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Abstract

Numerically controlled placement machines are often equipped with modular feeder units. These allow the group loading of
a large number of component reels in one step. While the loading of individual component reels has been extensively studied in
the past, there has not been any algorithmic solutions published for modular feeder loading. The problem in known to be NP-hard
even for a fixed job sequence. A mathematical 0 — 1 formulation, a lower bound on the optimal result, and an efficient heuristics
will be given in the present study. The heuristic is evaluated against the lower bound, and the ratio of the heuristic result and lower
bound value is reported. We found that for randomly generated problems, this ratio is between 2 and 4, while for some of the large
industrial problems we obtain a ratio between 6 and 12.
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1. Introduction

In this paper we study the Modular Tool Loading (MTL) problem, a machine control problem of managing com-
ponent feeder set-ups in the assembling of printed circuit boards. The problem setting consists of a fixed sequence
of PCB assembly jobs, and our task is to minimize the unproductive time caused by component feeder changes. The
novelty of our problem setting is in the current tactic of organizing the feeder set-ups. Unlike in most of the previous
studies, it is supposed here that the feeder unit consists of a number (say at most four) of changeable feeder modules
(also called feeder carriages). Each module has a fixed capacity of (say 20 to 40) storage slots for the actual com-
ponent reels. Replacing a whole feeder module is a simple and relatively fast manual operation, whereas changing
several individual component reels is more time-consuming.
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2. Literature review

The MTL problem is related to previously studied tooling problems. In the Tool Replacement Problem (TRP, also
called Tool Switching Problem, TSwP, see [8]) of metal working industry there is a flexible machine with a tool
magazine (in our case feeder unit) of limited capacity, and each job uses a number of tools (components) kept in the
magazine. The tools are of the same size (consume one slot in the feeder unit), and the total number of tools (needed
by all jobs) exceeds the magazine capacity, but the tools that each individual job requires fit in the magazine at a time.

The objective in TRP is to find a minimum number of tool swaps required to manufacture a given set of jobs. In
the case of a fixed job sequence and equal tool sizes [18] and [6] show that this can be solved optimally by the Keep
Tool Needed Soonest (KTNS) policy in O(M - N) time. In case of tool dependent loading cost, the problem is solved
optimally by [13], using a min-cost flow formulation.

If the tool sizes are not uniform, the problem becomes NP-hard even for a fixed job sequence, as shown by [7]. A
number of heuristics have been proposed for these cases by [12], [19], [14]. The problem of loading tools in groups
(by using a tool transporter) has been discussed by [17]. The tool transporting problem differs from the modular feeder
loading problem; in the former problem the feeder magazine consists of a single module (unit) and the location of
component reels does not restrict the future component reel loading decisions.

The TRP becomes harder if the job sequence is allowed to change. [6] show that finding the optimum job sequence
for uniform tool sizes and uniform loading costs is NP-hard, even if the online capacity of the tool magazine is C = 2.
Several heuristics have been proposed for the problem, see [6], [10] [19], [16]. The approximation ratio for some of
these solutions was discussed in [9]. Extensions of local search have been applied by [20, 11, 1, 21]. Variations of the
sequencing problem are addressed by [4, 5, 3].

The problem of tool loading in the context of a modular magazine has been largely ignored by the literature. The
MTL problem was introduced in [15], there the computational complexity of the general formulation and its special
cases were studied. The problem was shown to be NP-hard even for a fixed job sequence, unless both the number
of on-line modules and their capacity are fixed. For the case of fixed magazine capacity, [15] present a dynamic
programming algorithm to solve the problem optimally. However, it is noted that this method cannot be used in
practice even for small problem instances, due to the large exponent involved in size of the dynamic program table.
Practical solution of the problem remains therefore open. In this study, we attempt to answer the practical aspect of
the MTL problem. Namely, can practical problem instances be solved by the means of integer programs, and if not
(which turns out to be the case), what kind of heuristics are suitable to find feasible and good solutions.

