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Abstract. This paper deals with the concept of manipulation, under-
stood as preference misrepresentation, in the light of the main theo-
retical results focusing on their practical significance. It also reviews
some indices measuring the degree of manipulability of choice functions.
Moreover, the results on complexity of manipulation as well as on safe
manipulability are briefly touched upon.
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1 Introduction: The Concept of Manipulation

Ever since the publication of Farquharson’s seminal work in late 1960’s the con-
cept of manipulation has played an important role in the social choice and voting
theory [8]. Stemming from the Latin word ‘manipulus’ (handful, bundle or, as a
military term, maneuverable formation) it refers to ‘handling or using, esp with
some skill, in a process or action: to manipulate a pair of scissors’ (Collins En-
glish Dictionary). It also denotes ‘falsification for one’s own advantage’. It is in
the latter meaning that ‘manipulation’ is being used in the social choice theory.
In short, it refers to activity whereby an individual or group gives an incorrect
report on its preferences in order to change the voting outcome to his/her (here-
after his) or its advantage. It is quite common to speak about manipulation just
in those cases where the intended result is achieved, i.e. when the falsification
succeeds in bringing about an improvement in the outcome reached. Let us now
make this concept a bit more precise.

Let X be the set of alternatives, N the set of n voters, R the set of n-person
preference profiles over X and F : R× A→ 2A, for any A ⊆ X, a social choice
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function. I.e. F associates with any subset A of X and preference profile over it,
a subset of A called the winners or social choice set. A pair consisting of a set
of alternatives and a preference profile over this set is called a situation.

Formally, F is manipulable iff there is a situation (X,R) whereR = (R1, . . . , Rn) ∈
R, an individual i ∈ N and a pair x, y ∈ X so that x is strictly preferred to y
by i while F (X,R1, . . . , Rn) = y and F (X,R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rn) = x

with R′i 6= Ri. In other words,

Definition 1 F is manipulable (by individuals) if and only if (hereafter iff)
there is a situation and an individual so that the latter can bring about a prefer-
able outcome for himself by preference misrepresentation than by truthful reve-
lation of his/her preference ranking, ceteris paribus.

More concisely, F is manipulable iff there is at least one such situation where
the n-tuple of sincere voting strategies does not lead to a Nash equilibrium (in
pure strategies).

Definition 2 F is non-trivial (non-degenerate) iff for each alternative x, there
is a preference profile so that x is chosen.

Table 1 illustrates manipulation in the the widely used plurality runoff sys-
tem. Here X = {A,B,C} and |N | = 17. With sincere voting the runoff con-
testants are A and C, whereupon C wins. Should now the 2 right-most voters
switch their preference between A and B, the runoff would take place between A
and B, whereupon A, their favorite, would win. Note that with sincere voting the
outcome is the worst for the 2 voters, with strategic voting their most preferred
alternative wins.

Table 1. Manipulation in plurality runoff system

6 voters 5 voters 4 voters 2 voters

A C B A
B A C B
C B A C

Table 2 gives another example of manipulation, this time in the case of the
amendment procedure used e.g. in U.S. Congress as well as in Finland and
Sweden in parliamentary decision making. Here X = {A,B,C} and |N | = 9.
Since the procedure is based on an agenda, we use the following agenda to
illustrate manipulation: (1) A vs. B, (2) the winner vs. C. With sincere voting
B wins. Suppose that the 2 right-most voters vote as if their preference were:
C � A � B. Then the winner is C, their first ranked alternative.

In the definition above as well as in the examples just discussed, manipulation
takes the form of misrepresentation of preferences, i.e. reporting in the ballots
cast a preference order that does not correspond the preferences one holds with



Table 2. Manipulation in the amendment procedure

2 voters 3 voters 2 voters 2 voters

A B C C
B C A B
C A B A

regard to the alternatives or candidates at hand. Manipulation in this sense
does not, however, cover the entire spectrum of strategic behaviour in voting
context. In particular, it does not cover manipulation through agenda control.
Our primary aim is, however, to assess the significance of the results achieved in
the field of preference misrepresentation.

