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Abstract
In this paper we study some properties of functions f which are analytic and nor-
malized (i.e. f (0) = 0 = f ′(0) − 1) such that satisfy the following subordination
relation

(
z f ′(z)
f (z)

− 1

)
≺ z

(1 − pz)(1 − qz)
,

where (p, q) ∈ [−1, 1] × [−1, 1]. These types of functions are starlike related to the
generalized Koebe function. Some of the features are: radius of starlikeness of order
γ ∈ [0, 1), image of f ({z : |z| < r})where r ∈ (0, 1), radius of convexity, estimation
of initial and logarithmic coefficients, and Fekete–Szegö problem.

Keywords Starlikeness · Convexity · Coefficient estimates · Fekete–Szegö problem ·
Logarithmic coefficients · Subordination · Koebe function

Mathematics Subject Classification 30C45

1 Introduction

Let A be the class of functions f analytic in the unit disc � = {z ∈ C : |z| < 1}
normalized by the condition f (0) = 0 = f ′(0)−1. Each function f belonging to the
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class A has the following form

f (z) = z +
∞∑
n=2

anz
n (z ∈ �). (1.1)

The subclass of A consisting of all univalent functions f in � will be denoted by
S. A function f ∈ A is subordinate to g ∈ A, written as f (z) ≺ g(z) or f ≺ g,
if there exists an analytic function w, known as a Schwarz function, with w(0) = 0
and |w(z)| ≤ |z|, such that f (z) = g(w(z)) for all z ∈ �. Moreover, if g ∈ S, then
f (z) ≺ g(z) ⇔ f (0) = g(0) and f (�) ⊂ g(�) (c.f. [25]).
For γ < 1, a function f ∈ A is called starlike of order γ if, and only if,

Re
{
z f ′(z)/ f (z)

}
> γ in �. The class of such functions will be denoted by S∗(γ ).

A function f ∈ A is called convex of order γ if, and only if, z f ′(z) ∈ S∗(γ ). Indeed,
f is convex of order γ if, and only if,

Re

{
1 + z f ′(z)

f (z)

}
> γ (z ∈ �).

We denote by K(γ ) the class of convex functions of order γ . The classes S∗(γ ) and
K(γ ) for 0 ≤ γ < 1 are subclasses of the univalent functions (e.g., see [4]) and the
function

Kγ (z) := z

(1 − z)2(1−γ )
= z +

∞∑
n=2

τn(γ )zn (z ∈ �, 0 ≤ γ < 1),

where

τn(γ ) :=
∏n

k=2(k − 2γ )

(n − 1)! (n ≥ 2),

is the well-known extremal function for the class S∗(γ ). Observe that K0(z) is the
famous standard Koebe function. In particular S∗ ≡ S∗(0) and K ≡ K(0) are the
classes of starlike and convex functions in �, respectively. It is well-known that K ⊂
S∗.

Another one of the generalizations of Koebe function was proposed by Gasper
[6]. Namely, he proposed some extension of the Löwner theory and de Branges’s
inequality, in which the natural extension of Koebe function is

kq(z) = z

(1 − z)(1 − qz)
(z ∈ �),

where −1 ≤ q ≤ 1. We now recall from [26], a two-parameter family of functions as
follows:
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kp,q(z) := z

(1 − pz)(1 − qz)
= z +

∞∑
n=2

Anz
n ((p, q) ∈ [−1, 1] × [−1, 1]),

(1.2)

where

An =
⎧⎨
⎩

pn−qn

p−q p �= q,

npn−1 p = q,

(1.3)

or

An = pn−1 + pn−2q + · · · + pqn−2 + qn−1 =
n−1∑
i=0

pn−i−1qi .

We note that k1,1 ≡ K0 and k1,q ≡ kq , therefore we understand the function kp,q
as it’s generalization. We also notice that the function kp,q is strictly related to the
generalized Chebyshev polynomials of the second kind and maps the unit disk� onto
a domain symmetric with respect to real axis. Here, we recall that the generalized
Chebyshev polynomials of the second kind Un(p, q; eiθ ) are defined by

�p,q(e
iθ ; z) = 1

(1 − pzeiθ )(1 − qze−iθ )
=

∞∑
n=0

Un(p, q; eiθ )zn (z ∈ �), (1.4)

where 0 ≤ θ ≤ 2π and −1 ≤ p, q ≤ 1. From (1.4) we have

U0(p, q; eiθ ) = 1, U1(p, q; eiθ ) = peiθ + qe−iθ

and

Un(p, q; eiθ ) = pn+1ei(n+1)θ − qn+1e−i(n+1)θ

peiθ − qe−iθ
(n = 2, 3, 4, . . .).

