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ABSTRACT

Quantum reservoir computing is an unconventional computing approach that exploits the quantumness of phys-
ical systems used as reservoirs to process information, combined with an easy training strategy. An overview is
presented about a range of possibilities including quantum inputs, quantum physical substrates and quantum
tasks. Recently, the framework of quantum reservoir computing has been proposed using Gaussian quantum
states that can be realized e.g. in linear quantum optical systems. The universality and versatility of the system
makes it particularly interesting for optical implementations. In particular, full potential of the proposed model
can be reached even by encoding into quantum fluctuations, such as squeezed vacuum, instead of classical intense
fields or thermal fluctuations. Some examples of the performance of this linear quantum reservoir in temporal
tasks are reported.

Keywords: Information processing, quantum reservoir computing, photonic systems, quantum optics, continu-
ous variables.

1. INTRODUCTION

Machine learning methods represent a formidable opportunity and in some case a unique approach to process
information in the big data era and in demanding tasks.1–3 Beyond widespread present computers technologies,
non-conventional methods4,5 have been proposed in computing ranging from quantum computation and sim-
ulations6 to neuromorphic computing.7,8 In particular, neuro-inspired computing goes beyond von Neumann
architectures, by physically co-locating processing and memory operations.9,10 This computational paradigm is
inspired by the computational power and energy efficiency of the human brain11,12 and based on the dynamics
of the considered physical substrate.

A prominent example of neuro-inspired computing is represented by artificial neural networks13–15 where
single dynamical units (e.g. perceptrons16,17) are combined in feed-forward or recurrent architectures to real-
ize common tasks such as pattern recognition, image and speech processing or temporal series forecasting. To
achieve a good performance, neural networks need to be tuned, i.e. optimized, with generally demanding proce-
dures such as back-propagation.18 Within this field, Reservoir Computing (RC) emerges as an easily trainable
alternative, based on the observation that the optimization of the last (output) layer is often the most important
ingredient to achieve the desired performance.19–21 This alternative approach builds on echo state networks22

or liquid state machines23 proposed two decades ago and it can be generalized to physical reservoir computing,
where computing substrates, beyond complex networks of neurons, can actually be implemented in a variety
of physical systems and devices as recently reviewed in Refs. 20, 21. Experimental implementations have been
recently reported in photonics19 like in semiconductor lasers24 or electronics circuits25 with delayed feedback, in
spintronics like spin-torque nano-oscillators,26 mechanics27,28 and even biological systems.29 Reservoir comput-
ing extracts information from data inputs exploiting the rich dynamics of generally nonlinear physical systems
and has been demonstrated to be successful in real-time data processing with state-of-the-art performance in
tasks such as continuous speech recognition30 and nonlinear time series prediction.31 The main feature needed for
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Figure 1: The basic structure for RC is formed by an input layer, a reservoir, and an output layer. The
information contained in the input is introduced to the reservoir, whose internal connections act as a fixed
hidden layer. Some of the responses of the reservoir are used to produce the desired output after an optimization
procedure during the training process (only the output connections are adapted in the training).

on-line processing is the intrinsic memory of these systems, allowing one to execute temporal tasks and opening
the possibility to embed them as components of more complex devices for edge computing.32,33

The potential of RC can be significantly broadened when considering quantum instead classical physical
reservoirs, as recently reviewed in Ref. 34. A major advantage of quantum reservoir computing (QRC) is related
to the possibility to access a larger Hilbert space even when considering quantum systems with few components.35

Besides, also the opportunity of implementations of RC in NISQ devices36 is particularly timely.37 QRC indeed
represents a promising avenue in the burgeoning field of quantum machine learning 38–43 exploring the potential
for information processing in non-classical reservoirs, for either classical or quantum tasks and input data.34

Recently, quantum reservoir computing proposals devoted to temporal tasks have been put forward considering
complex networks of spins,35,44,45 as well as bosonic networks,46 and also with a single nonlinear oscillator.47

Further examples of non-temporal tasks still based on the same architecture of QRC, as in Quantum Extreme
Learning Machines (QELM), have been also reported for quantum chemistry calculations in spin systems48 and
Fermi-Hubbard49–51 or Bose-Hubbard models.52

A proposal of interest in photonic realizations of QRC is based on optical networks. These can be engineered
considering spatial, temporal or frequency light modes that interact in nonlinear devices and can exhibit non-
classical features.46 In Ref. 53 the possibility to create harmonic networks in optical parametric processes
pumped by optical frequency combs has been reported. The flexibility in creating different complex networks is
achieved by shaping the pump profile and multimode measurements, as already demonstrated in the context of
linear optics quantum computing.54–56 This physical platform can be considered either in the classical regime
and beyond it, when quantum signatures such as squeezing and entanglement are present. Furthermore, these
quantum networks are also of interest in the context of open quantum systems and emergent phenomena like
synchronization.57–59 Here we present the features of QRC in bosonic networks restricted to Gaussian states
with a focus on their performance in temporal tasks and universality.