2 Principal Results

The best-known result in manipulation literature is undoubtedly a theorem
proven by Gibbard and Satterthwaite [12,17]. In contradistinction to the social
choice function defined above, the theorem deals with another formal counter-
part of voting rule, viz. resolute social choice function, sometimes also known as
social decision function. This concept refers to mechanisms that in every situa-
tion end up with a singleton set of alternatives. I.e. in every situation one and
only one alternative is specified as the winner.

Theorem 1 ([12,17]). Every universal and non-trivial resolute social choice
function is either manipulable or dictatorial.

One strategy of proof is the following [9]:

1. It is shown that any universal, non-trivial and non-manipulable SCF must
satisfy the Pareto condition if the number of voters is two.

2. One goes through all 36 different preference profiles (of two voters and three
alternatives) and determines the winners that are possible under Pareto prin-
ciple. It turns out that the possible outcomes make either the rule manipu-
lable at some profile or one of the voters is a dictator (the outcome is always
his first ranked alternative).

3. The argument is extended to larger electorates and larger alternative sets.

The theorem is prima facie very damaging to the view that voting procedures
always reveal ‘the will of the people’. After all, what it says is that no reasonable
voting rule can be expected to accomplish this under all circumstances. But does
it apply to all reasonable voting rules? It does not. In fact, it applies directly to
very few since very few systems are resolute. By far the most may end up in a
tie between two or more alternatives. These are then broken in various ways to
elect one of them. Nonetheless the rules themselves are typically not resolute.

It is, however, relatively straight-forward to show by way of examples that
all systems used in practice are – while not resolute – still manipulable through



preference misrepresentation. Two examples were shown in Section 1 [16]. What
should be observed, though, is that in both examples above, a coordination of
several like-minded voters is required for successful manipulation. By glossing
over the possibility of ties in outcomes, the Gibbard-Satterthwaite theorem also
overlooks the distinction one could make between procedures manipulable by
individuals and those manipulable by coalitions. Similarly, it overlooks the dis-
tinction between outcomes that result from manipulation in cases where there
are ties in manipulated and non-manipulated outcomes. These distinctions are
taken into account in Taylor’s comprehensive analysis [19]. In analyzing non-
resolute choice rules one typically needs to make assumptions regarding voter
preferences over subsets of alternatives. Some seem pretty natural (e.g. that a
voter with ranking a � b � c prefers the outcome a to a tie between a and
b or the latter to the tie between all three), but others involve dwelling into
the risk-postures (e.g. assuming that the voter with the above ranking prefers
an a − c tie to b). By assuming that the outcomes are always singleton sets,
Gibbard and Satterthwaite bypass these complications. The overall conclusion,
however, remains that a vast majority of voting systems is manipulable in some
sense. So, the Gibbard-Satterthwaite theorem seems to extend far wider than
the concept of resolute social choice function would envisage.

So, much of the dramatic effect of the Gibbard-Satterthwaite theorem is lost
once one realizes that it applies directly mechanisms that are not used. In the
context of this observation Gärdenfors’ theorem seems a significant step forward
in applied social choice theory [10].

Theorem 2 ([10]). If a social choice function is anonymous and neutral and
satisfies the Condorcet winning criterion, then it is manipulable.

The Condorcet winning criterion – it will be recalled – is satisfied by all
voting systems that always result in the Condorcet winner when one exists in
the observed profile. Condorcet winner, in turn, is an alternative that would
defeat all others in pairwise contests with a majority of votes. Social choice
functions that satisfy the Condorcet winning criterion are generally known as
Condorcet extensions. A noteworthy aspect of this theorem is its wider range
of applicability: it covers all social choice functions, not just resolute ones. In
particular, it covers basically all voting procedures that single out a set of winners
once the ballots have been cast.

Strategy of proof of this theorem is the following:

– One begins with a specific 3-voter, 3-alternative profile, where the one specific
alternative is ranked first by two voters. One postulates that this specific
alternative is chosen in this profile.