For more details about another properties of the function kp,q one can refer to [8, §2].
It was proved that [26, Proposition 1] for −1 ≤ p, q ≤ 1 (p and q at the same time

are not zero) the function kp,q is starlike of order γ1 ∈ [0, 1) in � where

γ1 := γ1(p, q) = 1

2

(
1 − |p|
1 + |p| + 1 − |q|

1 + |q|
)

and is convex in the disk |z| < r(p, q) where

r(p, q) = 2

x +√x2 − 4|p||q| with x = |p| + |q| +√|p|2 + |q|2 + 34|p||q|
2

.
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The above results are sharp if pq > 0. Also, the function kp,q is convex of order
γ2 ∈ [0, 1) in � (see [8, Lemma 2.4]) where

γ2 := γ2(p, q) = 2(1 − |pq|)
(1 + |p|)(1 + |q|) − 1 + |pq|

1 − |pq| (−1 ≤ p, q ≤ 1, |pq| �= 1).

It is easy to check that each of the results cited above is true with a wider assumption
(p, q) ∈ [−1, 1] × [−1, 1].

In [8] were given bounds of minimum and maximum of the real part of function
kp,q . We quote them in the following lemma.

Lemma 1.1 Let (p, q) ∈ [−1, 1] × [−1, 1] and |pq| �= 1. The values of

max
0≤t≤2π

Re
{
kp,q(e

it )
}

and min
0≤t≤2π

Re
{
kp,q(e

it )
}

are the following

min
0≤t≤2π

Re
{
kp,q(e

it )
}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
1+p f or q = 0,
−1
1+q f or p = 0,

−1
(1+p)(1+q)

f or pq < 0,
−1

(1+p)2
f or q = p,

(1+pq)2

2(1−pq)[2
√

pq(1−p2)(1−q2)−(p+q)(1−pq)] f or p, q ∈ (0, 1), p �= q,

−1
(1+p)(1+q)

f or p, q ∈ (−1, 0), p �= q.

max
0≤t≤2π

Re
{
kp,q(e

it )
}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1−p f or q = 0,
1

1−q f or p = 0,
1

(1−p)(1−q)
f or pq < 0,

1
(1−p)2

f or q = p,
1

(1−p)(1−q)
f or p, q ∈ (0, 1), p �= q,

−(1+pq)2

2(1−pq)[(p+q)(1−pq)+2
√

pq(1−p2)(1−q2)] f or p, q ∈ (−1, 0), p �= q.

In 1992, Ma and Minda (see [19]) introduced the class S∗(ϕ) as follows

S∗(ϕ) :=
{
f ∈ A : z f

′(z)
f (z)

≺ ϕ(z)

}
,

where ϕ is analytic univalent function with Re{ϕ(z)} > 0 (z ∈ �) and normalized
by ϕ(0) = 1 and ϕ′(0) > 0. For special choices of ϕ, the class S∗(ϕ) becomes the
well-known subclasses of the starlike functions. The class S∗((1+ Az)/(1+ Bz)) =:
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S∗[A, B] (−1 ≤ B < A ≤ 1) was introduced by Janowski in [7]. If we let ϕ(z) :=
(1+ (1−2γ )z)/(1− z), then the class S∗(ϕ) (0 ≤ γ < 1) becomes the familiar class
of the starlike functions of order γ . Letting ϕ(z) := (1+ (1− 2β)z)/(1− z) (β > 1)
we have the class M(β) which was introduced and investigated by Uralegaddi et al.
[35] as follows

M(β) :=
{
f ∈ A : Re

{
z f ′(z)
f (z)

}
< β

}
= S∗

(
1 + (1 − 2β)z

1 − z

)
.

Table 1 shows more details about some another subclasses of the starlike functions
with different choices for ϕ.

We remark that all of the above special cases for ϕ are univalent in �. But in 2011,
Dziok et al. [5] defined the class S∗

F related to the non-univalent function p̃(z) which
includes of all functions f ∈ A so that satisfy the following subordination relation

z f ′(z)
f (z)

≺ p̃(z),

where

p̃(z) = 1 + t2z2

1 − t z − t2z2
(t := (1 − √

5)/2).

The function p̃(t) is related to the Fibonacci numbers and maps the open unit disc �

onto a shell-like domain in the right-half plane.
Motivated by the above defined classes, we introduce a new subclass of the starlike

functions associated with the generalized Koebe function kp,q which is defined in
(1.2). We denote this subclass by S∗

k (p, q) which is defined as follows.

