ”heliohost.org” including MySQL server with remote access
facility is used.

Depending on particular services, Fog or Cloud or a combination of Fog and
Cloud computing should be used to implement the services. For example, table 3
shows that decision making at Fog layer is more efficient in terms of latency than at
Cloud. Two protocols including Wi-Fi and BLE are used during latency measure-
ments. The currently implemented functionalities of the gateway, called UT-GATE
,such as data fusion, data compression, local storage are discussed in detail in the
following subsections.
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Table 4 Compression results at UT-GATE and latency reduction

Number of senors nodes connected to UT-GATE 1 2 5 10 50
Number of analog channels 8 8 8 8 8
Data size (120 samples) (B) 8400 16800 42000 84000 420000
Compressed data size (B) 808 1597 3893 7696 38333
Compression time (ms) 3.1 4.4 9.2 16.6 73.0
Decompression time (ms) 3.3 4.6 11.3 23.0 83.9
Total time of comp., tran., and decomp. (ms) 12.86 21.77 51.64 101.16 463.5
Transmission time of non-processed data (ms) 67.2 134.4 336 672 3360
Total latency reduction (%) 80.8 83.8 84.6 84.8 86.1

4.2 Data Compression at Fog layer

To reduce the amount of transmitted data, and hence to make the system more en-
ergy efficient, data compression is applied at the Fog layer. The compression rate
depends on a particular data compression method. For example, lossy compression
methods have a high compression ratio such as 50:1 while lossless compression
method can achieve compression ratio about 8:1 to 9:1. As mentioned, loss of data
can cause serious consequences in a healthcare domain. Therefore, a lossless com-
pression is applied in our application for compressing bio-signals such as ECG,
and EMG. However, not all lossless compression methods can fulfill the latency
requirements of real-time applications defined by IEEE 1073 [43]. In our imple-
mentation, an LZW [44] algorithm is used at Fog layer because it provides rapid
compression and decompression without losing any data. Computation efficiency
of the LZW compression algorithm increases when the number of inputs increases.
For example, computation time increases 8 times when the input size increases 10
times. However, in this case, latency raises dramatically. Hence, it is recommended
that the data size of inputs used for data compression must be carefully chosen to
achieve the computational efficiency and fulfil the real-time requirements of health
monitoring.

Table 4 shows time results of LZW compression and decompression at the gate-
way. In our application, EMG data is acquired from 8 channels with a data rate of
1000 samples/second per channel in which each sample size is 24bit. The LZW
algorithm uses 120 samples as its inputs for achieving a high computational effi-
ciency. The number of sensor nodes connected to the gateway varies from 1 to 50
nodes. The results show that when the gateway receives more data, it operates more
efficiently.

4.3 Benefits of Data Processing at the Fog layer

In real-time health monitoring applications, real-time streaming data is captured
and processed for health indicators. In an IoT-based monitoring system shown in
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Fig. 7 ECG processing implementation

Figure 2, computation resources for signal processing are distributed in each layer
but with different capacities. As illustrated in Section 2.3, the benefits of processing
streaming data in Fog layer on the system is twofold:

• Bring energy efficiency to sensor nodes by shifting streaming data processing
from sensor node to Fog layer;

• Shorten data transmission latency from sensor nodes to cloud by reducing data
size.

To demonstrate these two benefits, tests in three scenarios are conducted in the
implemented system. They are, applying signal processing on i) a sensor node,
where gateway receives and passes processed data to cloud, ii) gateway, where raw
data is received and processed data is transmitted to cloud, which can be also consid-
ered as Fog-assisted cloud computing, and iii) the cloud, where raw data is directly
passed to it through sensor node and Fog layers. The algorithm of ECG signal pro-
cessing for Q, R and T wave extraction is applied on MIT-BIT Arrhythmia database
[45]. The signal processing on ECG data includes noise reduction, wavelet decom-
position and peak detection for extracting waves, as shown in Figure 7. In addition
to peak detection, heart rate is calculated from R to R interval. In these three sce-
narios, energy consumption of sensor node, sample size delivered from gateway to
cloud and its data transmitting time are measured and calculated for comparison.