– Another specific 3-voter, 3-alternative profile is then focused upon and all
logically possible choice from this profile are analyzed.

– For each choice from the latter profile, one shows that if this were the actual
choice, then the social choice function applied would be manipulable by some
voter at some other profile. Since the Condorcet winner is chosen in the first
profile, the conclusion is that all Condorcet extensions are manipulable.



It is well-known that not all voting systems are Condorcet extensions. Of
those that are not, the theorem, of course, says nothing, but again a more detailed
analysis reveals that manipulability is a pervasive property among these as well.
Gärdenfors points out, however, two choice functions that are not manipulable:

– If every voter’s preference ranking is linear or strict (no ties), then a social
choice function that chooses the Condorcet winner when one exists and all
alternatives, otherwise, is non-manipulable.

– Under the same assumption concerning voter preferences a social choice func-
tion that chooses the Condorcet winner when one exists and the set of Pareto
undominated outcomes, otherwise, is also non-manipulable.

Pareto domination is defined as follows. An alternative x Pareto dominates
another alternative y iff x is ranked at least as high as y by all voters, and strictly
higher by at least one voter. The set of Pareto undominated alternatives consists
of those that are not Pareto dominated by any others. Typically this is a very
large set and, hence, the improvement in terms of discriminating power of the
latter function is not typically much greater than that of the former.

The outlook for finding a system that would encourage sincere preference
revelation from voters is, thus, not promising in the light of these results. On a
more positive side the following theorem is worth mentioning.

Theorem 3 ([6]). Let n be the number of voters and m the number of alterna-
tives. (i) For n = 4 or n = 4k + 2 with k ≥ 0 and m ≥ 3, if F is anonymous,
neutral and strategy-proof social choice function on Condorcet domain, then F
is the Condorcet rule (i.e. selects the Condorcet winner). (ii) For n = 4k with
k ≥ 1 and m ≥ 4, if F is anonymous, neutral and strategy-proof social choice
function on Condorcet domain, then F is the Condorcet rule.

Condorcet domain is the class of situations where there is a Condorcet win-
ner. Campbell and Kelly’s theorem thus essentially states that all Condorcet
extensions are immune to manipulation – i.e. strategy-proof – as long as we
allow only those profiles where a Condorcet winner exists [6]. As will be seen
shortly, the restriction envisaged is important.

3 The Practical Significance of the Results

The Table 1 example shows that manipulable systems can present some of the
voters with a dilemma: (1) to vote according to their true preferences, thereby
contributing to their favourite’s possible victory on the first round and at the
same time risking its loss on the second round by not voting for a weaker con-
testant in the first round. Or (2) to use their vote to contribute to the success
– on the first round – of a candidate that is a weaker competitor to their own
favourite on the second round – assuming there is going to be one. This is a
quandary that faces those voters who can reasonably expect their favourite to
make it to the second round, but to fall slightly short of the 50% required for



overall victory on the first round. Similar incentives are faced by small-party
supporters in two-party systems: should one reveal one’s true preferences in vot-
ing or should one support ‘the lesser of two devils’? These dilemmas are well
known.

Table 1 is instructive in a another sense as well. To wit, the two voters whose
strategic behaviour has been in the focus of our interest are in fact making a
choice between their best and worst alternative: with sincere voting their worst
alternative wins, while by misrepresenting their preferences, ceteris paribus, their
best alternative gets elected. It would seem that the supporters of A would have
strong incentives to vote for B rather than A on the first round. Should this
happen, the outcome would be the victory of B in the first round since it would
get more than 50% of the votes. Not a disastrous outcome but not optimal either.
To get the desired result the supporters of A need coordination in order to avoid
overshooting – and ending up with B – and undershooting – and ending up with
the worst possible outcome C.