Definition 1.1 Let f ∈ A and (p, q) ∈ [−1, 1] × [−1, 1]. Then the function f ∈
S∗
k (p, q) if and only if

(
z f ′(z)
f (z)

− 1

)
≺ kp,q(z),

where kp,q is defined in (1.2).

With a simple calculation, we see that the function

f p,q (z) := z exp

(∫ z

0

kp,q (t)

t
dt

)
= z

(
1 − qz

1 − pz

) 1
p−q

= z + z2 + 1

2
(p + q + 1)z3 + 1

6

[
2p2 + p(2q + 3) + 2q2 + 3q + 1

]
z4 + O(z5),

(1.5)

belongs to the class S∗
k (p, q). Since the function f p,q is not univalent in � (see Fig.

1), we conclude that the members of the class S∗
k (p, q) may not be univalent in the
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whole disc �. Thus it will be interesting to find the radius of univalency of functions
f ∈ S∗

k (p, q).
Using the concept of subordination and univalency of the function kp,q(z) and also

by suitable choices for p and q, we describe some geometric properties of functions
f belonging to the class S∗

k (p, q).

Remark 1.1 Let kp,q be given by (1.2). Then we have:

(1) Suppose that p = q = 0. If f ∈ S∗
k (0, 0), i.e. f satisfies the following subordi-

nation relation
(
z f ′(z)
f (z)

− 1

)
≺ z, (1.6)

then

0 < Re

{
z f ′(z)
f (z)

}
< 2 (z ∈ �).

Thismeans that if f satisfies the above subordination relation (1.6), then it belongs
to the class S(0, 2), where the class S(γ, β) (0 ≤ γ < 1, β > 1) was recently
introduced by Kuroki and Owa [18].

(2) The case p = q = 1 in the equation (1.2) leads to the famous standard Koebe
function. It is well-known that this function maps the unit disk onto the complex
plane without the slit (−∞,−1/4] along the real axis. So if f ∈ S∗

k (1, 1), then it
is starlike respect to 3/4.

(3) Putting p = q = −1 in the equation (1.2) we have the famous function z/(1+ z)2

that maps the unit disk onto the complex plane without the slit [1/4,∞) along the
real axis. Consequently if f ∈ S∗

k (−1,−1), then is starlike respect to 5/4.
(4) If we set p = −q in the equation (1.2), then we have the function Fq(z) =

z
1−q2z2

. The function Fq(z)was studied in [27,28]. The function Fq(z) is a starlike

univalent when q2 < 1. Also Fq(�) = D(q), where

D(q) :=
{
x + iy ∈ C :

(
x2 + y2

)2 − x2

(1 − q2)2
− y2

(1 + q2)2
< 0

}

and

D(1) := {x + iy ∈ C : (∀t ∈ (−∞,−i/2] ∪ [i/2,∞)) [x + iy �= i t]} .

It should be noted that the curve

(
x2 + y2

)2 − x2

(1 − q2)2
− y2

(1 + q2)2
= 0 (x, y) �= (0, 0),

is the Booth lemniscate of elliptic type (see [27]). In the case |q| = 1, the function
Fq(z) becomes the function G(z) := z/(1 − z2) and thus G(�) = D(1). With a
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simple calculation if f ∈ S∗
k (−q, q), then

q2

q2 − 1
< Re

{
z f ′(z)
f (z)

}
<

2 − q2

1 − q2
(z ∈ �).

The function class that satisfy the last two-sided inequality was introduced by
Kargar et al. [10], and studied in [1,12,13].

(5) If we take p = 0 and q �= 0 in (1.2), then we get

kp,q ≡ kq(z) := z

1 − qz
(z ∈ �).

Thus by Lemma 1.1 we have

−1

1 + q
< Re

{
kq(z)

}
<

1

1 − q
(z ∈ �).

Furthermore, if f ∈ A belongs to the class S∗
k (0, q) ≡ S∗

k (q), then

q

1 + q
< Re

{
z f ′(z)
f (z)

}
<

2 − q

1 − q
(z ∈ �).

(6) Let pq < 0. If the function f ∈ A belongs to the class S∗
k (p, q), then

1 − 1

(1 + p)(1 + q)
< Re

{
z f ′(z)
f (z)

}
< 1 + 1

(1 − p)(1 − q)
(z ∈ �).

(7) Let p = q. If the function f ∈ A belongs to the class S∗
k (p, q), then

1 − 1

(1 + p)2
< Re

{
z f ′(z)
f (z)

}
< 1 + 1

(1 − p)2
(z ∈ �).