2. CLASSICAL AND QUANTUM RESERVOIR COMPUTING

2.1 Classical Reservoir Computing

The main idea behind classical RC is to make use of the intrinsic dynamics of a system, the reservoir, for
information processing. The fundamental parts needed for RC are represented by the three-layer scheme in
Fig. 1. The input at a given timestep k is mapped into the state of the reservoir, and, afterwards, the output is
computed from observables of the reservoir via connections that are trained using some simple learning algorithm,
as, for instance, a linear regression.

The classical information encoded in the input can be represented by a vector containing a series of real
numbers in each of its components, {sk}. The state of the reservoir is given by a vector of N real numbers that
represents its characteristic quantities, xk, which is updated after the injection of the input and also depends on
the system’s dynamics. In general, the state of the reservoir can be written as

xk = f(sk,xk−1). (1)



Notice that the function f depends on the previous state of the reservoir xk−1 and, implicitly, on previous inputs,
so that the memory of the system is exploited. Moreover, f should be such that the system has the fading memory
property (FMP), i.e. similar input sequences give rise to similar outputs, and also it has the echo state property
(ESP), the state of the reservoir depends only on the recent input history and becomes independent of distant-
past events. Finally, a good reservoir should also be equipped with the separability property, which ensures that
different inputs are mapped into different outputs.

As a general output one can consider a series of vectors of real numbers, {yk}, that are computed from a
selection of the reservoir variables, xout

k , as
yk = h(xout

k ), (2)

where the trainability of the links between the reservoir and the output layer arises from free parameters present
in h. As usual in any supervised-learning technique, those free parameters are optimized giving training input
examples to the system and minimizing a cost function between the known outputs and the predicted ones.

In addition to memory, a fundamental resource for computing is the existence of a nonlinear input-output
map provided by the joint effect of f and h. Therefore, if f guarantees nonlinearity, h could have a simple linear
form, which facilitates the training process.

2.2 Quantum Reservoir Computing

The main motivation to study quantum systems for reservoir computing is the potential advantages coming
from quantum resources. The principle of quantum superposition provides a large state space even for reservoirs
consisting of few constituents.35 Moreover, entanglement has proven to be a key ingredient for obtaining a
quantum advantage for computing.36 Consequently, there are great research efforts to use it to enhance the
performance of computational tasks.

Common extensions of RC to the quantum domain are proposals inspired by the pioneering work of Fujii
and Nakajima,35 in which the classical reservoir of the scheme in Fig. 1 is replaced by a quantum reservoir.
Furthermore, besides the quantization of the reservoir, a general overview leads to consider also the classical or
quantum nature of the input and the computational task to be performed.34 Instead of series of real numbers,
quantum inputs could be consider as a series of general quantum states written as density matrices, {ρink }, that
modify the state of the reservoir. Regarding the quantumness of tasks in the framework of RC, there is room for
exploring the possibility of predicting the time-dependent evolution of quantum states or their properties.60–62

3. RESERVOIR COMPUTING WITH A LINEAR QUANTUM NETWORK

The system under consideration in the present manuscript is the bosonic platform studied in Ref. 46. This can be
considered the simplest system to perform QRC being based on a set of coupled (quantum) harmonic oscillators
and restricting to Gaussian states. Still, we will show that the system is powerful with the proper input encoding
and also universal.

3.1 Quantum Reservoir of Harmonic Oscillators

The reservoir is a quantum system consisting of a network of N quantum harmonic oscillators. The oscillators
interact with each other via spring-like links of strength gij , i.e. the interaction is described by the Laplacian
matrix L with components Lij = δij

∑
k gik − (1− δij)gij , and the Hamiltonian of the system is given by:

H =
pTp

2
+

qT(∆2
ω + L)q

2
, (3)

where the momentum and position of the oscillators are, respectively, in the vectors pT = (p1, ..., pN ), and
qT = (q1, ..., qN ). ∆ω is a diagonal matrix that contains the frequencies of the oscillators ωT = (ω1, ..., ωN ).
For all quantities, we adopt the same system of units as in Ref. 46.