3. Modular tool loading problem

Suppose that a list J of N PCB assembly jobs is given, and the jobs must be processed in the order given by J.
An assembly job consists of a batch of PCBs of the same type. The jobs are processed in a fixed order by a single
component placement machine, and each job i (i € [1...N]) presupposes the insertion of a set §; components of
different types. The components of a job are supplied by the means of a feeder unit attached to the machine. The
feeder unit is capable of holding all the components of a job at a time, but the total on-line capacity C of the feeder
unit is less than the total demand for all M different component types of all jobs in J. The feeder unit is of modular
type, which means that a number p (typically 2 to 6) of changeable on-line modules (racks) can be installed into the
machine. In addition, there are ¢ > 0 off-line modules placed at the vicinity of the machine and their setup can be
changed while the production of the previous job is going on, with no impact on the production delay. The capacity of
all modules is the same, c feeder slots (typically 20-40). Here we assume, that component reels (also called component
tape holders) are of uniform size, that is, each reel consumes one feeder slot.

The number of holders for electronic components is one factor which matters when planning the management of
the feeder unit. Factories commonly want to restrict the number of the component tape holders due to their costs.
However duplicate holders may be advantageous in this context; for heavily used component types one may benefit
from keeping two reels for the same component type at a moment in the feeder unit, and one may save on-line feeder
reorganizations due to the duplicates used for off-line settings.

We suppose that the production line is stopped each time a job (i.e. PCB type) is changed. This is done for changing
the NC-program that controls the machine and for performing the necessary material handling tasks. However, one
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should avoid rearrangements of the component reels in the on-line feeder modules because they greatly delay the
restarts. Reel removal costs are not accounted for separately, but as part of the reel change costs. A reel change
instance consists of a (possible) reel removal and the insertion of a new reel. A reel change step is also referred to as
a reel switch.

4. Integer linear programming formulation

For the integer programming formulation of the MTL problem the following notations are introduced:
Program parameters

Z - the total cost (time) of processing the job sequence (objective function).

N - number of jobs to be processed.
M - total number of component reels of different types used in the jobs.

p - number of on-line modules (in primary storage).

g - number of off-line modules (in secondary storage).

T - total number of modules (7" = p + g).

¢ - capacity of a module.

tr - cost of changing one component reel in the feeder module.
tn - cost for interchanging one on-line module with one off-line module.

s; - maximum number of component reels available for each component type i. Typically this is 1 for each com-

ponent reel, but frequently used reels can be duplicated for better performance.

rji - 1if job jrequires component reel i, 0 otherwise.

Decision variables

zxj - 1 if module k is on-line when processing job j, 0 otherwise.
wyji - 1 if module k contains component reel i when processing job j, 0 otherwise.

vkji - 1 if module & is on-line while processing job j and contains component reel i, 0 otherwise. v is used to
linearize vij; = wgji - Zxj-

Xkji - component reel i is switched in module & just prior to the starting of job j.

Ykj -1is 1 if module k must be loaded into the feeder unit just prior to the starting of job j (that is, module k is off-line
while processing job j — 1, and it is needed on-line for job j. yi; is similar to zx;, except here we count only
module loading (not status). We do not count module removals (on-line to off-line), because those are included
in the module loading costs.

Minimize:

Z =1y 213:1 Ziv=1 2%1 Xkji t Im Z}{:] Zi\/:l Ykj (1)
Subject to:

ey viji > 1, for all j € {1, .., N},i € {l,.., M} (2)
wji < zikjp forallk € {1,...,T}, je{l,..,N}Liefl,.., M)} (3)
Vi < wji, forall ke {1,...,T}, je{l,..,N},ie{l,.., M} (4)
M owii <c forallk e {l,..,T}, je{l,..,N} (5)
Sy wiji < i, forall j e {1, .., N},ie{l,.., M} (6)
Xk ji > Wiji — Wkj-1i — (1 _ij—l) -1 —ij) forall k € {1,...,T},j e{l,..N-1},ief{l,...M} (7)
Xk ji > Wikj-1i — Wkji — (1 —ij_1) — Zkj forall k € {1,...,T},j S {1,...,N— 1},i (S {1,...,M} (8)
Yij = zkj — 2j-1 forall ke {1,..,T}, je{l,.,N-1} (9)
Sh i < pforall jel{l,.., N} (10)

Zkj> Wiji» Vijis Xkji» ¥ € {0, 1} (11)
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In the IP formulation we refer to job O (by zx(j-1) or wi(;-1); when j = 1), that actually does not exist. Practically
job 0 defines the state of the feeder unit prior to the starting of the first job. For example (in rolling horizon production
planning) the feeder unit may already contain certain modules and some component reels may be loaded into these. If
the feeder unit and all modules are empty prior to the starting of the first job, then z;y = 0 and wyg; = 0 for all modules
k and component reels i.