(8) Assume that p �= q and 0 < p, q < 1. If the function f ∈ A belongs to the class
S∗
k (p, q), then

1 + (1 + pq)2

2(1 − pq)[2√pq(1 − p2)(1 − q2) − (p + q)(1 − pq)]
< Re

{
z f ′(z)
f (z)

}
< 1 + 1

(1 − p)(1 − q)
.

(9) Let p �= q and −1 < p, q < 0. If the function f ∈ A belongs to the class
S∗
k (p, q), then

1 − 1

(1 + p)(1 + q)
< Re

{
z f ′(z)
f (z)

}
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< 1 − (1 + pq)2

2(1 − pq)[(p + q)(1 − pq) + 2
√
pq(1 − p2)(1 − q2)] .

The structure of the paper is as follows. In Sect. 2 we obtain some radius problems
for the class S∗

k (p, q). In Sect. 3 we estimate the initial coefficients and logarithmic
coefficients of the function f of the form (1.1) belonging to the class S∗

k (p, q).

2 The radius of starlikeness and convexity

The first result of this section is contained in the following theorem.

Theorem 2.1 Let (p, q) ∈ [−1, 1] × [−1, 1] and γ ∈ [0, 1). If f ∈ S∗
k (p, q), then f

is starlike of order γ in the disc |z| < rs(p, q, γ ) where

rs(p, q, γ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1−γ
1+(1−γ )|q| i f p = 0,

1−γ
1+(1−γ )|p| i f q = 0,

1+(1−γ )(|p|+|q|)−
√

1+2(1−γ )(|p|+|q|)+(1−γ )2(|p|−|q|)2
2(1−γ )||pq| i f pq �= 0.

(2.1)

The result is sharp.

Proof Let f ∈ S∗
k (p, q) and (p, q) ∈ [−1, 1] × [−1, 1]. Then from the definition of

the class we have
(
z f ′(z)
f (z)

− 1

)
≺ kp,q(z),

where kp,q(z) is defined by (1.2). Therefore by the subordination principle there exists
a Schwarz function ω : � → � with ω(0) = 0 and |ω(z)| < 1 such that

z f ′(z)
f (z)

− 1 = ω(z)

(1 − pω(z))(1 − qω(z))
(z ∈ �) (2.2)

and consequently:

Re

{
z f ′(z)
f (z)

}
= Re

{
1 + ω(z)

(1 − pω(z))(1 − qω(z))

}

= 1 + Re

{
ω(z)

(1 − pω(z))(1 − qω(z))

}
.

After application of the Schwarz lemma we have

Re

{
z f ′(z)
f (z)

}
≥ 1 − |ω(z)|

|(1 − pω(z))(1 − qω(z))| = 1 − |ω(z)|
|1 − pω(z)| · |1 − qω(z)|
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≥ 1 − |ω(z)|
(1 − |p||ω(z)|)(1 − |q||ω(z)|) ≥ 1 − |z|

(1 − |p||z|)(1 − |q||z|)
= 1 − r

(1 − |p|r)(1 − |q|r)
where r = |z| < 1. Consider now the function h(r) := 1− r

(1−|p|r)(1−|q|r) (r ∈ [0, 1]).
Its derivative has a form

h′(r) = − (1 − |p|r)(1 − |q|r) + r [|p|(1 − |q|r) + |q|(1 − |p|r)]
(1 − |p|r)2(1 − |q|r)2 ,

so under assumptions of theorem we have h′(r) < 0 for r ∈ [0, 1]. From this we find
that h(r) is a strictly decreasing function on the interval [0, 1] and it decreases from
h(0) = 1 to the value h(1) = 1− 1

(1−|p|)(1−|q|) < 0. Therefore we conclude that there
is only one root of the equation h(r) = γ in (0, 1). We can write this equation in the
following equivalent form:

(1 − γ )|pq|r2 − [1 + (1 − γ )(|p| + |q|)]r + 1 − γ = 0. (2.3)

Denote the polynomial in (2.3) by Q(r). In the case when p or q are zero, the equation
Q(r) = 0 is linear equation so it has one solution r = 1−γ