One of the factors restricting the practical significance of the general ma-
nipulability results is the fact that, although the system may be manipulable,
the difference between the manipulated and sincere voting result is small and
certainly not of the order of magnitude of Table 1 example. Moreover, the ceteris
paribus clause embedded into the manipulability results is to be taken seriously.
The reason is simple: if the other parties get a hint that some party aims at
strategic misrepresentation of its preferences, they may resort to misrepresenta-
tion counter-measures themselves. Thus, for example in Table 1, if the supporters
of B suspect that the two A supporters intend to vote for B in the first round
to get it defeated by A on the second one, they might strategically vote for C
in the first round so that C would become the overall winner. This is better
than A for the supporters of B. Thus, the counter-measures may well frustrate
the efforts of the manipulators. In other words, manipulability of a system in
a situation does not mean that strategic misrepresentation would be plausible
or likely. Indeed, preference misrepresentation may conceivably lead to better,
worse or equal outcome with respect to the sincere voting outcome. More recent
research has, accordingly, focused on these aspects as will be discussed later on.

Of the results discussed in the preceding section, the theorem of Campbell
and Kelly is certainly the most positive one. On closer inspection it is, however, of
very restricted applicability [14,15]. Consider the example devised by Alexander
Mayer of the Copeland rule applied to the following pair of profiles (Table 3):

On the left, C is the Condorcet winner and is thus elected by Copeland’s
rule (and by Condorcet’s rule). The right-side is a result of first person’s ma-
nipulation. There A, his first ranked alternative, wins with Copeland. Thus the
manipulation is beneficial to the voter. Note, however, that the right profile is not
in the Condorcet domain. So, by excluding profiles without Condorcet winner,
the theorem in fact disregards the most obvious ways of manipulating Condorcet
extensions. This, of course, doesn’t undermine the validity of the result itself.



Table 3. Manipulation of Copeland’s rule

1 voter 1 voter 1 voter 1 voter 1 voter 1 voter

A B E A B E
C C D ⇒ D C D
B A C B A C
D E A E E A
E D B C D B

4 Difficulty of manipulation

Anyone who has worked on providing examples of various criterion violations
in social choice theory knows that coming up with such examples can, in cases
they are theoretically possible, be exceedingly difficult for some criteria and pro-
cedures, while for others it can be relatively straight-forward. The same applies
to demonstrating the manipulability of voting rules: for some rules it is easy to
find profiles where voters can benefit from preference misrepresentation, while
for other rules such profiles are more difficult to find. This intuitive observation
suggests that perhaps it would make sense to consider the manipulability of vot-
ing rules as a matter of degree rather than dichotomy. Various ways of measuring
the degree have, indeed, been devised.

– Kelly’s index: K = d0
(m!)n , where d0 is the number of profiles that are manip-

ulable by at least one voter [13].
– Kelly index as modified by Aleskerov and Kurbanov: let λk = number of

profiles that precisely k voters can manipulate [3]. Then Jk = λk

(m!)n is the

share of profiles manipulable by k voters. The Aleskerov-Kurbanov index is
the vector J = (J1, . . . , Jn). Note that K =

∑
j Jj .

– three indices of freedom of manipulation I+, I0, and I−. [1,2]

In any profile of m alternatives, each voter has m!−1 possibilities for prefer-
ence misrepresentation. Let k+ij be the number of cases where misrepresentation

improves the outcome to the voter i in profile j. Similarly, k0ij = the number
of cases where misrepresentation makes no change in the outcome for voter i
in profile j and k−ij = the number of cases where preference misrepresentation
makes the outcome worse for i in profile j [3].