In this framework, Na oscillators are arbitrarily chosen and referred to as the ancillae. Their states are reset
at each timestep k in order to introduce the input, {sk}, to the system. The rest of the system constitutes



the reservoir, whose state is characterized by the position and momentum operators of the N −Na oscillators,
(xR)T = (q1, p1, ..., qN−Na , pN−Na).

For this system, the equation analogous to Eq. (1) takes the form

xR
k = AxR

k−1 + BxA
k , (4)

where A and B depend on the dynamics arising from the Hamiltonian46 and they act, respectively, on the state
of the reservoir in the previous time, xR

k−1, and on the state of the ancilla, xA
k , which is fixed by the input. By

encoding the input in the form of Gaussian states of the ancilla, it is sufficient to obtain the first moments 〈xR
k 〉,

and covariances σ(xR
k ), of the reservoir observables (see Ref. 46 for their explicit form) in order to construct the

output as
yk = h

(
〈xR
k 〉, σ(xR

k )
)
. (5)

3.2 Universality

Every time a new machine learning technique is proposed, there is a question that must be faced: what are the
tasks that this technique can solve? From a theoretical point of view, one can tackle this problem with the help
of universal approximation theorems. These theorems expose what are the conditions required to find examples
of our class of models that can approximate elements of a given class of functions with arbitrary precision. A
proposal that fulfills the requirements of one of these theorems is said to possess the universal approximation
property, i.e., the model can solve (in theory) all the tasks considered in the framework of the theorem.

There are many well known results about the universal approximation property of neural networks, like the
approximation of any continuous function by feed-forward neural networks.63,64 In the RC field, universality
has been shown for different systems such as liquid state machines23 and echo state networks.65 In the context
of our work, a RC system is said to be universal when it can approximate any fading memory function,23,65

which can be thought of as a continuous function of a finite number of past inputs. More specifically, we mean
by universality as the possibility of finding elements of our RC class that approximate a given time-invariant,
causal and fading memory map with arbitrary precision, as defined in Ref. 66.

Within the framework of QRC with continuous variables of Ref. 46, first the requirements for ESP and FMP
were fully specified, showing that the condition ρ(A) < 1 is a necessary and sufficient condition, where ρ(A)
is the spectral radius of matrix A in Eq. (4). Then, it was shown that the associated algebra has separability,
which means that for any pair of different time series there is an instance of the model that can tell them apart.
Finally, universality was proved invoking the validity of the Stone-Weierstrass theorem. Notice that unlike
ESP and FMP, separability depends explicitly on the input encoding. Indeed, in Ref. 46 separability for three
different kinds of encodings was shown: in thermal fluctuations, in magnitude of squeezing strength and in phase
of squeezing. It should be pointed out that separability (and hence, universality) could be shown also for first
moments encoding, like for coherent states. Importantly, noise does not necessarily rule out universal QRC37

and it has been suggested67 that a small amount of noise can prevent overfitting in NISQ systems, similarly to
the classical neural-network case.

3.3 Temporal Tasks

In this Section, we present some examples of temporal tasks. The used network is completely connected with
15 unit mass quantum harmonic oscillators and identical bare frequencies ω0 = 0.25. The coupling strengths
gij = gji between network oscillators i and j are chosen uniformly at random such that gij ∈ [0, 0.2]. Five of
the oscillators are randomly selected to play the role of ancillae, subject to periodic state resets according to
the input. Product states of identical squeezed vacuum states are considered for simplicity. More explicitly, the
covariance matrix for a squeezed vacuum state of frequency Ω, as the ones employed for the present tasks, is
given by

σ(x) =
1

2

(
[cosh(2r) + cos(ϕ) sinh(2r)] Ω−1 sin(ϕ) sinh(2r)

sin(ϕ) sinh(2r) [cosh(2r)− cos(ϕ) sinh(2r)] Ω

)
(6)
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Figure 2: Temporal tasks solved with Gaussian states of a bosonic network. (a) In the timer task the reservoir
is trained to respond to the change in the value of the input s (gray dashed line) with a given delay, here 6
timesteps, as shown by the target output ȳ (black solid line). Using squeezed vacuum states for the ancillae,
this can be achieved by encoding the input either into the magnitude of squeezing r or its phase ϕ. The output
y from the trained reservoir is indicated by circles and squares, respectively. (b) In the short term memory task
the reservoir is trained to recall past inputs using its memory. Here the delay is 3 timesteps. (c) Santa Fe time
series prediction task requires the reservoir to predict the next value of the input which follows the eponymous
time series. See main text for more details.