For each job the required component reel types must be in on-line modules. In (2) vg; is 1 if the module & is on-line
and contains component reel i when processing job j. In (3) and (4) component reel i at a job j is active if the module
containing the component reel is on-line when processing j. By constraint (5) there can be at most ¢ component reels
in any module & at any job j. By constraint (6) in any job j there can be at most s; copies of each component reel in
modules (on-line or off-line).

The cost of switching a component reel i at job j in a module & is calculated in variable x; ;. The cost is nonzero
if module k is on-line or a reel is not available off-line to insert it into an off-line module. Otherwise the cost is zero
(switching in an off-line module is free). Constraint (7) counts the number of reel insertions into the on-line modules.

A reel switch must be counted also when a reel is loaded into an off-line module from an on-line module. This
can occur only while the production is stopped, thus incurring a cost. These swaps are counted by the constraint (8).
Module loading yy; is counted by (9) as the difference between a module’s off-line and on-line status. For any given
job j, there are at most p on-line modules by constraint (10). These variables are 0/1 integers (11).

The above integer program was too slow to solve even small problem instances, when one or more off-line modules
are available. If there are no off-line modules (as in the classic tool switching problem), the IP model did provide the
optimal result efficiently. We tried to implement a Lagrangian relaxation, but obtained invalid results (i.e. carriages
with no tools).

5. Greedy heuristics

In this section a greedy heuristic is introduced for creating feasible module assignments. In the case of no off-line
modules, or with excessively expensive module swaps, the problem can be solved optimally by the means of the
KTNS method. On the other hand, when at least one off-line module is available, and exchanging a module is less
costly that exchanging ¢ individual component reels, the problem becomes hard, assuming arbitrary capacity ¢ (as
shown in [15]). This is mainly because of the necessity to decide between exchanges of individual component reels or
modules.

A group of jobs is a sequence of consecutive jobs of J such that all their component reels fit into the online feeder
modules at a time. In the KTNS scheme (without modules), new component reels can be loaded between any two
jobs, as needed (per an optimal heuristic). When solving the MTL-problem, loading new component reels is restricted
to occur between consecutive groups. This allows fast loading of several components by one or more module loads
(up to 40 components per module).

5.1. Component Weights

The main (and rather involved) problem here is to decide which components should be loaded individually, and
which ones will be accumulated into offline modules and loaded with a single module swap. Swapping modules also
means that one or more modules are unloaded from the online feeder unit of the machine. Intuitively, components that
are used in a long sequence of consecutive jobs are more likely to be needed on-line than the ones that are used less
or sporadically.

The component type weight encodes this intuition, by counting the number of jobs that uses the component and
normalizing this count with the number of gaps in the usage. Here, a gap refers to a consecutive set of jobs that do
not use the component type. Let d; be the number of gaps of component reel i, and e; be the number of jobs using
component i. Then we define the component type weight of reel i as the quantity: u; = e;/(d; + 1).

The component type weights can be calculated for the whole set of jobs, or only for a subsequence of jobs, de-
pending on the type of heuristic employed. The component type weights can be calculated in O(M - N) time, as a
preprocessing step.
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5.2. Weighted Max Algorithm (WMA)

In the weighted max algorithm (WMA) the component to module assignments are done in a decreasing order of
the component type weights u; (for equal weights, ties are broken randomly). The u; weights are calculated separately
for each job group, thus reflecting the current state of component usage. The leftover space of a module is filled up by
using a subset of the component reels of job k + 1 that does not totally fit into the first group. For this, the components
of job k + 1 with the largest weights are found. This action results in module setups that contain components with
similar weights.

The component type weights are also used in the group transition phase. New component reels are assigned to
modules that are partially filled with components from the previous group. Further, the component reels with the
largest weight are selected from job k + 1 to complete the set for a new module. The component type weights are also
used to assign the component reels to partially filled modules, so that components of similar weights end up in the
same module.