1+(1−γ )|q| or r = 1−γ
1+(1−γ )|p|

respectively. It is easy to see that in this both cases solutions are in the interval (0, 1).
Assume now that pq �= 0. Then Q is a quadratic polynomial with determinant of

the form

� = 1 + 2(1 − γ )(|p| + |q|) + (1 − γ )2(|p| − |q|)2

and we can see that this determinant is positive for all p, q; pq �= 0. In consequence,
there are two roots of Q:

r1 = 1 + (1 − γ )(|p| + |q|) −√1 + 2(1 − γ )(|p| + |q|) + (1 − γ )2(|p| − |q|)2
2(1 − γ )||pq|

and

r2 = 1 + (1 − γ )(|p| + |q|) +√1 + 2(1 − γ )(|p| + |q|) + (1 − γ )2(|p| − |q|)2
2(1 − γ )||pq|

with r1 < r2. Observe that Q(0) = 1 − γ > 0. From this it follows that the roots
r1, r2 both are positive numbers. Let us recall that the equation h(r) = γ has strictly
one solution in (0, 1) so the equation Q(r) = 0 has. From this it follows that this
solution is r1. Therefore f is starlike of order γ in the disc |z| < r < rs(p, q, γ )

where rs(p, q, γ ) is given by (2.1).
For the sharpness consider the function f p,q given by (1.5). It is easy to see that

z f ′
p,q(z)

f p,q(z)
= 1 + z

(1 − pz)(1 − qz)
(z ∈ �).
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With the same argument as above we get the result. Here the proof ends. ��
Putting γ = 0 in the previous theorem we obtain the following result:

Corollary 2.1 Let (p, q) ∈ [−1, 1] × [−1, 1] and γ ∈ [0, 1). If f ∈ S∗
k (p, q), then f

is starlike univalent in the disc |z| < rs(p, q) where

rs(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
1+|q| i f p = 0,

1
1+|p| i f q = 0,

1+(|p|+|q|)−
√

1+2(|p|+|q|)+(|p|−|q|)2
2|pq| i f pq �= 0.

The result is sharp.

Theorem 2.2 Let the number r ∈ (0, 1] be given and (p, q) ∈ [−1, 1] × [−1, 1]. If

|q| <
r |p| + r − 1

r2|p| − r
, (2.4)

then each function f ∈ S∗
k (p, q) maps a disc |z| < r onto a starlike domain. The

result is sharp.

Proof Let (p, q) ∈ [−1, 1]×[−1, 1] satisfy (2.4) for given r ∈ (0, 1]. After repeating
the same reasoning as in the proof of Theorem 2.1 we have that for f ∈ S∗

k (p, q) the
following condition holds

Re

{
z f ′(z)
f (z)

}
≥ 1 − |z|

(1 − |p||z|)(1 − |q||z|) (z ∈ �).

Moreover for |z| < r we obtain

Re

{
z f ′(z)
f (z)

}
≥ 1 − r

(1 − |p|r)(1 − |q|r) =: l(p, q).

It is easy to observe that under our assumptions, the function l(p, q) has positive
values. In conclusion we obtain the thesis. The function f p,q shows that the result is
sharp concluding the proof. ��

Now we shall find the range of parameters p, q that satisfy the assumptions of
Theorem 2.2. For given r ∈ (0, 1], let D(r) by the set of solutions of the inequality
(2.4). Observe that due to the form of this inequality, D(r)must be symmetrical about
both axes. Let us find its part lying in the first quadrant of the coordinate system. If
p ≥ 0 and q ≥ 0 then (2.4) reduces to the condition

q <
rp + r − 1

r2 p − r
.
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1/r−1/r

1/r

−1/r

Fig. 2 The set D(r)

Note that, for the homography q(p) = q = rp+r−1
r2 p−r

its vertical asymptote and hori-

zontal asymptote are given by the equations p = 1
r and q = 1

r , respectively.Moreover,
zero of this homography is the point p = 1

r − 1 < 1
r and 0 < q(0) = 1

r − 1 < 1
r .

The suitable set of the (p, q) is bounded by one of the branches of hyperbola and by
p-axis and q-axis (domain D1, Fig. 2).

Therefore taking into account the symmetry of the set D(r) we conclude that it has
a form as in Fig. 2.

Remark 2.1 Note that regardless of the value of r ∈ (0, 1), the asymptotes of the
hyperbolas, whose fragments are components of the boundary of D(r), do not have
any common points with the square [−1, 1]× [−1, 1]. Moreover, it is easy to observe
that the domain D(r) is growing if r −→ 0 and it is decreasing if r −→ 1. For this
reason, as the value of r changes, the location of the set D(r) relative to the square
[−1, 1] × [−1, 1] also changes. Note that the point (1, 1) is situated on the hyperbola
given by the equation q = rp+r−1

r2 p−r
if and only if r = 3−√

5
2 . For such r , also the other

three vertices of the square are located on the boundary of the set D(r). Hence, in this

case, as well as for all 0 < r < 3−√
5

2 , the whole square is covered by D(r).