Regarding energy efficiency test on sensor nodes, 1000 samples of ECG data
(360 samples per second) are saved at Aruidno Due, which together with ESP8266
Wi-Fi module acting as a sensor node. To simulate real-time ECG data processing
on sensor node for every 1000 samples, the sensor node first waits for data gath-
ering and then proceed with processing and transmission. The overheads of signal
processing on sensor node regarding energy consumption is accessed by monitor-
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Table 5 Providing energy efficiency for sensor nodes

Time Current Energy
Processing at sensor node (collection+execution) 2.78s+101ms 10.1mA+106.8mA 127.34mJ
Process at gateway/cloud (transmitting raw data) 95ms 180mA 56.34mJ

Table 6 Number of transmitted samples from Fog to cloud

Processing at Processing at Improvement
sensor node or UT-GATE cloud (%)

No. of Samples 259 1000 74.1

Table 7 Latency reduction between gateways and cloud server for 240KB of raw samples
Network condition Data rate Raw samples Raw samples proc. time + Latency reduction

(Mbits/s) trans. time (ms) trans. time of processed samples (ms) (%)
Light load 18 106.6 96.3+6.6 3.5

Medium load 12 152.2 96.3+9.5 30.5
Heavy load 9 213.3 96.3+13.5 48.5

ing execution time and current consumption. The results from three scenarios can
be seen in Table 5, where about 55.7% can be saved for sensor node when the out-
sourcing signal processing task to posterior layers.

To look into the benefits of Fog computing on data transmission latency between
gateway and cloud server, sample size is first calculated in three scenarios, presented
in Table 6. The saved data transmission time from Fog to cloud in practice under
three different network conditions is presented in Table 7. It can be seen that, for
every 1000 ECG data samples, sample size is reduced by 74.1% at cloud due to
signal processing at two prior layers. Both signal processing time in Fog layer and
data transmission time are considered as transmission latency. As shown in Table
7, transmission latency is evidently reduced especially in Wi-Fi network with heavy
load.

4.4 Local Storage, Notification, and Security at the Fog layer

The majority of the data management Fog services explained in Section 2.1 make
use of the local storage function of the gateway in the Fog layer. Incoming data
from 6LoWPAN modules through a UDP server in the gateway, on port 5700, and
from RTX WiFi modules is aggregated in the storage. The Bluetooth module on
the gateway also receives data from Bluetooth sensor modules. The local storage is
implemented using MySQL database, to leverage the federation feature provided by
the database engine for data synchronization with the cloud storage. The same table
schema is used both in the cloud and in the gateways allowing easy migration of the
data without mapping to other format.

The data stored locally is stored for about 30 minutes while the synchronization
takes place. In the condition that there is a failure in connectivity with the cloud, the
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gateway stores the data for as long as there is connectivity or it runs low on memory.
In the case that the connectivity is cannot be maintained, the gateway removes the
old data and also provides additional user services, such as notification and access
to the local data. The notification service can be used as mentioned above or can
also be configured to run along with the cloud based notification service.

For protecting the system, an end-to-end secure schema is implemented. The
schema provide a high level of authentication and authorization for end-users. In
addition, the schema guarantee that the system is secure whilst sensor nodes does not
need to be reconfigured in cases of sensor node mobility. The detailed information
and an implementation of the schema are presented in [33].

Table 8 XML Status code and description

Code Description
0 Invalid request or Error
1 Notification - {total in number}
2 No new nofication

Notification service in the gateway can be immediately triggered when receiving
an alert signal from other services such ECG feature extraction or an early warning
service. In order to reduce the burden of Fog layer and provide a global notification,
the notification service is primary built at Cloud. The push notification at Fog layer
is merely responsible for notifying the push notification in Cloud by sending signals
in XML formats, shown in Table 8. In addition to the push notification service at Fog
and Cloud, a mobile application is created for supporting the the push notification
service. When it receives the incoming signal from the notification service at Cloud,
it immediately pops up a text message on an end-user’s phone to inform about an
alert case.

4.5 WebSocket Server for interoperability

To enhance the interoperability of the healthcare IoT implementation, we imple-
mented an embedded websocket server at the Fog layer. It is written using a Python
framework, known as Tornado, which is an asynchronous web server framework.
The server listens to UDP connections and a full duplex communication can be es-
tablished with a client node. This setup is used to collect ECG signals coming from
sensor nodes. Each message contains 800 bytes of data from 400 samples of ECG,
at an average speed of 1.1KB/s. Client nodes with an interface can also access an
HTML page hosted on the gateway to see the received information rendered into
a graph. This can be extended to enhance the service to listen to various transport
layer protocol sockets to enable interoperability.
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5 Related applications of Fog computing

Three layers of physical separation in IoT architectures is a common approach in
recent years. However, prior to that, a client server approach between sensor nodes
and the cloud was a usual implementation. In both cases, amalgamation of the cloud
computing and IoT technologies provides significant benefits in the healthcare appli-
cation domain [46]. The IoT allows integrating objects into an information network,
so in health scenarios, different medical sensors could collect health data from the
patient continuously. The data is transmitted to a remote cloud server for analysis
and decision making concerning requirements of the use cases. Using data analytics
and machine learning approaches, patient medical condition is estimated, decision
making is fulfilled and notifications are provided for the patient and health profes-
sionals [47, 48]. In another work, Bimschas et al. [49] implement basic learning and
intelligence in the gateways of the Fog layer through application code execution to
allow them convert between protocols, smart caching, and discovery.