In what follows, the input is either encoded on the magnitude of squeezing by setting r = sk whereas the phase
is kept ϕ = 0, or on the phase by setting r = 1 and ϕ = sk. The time ∆t between state resets is chosen as in
Ref. 46 for completely connected networks. The reservoir output at some timestep k is

yk = w0 +

20∑
i=1

wi(σ(x))ii = w0 +

20∑
i=1

wi(〈x2
i 〉 − 〈xi〉2), (7)

where xi are the position and momentum operators of the remaining 10 oscillators, playing the role of the
reservoir, whereas wi are weights trained to minimize the mean squared error between yk and given target
output ȳ as in Ref. 46. Due to FMP, the initial state of the network is irrelevant, however in all numerical
experiments we have initialized the system from the ground state of the network Hamiltonian.

Here the network is trained to solve three different temporal tasks. Let us start with the timer task, a well-
known benchmark task in RC literature which tests the memory of the reservoir by asking it to respond to the



change in the input value with a given delay τ . The definition reads

sk =

{
1 k ≥ c,
0 k < c,

ȳk =

{
1 k = c+ τ,

0 otherwise,

(8)

where c is a given point in time where the input switches from one value to the other. Here we have first driven
the reservoir for 2000 timesteps to get rid of the influence of the initial conditions. The switch happens at
c = 2250 and we have chosen τ = 6. The training procedure uses timesteps from 2001 to 4000.

The second task we consider is the short term memory task, another popular benchmark test that focuses
on the linear memory of the reservoir, i.e. the ability of the reservoir to learn linear functions of the input. The
definition is simply ȳk = sk−τ where the delay τ ≥ 0. Here we use sk ∈ [0, 1], chosen uniformly at random, and
τ = 3. The reservoir is prepared with 2000 timesteps and trained with additional 2000 timesteps.

Finally, the Santa Fe time series prediction task is based on data recorded from a far-infrared laser in a chaotic
state.68,69 The full time series consists of 10093 non-negative real numbers, which for the sake of convenience we
scale to lie in the interval [0, 1]. The input sk is then the k-th element of the scaled time series whereas ȳk = sk+1.
Reservoir memory also plays a role here since the next value of the time series can be approximated by a function
of the previous values. As in the short-term memory task, the reservoir is prepared with the first 2000 timesteps
and trained with additional 2000 timesteps. Results for all three tasks are shown in Fig. 2, confirming that the
network can achieve good performance with both of the considered encodings.

4. DISCUSSION AND OUTLOOK

Quantum reservoir computing is expected to combine the advantages of classical reservoir computing (easy and
fast trainability, use of physical platforms to perform the computation) together with the potential opened by
the reservoir quantumness (large Hilbert space, possible quantum advantage due to non-classical correlations).
Here, we have delved into the case of QRC using Gaussian states of continuous variables, which can be seen as
the quantum minimal model in terms of resources required.70 Indeed, such a simple linear network already shows
a remarkable advantage with respect to the use of purely classical resources, as detailed in Ref. 46. Furthermore,
exploiting different forms of input encoding it allows for universal RC, i.e., it is able to approximate any fading
memory function.

In this work, we have explicitly considered three different temporal tasks and shown the capability of our
QRC to solve them. Remarkably, the only form of nonlinearity used to perform such information processing
is represented by the way input is injected into the system,46 as the encoding is in general nonlinear, for
instance through the squeezing amplitude or the squeezing phase, as explicitly discussed in our examples. This
alone provides nonlinearity for the overall input-output map (see also Ref. 71 for a recent discussion about this
aspect). Furthermore, the input encoding can also be seen as a source of versatility for multi-purpose information
processing. Indeed, depending on the task at hand, one may require different balances between linearity and
nonlinearity, and also different degrees of nonlinearity, which can be achieved using the same reservoir and only
changing the way input is injected.