– I+ =

∑(m!)n

j=1

∑n

i=1
k+
ij

(m!)n×n×(m!−1)

– I0 =

∑(m!)n

j=1

∑n

i=1
k0ij

(m!)n×n×(m!−1)

– I− =

∑(m!)n

j=1

∑n

i=1
k−
ij

(m!)n×n×(m!−1)

Suppose that with sincere voting the outcome occupies k’th position in indi-
vidual i’s ranking. After i’s misrepresentation the outcome occupies the position



s in his ranking. Let θj = k − s, for j = 1, . . . , k+ij . The variable θj thus shows
how much – in terms of ranks – difference i’s misrepresentation has made for
him in a single case j. Summing up these θj ’s over cases and dividing the sum
by k+ij (the number of successful misrepresentations by i in profile j) one obtains
Zij . This is then used to define efficiency index

I2 =

∑(m!)n

j=1

∑n
i=1 Zij

(m!)n × n

Let Zmaxij = max(θ1, . . . , θk+
ij

). Then

I3 =

∑(m!)n

j=1

∑n
i=1 Z

max
ij

(m!)n × n

On the basis of the results of Aleskerov and Kurbanov regarding 3-alternative
settings the following conclusions can be made [3]:

– the likelihood of a manipulable profile depends on the assumptions regarding
extended preferences (over subset of alternatives)

– for small number of voters and alternatives, threshold rule and Borda count
seem most manipulable

– for medium range, plurality gets highest values of the index
– Black’s procedure has the smallest values over most of the range of voters
– some index values (esp. for Black) depend on the parity of the number of

voters

To a large extent the same conclusions extend to 4- or 5-alternative settings
[2].

The main problem related to practical use of the above measures of the degree
of manipulability is the fact that typically not all preference profiles are equally
likely. This restricts the applicability of these measures as direct guidelines for
selecting voting rules. This problem pertains also to the other main approach
to measuring difficulty: the computational complexity of manipulation. This ap-
proach builds on and expands the results of algorithmic complexity theory, a
well-established field within computer science [11]. The basic classification of
computational tasks is the following:

– computationally tractable problems: those that can be computed by polyno-
mial time algorithms of order O(nk), where k is a fixed constant and n the
size of input (e.g. number of alternatives and voters). This class of problems
is denoted by P.

– problems in NP (nondeterministic polynomial time): no polynomial time
algorithm is known, but given a solution proposal, its correctness can be
verified in polynomial time.

– NP-complete problems: if any of these are shown to be computable in poly-
nomial time algorithm, all others can be similarly computed. Then P = NP .



It is generally believed – although this hasn’t been proven – that P 6= NP .
Now, computational complexity relates to voting rules in several ways. Firstly,

the computation of the election results once the ballots have been cast may,
depending on the rule being applied, require varying amounts of computing re-
sources (time, memory-space). This problem was first addressed by Bartholdi
et al. in the context of Dodgson’s rule [5]. More specifically, the problem ad-
dressed was: given the set C of candidates, the set V of preference rankings over
C and a positive integer K, is the Dodgson score of candidate c in C less than
or equal to K? It was proven that the Dodgson score is NP-complete. Proof is
by reducing the score problem to another problem known to be NP-complete,
viz. exact cover by 3-sets. A related problem, viz. Dodgson ranking problem is
the following: given sets C and V as above with two distinguished members c
and c’ in C, one asks: did c defeat c’ in the election? The result is that Dodg-
don ranking is NP-hard, i.e. easy for a good guesser, but in general not solvable
in plynomial time. In contradistinction to the Dodgson score problem this one
is not NP-complete, i.e. does not imply anything with respect to the canonical
quandary: is P 6= NP? In addition to these now classic problems, Bartholdi et
al. prove similar results for the Kemeny rule, i.e. Kemeny score is NP-complete,
Kemeny ranking and Kemeny winner NP-hard.

Complexity theory has also applications in the study of preference misrepre-
sentation. In this context the problem takes the following form: given a profile Π
of votes cast by everyone else but the manipulator, and a preferred alternative
x, is there a vote that the manipulator can cast so that x wins? This problem is
typically in NP as the yes or no answer can be checked (normally) in polynomial
time. Sometimes (e.g. plurality voting) even the solution can be computed in
polynomial time (in which case even the problem is in P) [7]. Bartholdi et al.
prove the following important theorem [4].