6. Lower bound.

Since there are no modular component reel loading heuristics proposed yet in the literature, a lower bound on
the optimal solution will be introduced here and used to evaluate the effectiveness of the proposed heuristics. Let K
denote the number of component reel switches calculated by the KTNS policy [18], for a job sequence J. From [18]
it is known that to process the jobs in J in the given order, at least K component reel swaps must occur in the feeder
magazine.

Likewise, an optimal modular component reel loading policy must also swap K tools (or more, to take good use
of the modules). Due to the use of moveable reel modules, the costs of the two different models differ; Our working
assumption is that swapping one module costs significantly less than swapping a corresponding amount of reels
ty < c - ty. The ideal modular component reel loading policy would then be that all the component reel swaps are
done by module swaps, and each module is fully used. This means at least L%J module swaps, because each swap of
a module would cause c reel switches.

Lemma 6.1. Suppose that t,, < ¢ -ty and K is the number of tool switches obtained with the KTNS rule. Then a lower
bound for the total change costs Z of the MTL problem is t,, - L%J.

Proof. By contradiction, assume that there is an optimal solution, that exchanges a modules and b component reels,
and has a smaller cost than L%J:

The optimal component reel change cost isthen: t,, -a+tr-b<t,- L%J <tpy- %

Multiplying by c/t,,, we get: ¢ - a + L. p<K
Our working assumption is that tm < c t7 (otherwise simple module swaps by the KTNS would suffice), therefore:

=~ >1.Thenc-a+b<c- a+L5.b<K
The number of component reel swaps in the optimal solution is then ¢ - a + b < K, which is a contradiction, since
the given job sequence cannot be processed by less than K component reel swaps. O

Therefore, the value #,, - L%J will always be less (or equal) than the cost of the optimal component reel loading
policy. We use this value as a lower bound when evaluating our heuristic.

7. Results

The heuristic WMA is evaluated on a data set of 341 PCB instances (denoted D341), that are extracted from real
jobs used in the industry. The jobs include a total of 410 different component types. The processing order of PCBs
was fixed. Tests on the data set were performed using p = 4 on-line modules, each having a capacity of 30 component
reels. This allows 120 on-line component reels at a time, which is sufficient to process the largest jobs from the data
set, but insufficient to process all jobs without component reel swaps. For the D341 test set, the number of off-line
modules g was varied from O to 4 in different tests, where g = 0 represents the classical tool loading problem (KTNS).
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component type

Figure 1: Frequencies of using components in different PCB types (D341).

In addition to the industrial data set, a number of artificial problem instances were generated in a similar way as in
[6]. Since the present problem setting considers only a fixed job sequence, the tests were made on larger data sets
(100-300 components with 100-200 jobs).

The frequency of using a particular component type in different PCB types is very skewed for D341, see Fig. 1.
The maximum frequency is 248, and there are several component types that are only rarely used.

7.1. Results with the data sets.

In the following tests we assume that 7,, = 10 and 7y = 4 (typical in practice). The tests were run on both the
randomly generated instances and the industrial data sets. The random instances are generated as in [6], with the
difference that here, we consider larger instances. A random instance type is denoted by (M, N, min, max, c, p, q),
where min and max are the minimum and maximum number of components in a job. For test with the random data
sets, a hundred instances of each type were generated of each type and the results were averaged.

The tests were run on a computer equipped with a 2.3GHz Intel processor. The time it takes to run the module
loading heuristics was under one second. Running all the random test instances (100 of each type) took about half a
minute, therefore we omit the time from the results.

The results are reported in Table 1. The results are compared to the lower bound described earlier. The sixth row
contains the ratio between the results of WMA and the lower bound.

We call an instance sparse if |J;|/(p - ¢) is small (cases 2,3,6,7,12,15,17), and dense if it is large (cases
4,5,8,9,10, 13, 16). In sparse instances a job typically occupies a smaller part of the online feeder capacity, while
in dense instances a job occupies most of the capacity, causing more frequent tool swaps. The random data sets con-
tain both sparse and dense instances. We observe that the ratio to the lower bound is smaller for dense instances, when
the data sets are larger. That is, WMA performs well for dense instances, but not so well for sparse instances (larger
ratio). One reason for this can be that the lower bound may be farther from the optimum for sparse instances. Also the
effect of additional off-line modules is clearly visible from the results of the runs. In test cases 1 — 5, the number of
off-line modules g was increased from O (resulting in KTNS) to 4.