Moreover, the versatility of the system is not limited to what explicitly discussed in this work, that is, to the
solution of classical time-dependent tasks. Indeed, in spite of its simplicity, the model of QRC with Gaussian
states is also suited to tackle purely quantum problems, i.e., tasks where also the input and the output are
allowed to be quantum entities. An explicit example of such a potential is given in Ref. 34, where the system
employed here was efficiently used, as a QELM, to classify the magnitude of squeezing of different input states.

To conclude, let us also comment on the potential for an implementation of continuous-variable QRC in
physical systems, which lies at the hearth of any unconventional computing scheme. The protocol described
here is especially suited for implementation in of photonic devices. As previously mentioned, large and complex
networks of harmonic oscillators can be built using optical frequency combs and parametric processes, together



with multimode homodyne or heterodyne detection.53 Another possible implementation is based on the use of
lattices of coplanar waveguide resonators, that have already been produced for photons in the microwave regime,
as described in Ref. 72.
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for Centers and Units of Excellence in R&D (MDM-2017-0711) and through the QUARESC project (PID2019-
109094GB-C21 and -C22/ AEI / 10.13039/501100011033). We also acknowledge funding from the CSIC Research
Platform PTI-001 and from CAIB through the QUAREC project (PRD2018/47). The work of MCS has been
supported by MICINN/AEI/FEDER and the University of the Balearic Islands through a “Ramon y Cajal”
Fellowship (RYC-2015-18140). GLG is funded by the Spanish Ministerio de Educación y Formación Profesional
/ Ministerio de Universidades and co-funded by the University of the Balearic Islands through the Beatriz Galindo
program (BG20/00085).

REFERENCES

[1] Jordan, M. I. and Mitchell, T. M., “Machine learning: Trends, perspectives, and prospects,” Sci-
ence 349(6245), 255–260 (2015).

[2] LeCun, Y., Bengio, Y., and Hinton, G., “Deep learning,” Nature 521(7553), 436–444 (2015).

[3] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai,
M., Bolton, A., et al., “Mastering the game of go without human knowledge,” Nature 550(7676), 354–359
(2017).

[4] Adamatzky, A., Bull, L., and Costello, B. D. L., [Unconventional computing 2007 ], Luniver Press (2007).

[5] Jaeger, H., “Toward a generalized theory comprising digital, neuromorphic, and unconventional computing,”
Neuromorphic Computing and Engineering (2021).

[6] Cirac, J. I., “Quantum computing and simulation,” Nanophotonics 10(1), 453–456 (2021).
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[29] Nikolić, D., Häusler, S., Singer, W., and Maass, W., “Distributed fading memory for stimulus properties in
the primary visual cortex,” PLoS Biology 7(12), e1000260 (2009).

[30] Triefenbach, F., Demuynck, K., and Martens, J.-P., “Large vocabulary continuous speech recognition with
reservoir-based acoustic models,” IEEE Signal Processing Letters 21(3), 311–315 (2014).

[31] Pathak, J., Hunt, B., Girvan, M., Lu, Z., and Ott, E., “Model-free prediction of large spatiotemporally
chaotic systems from data: A reservoir computing approach,” Phys. Rev. Lett. 120, 024102 (Jan 2018).

[32] Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L., “Edge computing: Vision and challenges,” IEEE Internet
of Things Journal 3(5), 637–646 (2016).

[33] Satyanarayanan, M., “The emergence of edge computing,” Computer 50(1), 30–39 (2017).

[34] Mujal, P., Mart́ınez-Peña, R., Nokkala, J., Garćıa-Beni, J., Giorgi, G. L., Soriano, M. C., and Zambrini,
R., “Opportunities in quantum reservoir computing and extreme learning machines,” Advanced Quantum
Technologies , 2100027 (2021).

[35] Fujii, K. and Nakajima, K., “Harnessing disordered-ensemble quantum dynamics for machine learning,”
Phys. Rev. Applied 8, 024030 (Aug 2017).

[36] Preskill, J., “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (Aug. 2018).

[37] Chen, J., Nurdin, H. I., and Yamamoto, N., “Temporal information processing on noisy quantum comput-
ers,” Phys. Rev. Applied 14, 024065 (Aug 2020).

[38] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., and Lloyd, S., “Quantum machine
learning,” Nature 549(7671), 195–202 (2017).

[39] Dunjko, V. and Briegel, H. J., “Machine learning & artificial intelligence in the quantum domain: a review
of recent progress,” Rep. Prog. Phys. 81, 074001 (jun 2018).

[40] Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., and Zdeborová,
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