Theorem 4 ([4]): the manipulation problem can be solved in polynomial time
for all rules that satisfy the following:

1. the rule can be run in polynomial time
2. the rule is scoring rule
3. the following type of monotonicity holds, i.e. for all profiles Π and Π ′ and

for all a ∈ X and for all i ∈ N : {b : a �i b} ⊆ {b : a �′i b} implies that
S(Π, a) ≤ S(Π ′, a).

It should be emphasized that the type of monotonicity featuring in the theo-
rem is not equivalent to the standard concept of monotonicity. This can be seen
e.g. in the following example (Table 4) where it turns out that while the Borda
count satisfies the latter, it does not satisfy the former.

In the 3-person profile in the left, the subset of alternatives regarded inferior
to d by all is {a, b}, and in the right-hand profile {b}. So, the Bartholdi mono-
tonicity would require that the score of d is larger on the left than on the right
profile. This is not the case if the Borda count is applied: the score of d is 8 on
the left and 9 on the right. Hence, it would seem that conditions listed in the
theorem are sufficient, but not necessary for polynomial time manipulability.



Table 4. Two concepts of monotonicity

1 voter 1 voter 1 voter 1 voter 1 voter 1 voter

c e e c d d
e d d a e e
d c a e c a
b b b d b b
a a c b a c

From the practical point of view the complexity results should be understood
in their proper role: they are based on worst-case settings. In other words, if a
result implies that manipulating a given system is computationally intractable,
this does not mean that this should always or even in a majority of situations
be so. It only says that there are situations in which manipulating successfully
confronts the voter with an computationally intractable problem. These kinds
of situations may be extremely rare in practice.

5 Safe and unsafe manipulation

Preference misrepresentation does not always succeed. The most obvious expla-
nation for a failure is that the ceteris paribus condition that is used in defin-
ing manipulability did not hold in the situation at hand. Other participants
may have resorted to counter-measures so that the preference misrepresentation
backfired. Obviously the possibility of such failures plays a significant role in the
calculus of any voter pondering upon the choice of the voting strategy. Consider
the following example devised by Slinko and White [18] where uncoordinated
manipulation may backfire.

Table 5. Manipulation of Borda count may backfire

1 voter 1 voter 1 voter 1 voter

a a b c
b b c b
c c a a

With sincere voting b wins in Borda count. If either of the two left-most
voters votes a � c � b and ties are broken alphabetically a wins. However, if
they both manipulate, c (their worst) wins. The necessity (and precariousness)
of coordination is even more evident in Table 6, also devised by Slinko and White
[18] .

The Borda count yields b as the sincere voting outcome. If the 4-8 of the first
17 voters vote a � c � b, ceteris paribus, a wins. If 10-17 of the same voters vote
as indicated, the winner is c.



Table 6. Precariousness of manipulation

17 15 18 16 14 14

a a b b c c
b c a c a b
c b c a b a

These considerations motivate the introduction of the concept of safe manip-
ulation [18].

Definition 3 A strategic vote L is safe, iff for any subset of like-minded (iden-
tical preferences) voters the outcome resulting from their choosing L (rather than
their true preference) is no worse and for some subset even strictly better (in
terms of their true preferences) than the outcome of sincere voting.

In other words, manipulation is safe whenever no harm is done to the voter
by resorting to it. One could say that the manipulation is the weakly dominant
strategy for the voter. In line with the standard definition one again assumes
that outside the group of would-be manipulators the behaviour remains fixed,
i.e. no counter-measures are envisaged.

Theorem 5 ([18]). Let a nondictatorial and resolute social choice function F
be applied to a choice set of at least three alternatives. Then there exists a profile
and an individual so that the individual can safely manipulate F in the profile.

This theorem quashes the hopes of finding a reasonable sub-class of voting
rules that would be immune to the Gibbard-Sattertwaite result when the addi-
tional condition that manipulation be safe is imposed. Thus, manipulability –
even safe manipulability – seems to be a pervasive feature of voting rules.

Lest too drastic conclusions be drawn, it is worth emphasizing that the
Slinko-White theorem is an existence result. It states that for each nondicta-
torial and resolute rule a situation can be found where it is safely manipulable
barring counter-measures. No estimate of the probability of such situations is
given in the theorem.