Below we present various examples of the range of the parameters p, q that satisfy
the assumptions of Theorem 2.2, i.e. the sets D(r) ∩ [−1, 1] × [−1, 1] for selected
values of r (Figs. 3, 4, 5).

In view of Remark 2.1 we have the following result:

Corollary 2.2 Let 0 < r ≤ 3−√
5

2 = 0.381966 . . . be given. Then for each function
f ∈ S∗

k (p, q) the set f (|z| < r) is a starlike domain.



  146 Page 14 of 26 R. Kargar , L. Trojnar-Spelina

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(a)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(b)

Fig. 3 a The range of the parameters p, q for r = 1
3 , b The range of the parameters p, q for r = 3−√

5
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2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

(b)

Fig. 4 a The range of the parameters p, q for r = 0.45, b The range of the parameters p, q for r = 1
2

Theorem 2.3 Let a function f ∈ A belongs to the class S∗
k (p, q). Then f is convex

univalent in the disk |z| < δ where δ is the smallest positive root of equation

1 − r

(1 − |p|r)(1 − |q|r)
−
(
2|p||q|r + 1 + |p| + |q|
(1 − |p|r)(1 − |q|r) − r

+ |p|
1 − |p|r + |q|

1 − |q|r
)

r

1 − r2
= 0.

Proof Since f ∈ S∗
k (p, q), it follows that there exists a Schwarz function w such that

(2.2) holds true. A logarithmic differentiation of (2.2) gives

1 + z f ′′(z)
f ′(z)

= 1 + w(z)

(1 − pw(z))(1 − qw(z))
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Fig. 5 The range of the parameters p, q for r = 2
3

+
(

2pqw(z) + 1 − p − q

(1 − pw(z))(1 − qw(z)) + w(z)
+ p

1 − pw(z)
+ q

1 − qw(z)

)
zw′(z). (2.5)

The Schwarz-Pick lemma (see [24]) states that for a Schwarz functionw the following
sharp estimate holds

|w′(z)| ≤ 1 − |w(z)|2
1 − |z|2 (z ∈ �).

Also if w is a Schwarz function then |w(z)| ≤ |z| (cf. [4]). According to what came
above and using definition of convexity, it follows from (2.5) that

Re

{
1 + z f ′′(z)

f ′(z)

}
≥ 1 − |w(z)|

(1 − |p||w(z)|)(1 − |q||w(z)|)
−
(

2|p||q||w(z)| + 1 + |p| + |q|
(1 − |p||w(z)|)(1 − |q||w(z)|) − |w(z)| + |p|

1 − |p||w(z)| + |q|
1 − |q||w(z)|

)
|zw′(z)|

≥ 1 − r

(1 − |p|r)(1 − |q|r)
−
(
2|p||q|r + 1 + |p| + |q|
(1 − |p|r)(1 − |q|r) − r

+ |p|
1 − |p|r + |q|

1 − |q|r
)

r

1 − r2
=: F(p, q, r). (2.6)

It is a simple exercise that F(p, q, r) > 0 if and only if 0 < r ≤ δ where δ is the
smallest positive root of

1 − r

(1 − |p|r)(1 − |q|r) −
(
2|p||q|r + 1 + |p| + |q|
(1 − |p|r)(1 − |q|r) − r

+ |p|
1 − |p|r + |q|

1 − |q|r
)

r

1 − r2
= 0.
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This is the end of proof. ��

Remark 2.2 Let F(p, q, r) be defined as (2.6). It is easy to check that F(1/2, 1/2, r) =
0 has two real roots as follows

r1 ≈ −1.35474 and r2 ≈ 0.177348.

Therefore if f ∈ S∗
k (1/2, 1/2), then f is convex univalent in the disk |z| < r2. Also

if f ∈ S∗
k (0, 0), then f is convex univalent in the disk |z| < r3 where r3 ≈ 0.55496,

because F(0, 0, r) has three real roots

r3 ≈ 0.55496, r4 ≈ −0.80194 and r5 ≈ 2.2470.

3 On coefficients of f ∈ S∗
k (p,q)

Following, we shall estimate the initial coefficients and Fekete–Szegö problem for the
function f of the form (1.1) belonging to the class S∗

k (p, q). The following lemmas
will be useful.

Lemma 3.1 (Nehari [24, p. 172]) Let w be a Schwarz function of the form

w(z) =
∞∑
n=1

cnz
n (z ∈ �). (3.1)

Then

|c1| ≤ 1 and |cn| ≤ 1 − |c1|2 (n = 2, 3, . . .).