The application of Fog computing to different domains is also an active research
area. Related to this chapter of the application of Fog computing to healthcare, Shi
YingJuan et al. [50] have used it in a similar context. Their work motivates the need
for Fog computing in general and discuss the latency sensitivity of healthcare appli-
cations. In addition, it also highlight the resource constraints of sensor and actuators
at the end of the IoT network. To meet the latency requirement and support the end
devices, their implementation of Fog computing provides services, such as online
data analytics and interoperability of various communication protocols. In another
work [51] that applies Fog computing for healthcare, they have developed a gate-
way to be used in the Fog layer to provide services for healthcare domain. Similar
to the previous work, the gateway provides interoperability to various network pro-
tocols of sensor nodes and communicate with the cloud through WiFi or Ethernet.
The gateway is used for a medical application, emergency attendance in a patient
care facility. It is also used in monitoring patients to follow up on their medication.
Moreover, their work considers semantic interoperability of the data for better qual-
ity of the medical information collected. In contrast, this chapter begins with more
comprehensive general Fog computing services that enable healthcare applications
and show specific use cases that consume these services. Moreover, Stantchev et
al. in their work [52] present, the advantages of applying the three tiered approach
for healthcare scenario. It focuses on servitization and business aspect of healthcare
IoT. In contrast to the work presented in this chapter, their work focuses on high
level architectural aspects while this chapter presents a real world case study and
experimental evaluation of the services.

Leveraging Fog computing in a healthcare applications can enhance latency of
the system and energy efficiency to sensor node devices, as discussed in this chap-
ter. These benefits of Fog computing are particularly important to healthcare appli-
cations which are sensitive to response time and need distributed analytics. In ad-
dition to the case studies of early warning score and ECG feature extraction, some
other remote healthcare monitoring applications have been proposed to employ Fog-
assisted architecture. Yu C. et al. [53] implemented a fall monitor application for
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stroke mitigation in an architecture with Fog computing with minimal response
time and energy consumption. Moneiro A. et al. [54] showed the efficacy of Fog
computing in their speech tele-treatment application, where speech data collected
from smartwatch is stored and processed in Fog layer and only speech features are
sent to secure cloud. Similarly, applications including pervasive brain monitoring
with EEG, emergency response system integrating heterogeneous data and ambi-
ent assisted living for seniors have considered to utilize system structure with Fog
[55, 56, 57]. Moreover, as mentioned above, security plays an important role in all
health monitoring IoT-based systems. In [33], authors provides an end-to-end Fog-
based schema for enhancing security levels of health monitoring IoT-based system.
Their results show that by applying the secure schema in the Fog layer, the entire
IoT system can be protected even in case of sensor nodes’ mobility. In [25], the
authors show that latency and a large amount of transmitted data can be decreased
dramatically by applying the services of the Fog layer.

6 Conclusions

This chapter focused on applying Fog computing to healthcare Internet of Things
domain. As a case study, to highlight the benefit of Fog computing, a set of services
was presented that enable healthcare IoT and utilized in an implementation of a
smart gateway for Fog computing. These services are designed to address the key
challenges in IoT, with a focus on addressing healthcare functional requirements. A
geographically distributed network of these smart gateways, each handling a group
of sensor nodes or patients, form the Fog layer in this architecture. This cluster
of gateways provide a continuous patient monitoring means without limiting the
movement of the patient in the coverage area.

Fog computing provides services for remote patient monitoring by reducing com-
munication latency and improving system consistency. To this end, the patient vital
signs were processed locally, and a local notification was provided for the user.
Moreover, for further analysis, the sensory data along with the obtained results were
transmitted to the cloud server. The details of the Fog services and the obtained
benefits were analyzed and performance measures presented. Some services can be
duplicated or partitioned to multiple, such as sensor layer with the Fog layer or the
Fog layer with the Cloud. This implementation specifics depend on the particular
services and the functionality. Incorrect decisions of implementation location can
cause inefficiency in terms of energy consumption, latency, and performance. For
example, before sending data from sensor nodes to Fog layer, noise should be ini-
tially removed at nodes. Fog can be used to implement advanced and complex noise
elimination and signal processing methods for enhancing the quality of collected
data. More advanced services, such as complex machine learning algorithms, the
cloud layer should be used for the implementation. In order to achieve a high level
of energy efficiency at sensor nodes, processing and communication must be taken
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into consideration. Finally, specific medical use cases can have additional design
constraints that demand fine tuning of behaviors of the Fog layer services.
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