Finally, an important assumption underlying the above manipulability re-
sults should be made explicit: the results assume that the voters have com-
plete information about the preference profile. Together with the assumption
of no counter-measures by other voters the complete information requirement
glosses over many considerations that the real world manipulability would seem
to depend upon. Which is another way of saying that the theoretical results are
precisely what they should be, viz. theoretical.

6 Conclusions

Thus we can briefly summarize the preceding remarks as follows:



– manipulability is a pervasive property among choice rules
– its practical importance hinges on several things
– information requirements of successful misrepresentation can be very de-

manding
– suitable situations may not be common
– computational requirements may be unrealistic, but these results are worst-

case ones
– misrepresentation may backfire
– nonetheless the Gibbard-Satterthwaite theorem applies to safe manipulation

as well

References

1. Aleskerov, F. T., Karabekian, D., Sanver, M. R. and Yakuba, V. (2011). On the
degree of manipulability of multi-valued social choice rules. Essays in Honor of
Hannu Nurmi. Homo Œconomicus 28, 205 - 216.

2. Aleskerov, F. T., Karabekian, D., Sanver, M. R. and Yakuba, V. (2012). On the
manipulability of voting rules: the case of 4 and 5 alternatives. Mathematical Social
Sciences 64, 67 - 73.

3. Aleskerov, F. T. and Kurbanov, E. (1999). Degree of manipulability of social choice
procedures. Pp. 13-27 in A. Alkan, C. Aliprantis and N. Yannelis, eds. Current
Trends in Economics. Berlin: Springer.

4. Bartholdi III, J. J.. Tovey, C. A. and Trick, M. A. (1989). The computational
difficulty of manipulating an election. Social Choice and Welfare 6, 227 - 241.

5. Bartholdi III, J. J.. Tovey, C. A. and Trick, M. A. (1989). Voting schemes for which
it can be difficult to tell who won the election.Social Choice and Welfare 6, 157 -
165.

6. Campbell, D. E. and Kelly, J. S. (2015), Anonymous, neutral and strategy-proof
rules on the Condorcet domain. Economics Letters 128, 79 - 82.

7. Conitzer, V. and Walsh, T. (forthcoming). Barriers to manipulation. In Brandt,
F., Conitzer, V., Endriss, U., Lang, J. and Procaccia, A. D. eds. Handbook of
Computational Social Choice. Cambridge: Cambridge University Press.

8. Farquharson, R. (1969). Theory of Voting. Oxford: Blackwell.
9. Feldman, A. and Serrano, R. (2006). Welfare Economics and Social Choice Theory.

2nd Edition. New York: Springer.
10. Gärdenfors, P. (1976), Manipulation of social choice functions, Journal of Economic

Theory 13, 217 - 228.
11. Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability. A Guide

to the Theory of NP-Completeness. San Francisco: W. H. Freeman.
12. Gibbard, A. (1973). Manipulation of voting schemes: a general result, Econometrica

41, 587 - 601.
13. Kelly, J. S. (1993). Almost all social rules are highly manipulable, but a few aren’t.

Social Choice and Welfare 10, 161 - 175.
14. Mayer, A. (2015). Private communication October 11, 2015.
15. Napel, S. (2015). Private communications October 7 - 9, 2015.
16. Nurmi, H. (1984). On taking preferences seriously, in Anckar, D. and Berndtson,

E. (eds.), Essays on Democratic Theory, Tampere: Finnpublishers, 1984.
17. Satterthwaite, M. (1975). Strategy-proofness and Arrow’s conditions, Journal of

Economic Theory 10, 187 - 217.



18. Slinko, A. and White, S. (2014). Is it ever safe to vote strategically? Social Choice
and Welfare 43, 403 - 427.

19. Taylor, A.D. (2005). Social Choice and the Mathematics of Manipulation. Cam-
bridge: Cambridge University Press.