Lemma 3.2 (Prokhorov and Szynal [29]) If w is a Schwarz function of the form (3.1),
then for any complex numbers ρ and τ the following sharp estimate holds:

|c3 + ρc1c2 + τc31| ≤ H(ρ, τ ),
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where

H(ρ, τ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for (ρ, τ ) ∈ �1 ∪ �2

|ρ| for (ρ, τ ) ∈⋃7
k=3 �k;

2
3 (|ρ| + 1)

( |ρ|+1
3(|ρ|+1+τ)

) 1
2
for (ρ, τ ) ∈ �8 ∪ �9

τ
3

(
ρ2−4
ρ2−4τ

) 1
2

for (ρ, τ ) ∈ �10 ∪ �11 \ {±2, 1}

2
3 (|ρ| − 1)

( |ρ|−1
3(|ρ|−1−τ)

) 1
2
for(ρ, τ ) ∈ �12.

(3.2)

The extremal functions, up to rotations, are of the form

w(z) = z3, w(z) = z, w(z) = w0(z) = [(1 − λ)ε2 + λε1]z − ε1ε2z

1 − [(1 − λ)ε1 + λε2]z ,

w(z) = w1(z) = z(t1 − z)

1 − t1z
, w(z) = w2(z) = z(t2 + z)

1 + t2z
,

|ε1| = |ε2| = 1, ε1 = t0 − e
−iθ0
2 (a ∓ b), ε2 = −e

−iθ0
2 (ia ± b),

a = t0 cos
θ0

2
, b =

√
1 − t20 sin

2 θ0

2
, λ = b ± a

2b
,

t0 =
(
2τ(ρ2 + 2) − 3ρ2

3(τ − 1)(ρ2 − 4τ)

) 1
2

, t1 =
( |ρ| + 1

3(|ρ| + 1 + τ)

) 1
2

,

t2 =
( |ρ| − 1

3(|ρ| − 1 − τ)

) 1
2

, cos
θ0

2
= ρ

2

[
τ(ρ2 + 8) − 2(ρ2 + 2)

2τ(ρ2 + 2) − 3ρ2

]
.

The sets �i , i = 1, 2, . . . , 12 are defined as follows:

�1 =
{
(ρ, τ ) : |ρ| ≤ 1

2
, |τ | ≤ 1

}
,

�2 =
{
(ρ, τ ) : 1

2
≤ |ρ| ≤ 2,

4

27
(|ρ| + 1)3 − (|ρ| + 1) ≤ τ ≤ 1

}
,

�3 =
{
(ρ, τ ) : |ρ| ≤ 1

2
, τ ≤ −1

}
,

�4 =
{
(ρ, τ ) : |ρ| ≥ 1

2
, τ ≤ −2

3
(|ρ| + 1)

}
,

�5 = {(ρ, τ ) : |ρ| ≤ 2, τ ≥ 1} ,

�6 =
{
(ρ, τ ) : 2 ≤ |ρ| ≤ 4, τ ≥ 1

12
(ρ2 + 8)

}
,
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�7 =
{
(ρ, τ ) : |ρ| ≥ 4, τ ≥ 2

3
(|ρ| − 1)

}
,

�8 =
{
(ρ, τ ) : 1

2
≤ |ρ| ≤ 2,−2

3
(|ρ| + 1) ≤ τ ≤ 4

27
(|ρ| + 1)3 − (|ρ| + 1)

}
,

�9 =
{
(ρ, τ ) : |ρ| ≥ 2,−2

3
(|ρ| + 1) ≤ τ ≤ 2|ρ|(|ρ| + 1)

ρ2 + 2|ρ| + 4

}
,

�10 =
{
(ρ, τ ) : 2 ≤ |ρ| ≤ 4,

2|ρ|(|ρ| + 1)

ρ2 + 2|ρ| + 4
≤ τ ≤ 1

12
(ρ2 + 8)

}
,

�11 =
{
(ρ, τ ) : |ρ| ≥ 4,

2|ρ|(|ρ| + 1)

ρ2 + 2|ρ| + 4
≤ τ ≤ 2|ρ|(|ρ| − 1)

ρ2 − 2|ρ| + 4

}
,

�12 =
{
(ρ, τ ) : |ρ| ≥ 4,

2|ρ|(|ρ| − 1)

ρ2 − 2|ρ| + 4
≤ τ ≤ 2

3
(|ρ| − 1)

}
.

Lemma 3.3 (Keogh and Merkes [15]) Let w be a Schwarz function of the form (3.1).
Then for any complex number μ we have

|c2 − μc21| ≤ max{1, |μ|}.

The result is sharp for the functions w(z) = z2 or w(z) = z.