7.2. Number of duplicate reels.

For the job list D341 with p = 4, g = 2, ¢, = 10, t; = 4 (typical values in practice), and module capacity 30,
we varied the number of component types for which we have allocated a duplicate reel. It is supposed here that the
manufacturer has an access to a number of extra reels and wants to allocate them to some of the component types
of the current production program. In what follows, these reels are reserved to the most frequently used component
types, see Fig. 1.
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Figure 2: WMA: total job change cost of D341 as a function of the number of duplicate reels for WMA, with p =4, g = 2, t,,,/ty = 10/4.

Figure 2 shows the total job change costs as a function of the number of duplicate reels for WMA. The effect
of duplication is remarkable for this data. When all components are duplicated, the costs drop to nearly half of the
original. On the other hand the slope of the graph approaches rapidly zero when more than half of the components
have been duplicated.

8. Conclusions

In this work we discussed the tooling problem of a component placement machine equipped with a modular feeder
unit and moveable component reel modules. The problem is an extension of the classical tool switching problem, in
that it allows the tools to be changed in groups (a module at a time), thus reducing the tool switching cost. This is a
practical problem that presently appears in various manufacturing environments.

Table 1: Results compared to the lower bound.

Case Data Set KTNS WMA LB Ratio
1 (D341,30,4,0) 2862.0 2862.0 238.5 12.0
2 (D341,30,4,1) 2701.0 1736.5 225.1 7.7
3 (D341,30,4,2) 2735.0 14105 2279 6.2
4 (D341,30,4,3) 2840.0 864.5 236.7 3.7
5 (D341,30,4,4) 2831.0 754.5 235.9 3.2
6 (160, 100, 10,20, 10,4, 4) 748.0 414.5 187.0 2.2
7 (160, 100, 10, 20, 20,2,2) 674.0 185.0 84.2 2.2
8 (160, 100,20, 40, 10,4, 4) 1781.0  932.0 445.2 2.1

]

(160, 100, 20,40,20,2,2)  1797.0  480.0 224.6 2.1
10 (160,200, 10,20, 10,4,4)  1421.0  808.5 355.2 23
11 (160,200, 10,20,20,2,2) 13420 375.0 167.8 22
12 (160,200,20,40,10,4,4) 36540 1881.5 913.5 2.1
13 (160,200, 20,40,20,2,2) 37200 989.0  465.0 2.1
14 (300,200, 30,60,20,4,4) 44450 13945 555.6 25
15 (300, 200, 30, 60,30,4,4)  2993.0 730.0 249.4 29
16 (300, 200, 30,60,40,4,4)  1984.0  460.0 124.0 3.7
17 (300, 200, 60, 80,20,4,4)  8825.0 2000.0 1103.1 1.8
18 (300, 200, 60, 80,30,4,4)  5237.0 1445.0 4364 33
19 (300, 200, 60, 80,40,4,4) 33940 870.0 212.1 4.1
20 (300,200,40,120,30,4,4) 72060 1672.5  600.5 2.8
21 (300, 200,40, 120,40,4,4)  4068.0 1009.0 254.2 4.0
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We introduced a mathematical formulation of the problem, in the form of a 0—1 integer program. The 0—1 program
was tested on a solver, but only very small (non-practical) instances could be solved in this. Even for these small
instances (10 jobs with 20 tools and 2 modules), it took several hours for the solver to find an optimal solution. This
motivated the search for heuristic solutions that give feasible tool switching and module assignments, in reasonable
time.

We introduced a heuristic method to solve the module assignment problem, and evaluated the method on generated
random problems and on practical problem instances provided by industry. The results show that using modular
feeders can significantly reduce tool loading costs. As a relevant topic of further studies, we plan to find effective
ways to identify a sub-set of component reels which can be fixed into modules during a larger period of production.
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