Theorem 3.1 Let f of the form (1.1) belong to the class S∗
k (p, q) where (p, q) ∈

[−1, 1] × [−1, 1]. Then the following inequalities for the coefficients of f hold

|a2| ≤ 1, (3.3)

|a3| ≤
⎧⎨
⎩

1
2 (1 + |p| + |q|), p �= q;
1
2 (1 + 2|p|), p = q

(3.4)

and

|a4| ≤ 1

3
H(ρ, τ ) (3.5)

with

ρ = 2(p + q) + 3

2
, τ = p2 + pq + q2 + 3

2
(p + q) + 1

2
,

where H(ρ, τ ) is of the form as in Lemma 3.2. Further

|a3 − μa22 | ≤ 1

2
max {1, |2μ − (p + q + 1)|} .

All inequalities are sharp.
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Proof Let f ∈ S∗
k (p, q). Then by Definition 1.1 and subordination principle, there

exists a Schwarz function w of the form (3.1) with |w(z)| < 1 such that

z f ′(z)
f (z)

− 1 = kp,q(w(z)) (z ∈ �),

where kp,q is defined in (1.2). Furthermore, since f has the form (1.1), it is easy to
see that

z f ′(z)
f (z)

− 1 = a2z +
(
2a3 − a22

)
z2 +

(
3a4 − 3a2a3 + a32

)
z3

+
(
4a5 − 2a23 − 4a2a4 + a22

(
4a3 − a22

))
z4 + · · · , (3.6)

Also, using (1.2) and (3.1), we get

kp,q(w(z)) = c1z +
(
c2 + A2c

2
1

)
z2 +

(
c3 + 2c1c2A2 + A3c

3
1

)
z3

+
(
c4 + A2

[
2c1c3 + c22

]
+ 3c21c2A3

)
z4 + · · · , (3.7)

where

A2 =
⎧⎨
⎩

p + q, p �= q;

2p, p = q
(3.8)

and

A3 =
⎧⎨
⎩

p2 + pq + q2, p �= q;

3p2, p = q,

(3.9)

are defined in (1.2). Comparing (3.6) and (3.7), gives us

a2 = c1 (3.10)

a3 = 1

2

(
c2 + (A2 + 1)c21

)
(3.11)

a4 = 1

3

[(
A3 + 3

2
A2 + 1

2

)
c31 +

(
2A2 + 3

2

)
c1c2 + c3

]
(3.12)

The inequality |a2| ≤ 1 follows directly from Lemma 3.1 and (3.10) with sharpness
for the function f p,q given by (1.5). From Lemma 3.1 we have
∣∣∣c2 + (A2 + 1)c21

∣∣∣ ≤ |c2| + (|A2| + 1)|c1|2 ≤ 1 − |c1|2 + |A2||c1|2 + |c1|2 ≤ 1 + |A2|.

Therefore using (3.11) and the last estimate give that |a3| ≤ 1
2 (1 + |A2|). Now by

(3.8) and since (p, q) ∈ [−1, 1] × [−1, 1], we get the desired inequality (3.4).
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Nowwe shall find the estimation of the fourth coefficient. For this we first use (3.8)
and (3.9) in (3.12) to obtain

a4 = 1

3

[
c3 +

(
2(p + q) + 3

2

)
c1c2 +

(
p2 + pq + q2 + 3

2
(p + q) + 1

2

)
c31

]
.

By setting

ρ = 2(p + q) + 3

2
, τ = p2 + pq + q2 + 3

2
(p + q) + 1

2

and by applying Lemma 3.2, we can write

|a4| ≤ 1

3
H(ρ, τ ),

where the function H is defined in (3.2). Thus the result is established.
Now let μ be a complex number. From (3.10) and (3.11) we get

a3 − μa22 = 1

2

[
c2 − (2μ − A2 − 1) c21

]
.

Therefore using Lemma 3.3 we obtain

|a3 − μa22 | = 1

2

∣∣∣c2 − (2μ − A2 − 1) c21

∣∣∣ ≤ 1

2
max {1, |2μ − A2 − 1|}

= 1

2
max {1, |2μ − (p + q + 1)|} .

It easy to see that equalities in (3.3)–(3.4) occur for the function f p,q defined by (1.5).
Sharpness the third inequality (3.5) also follows as an application of Lemma 3.2. This
completes the proof. ��

At the end of this paper we discuss the logarithmic coefficients γn := γn( f ) of the
functions f belonging to the class S∗

k (p, q). We recall that the logarithmic coefficients
γn of f ∈ S are defined with the following series expansion:

log

{
f (z)

z

}
=

∞∑
n=1

2γn( f )z
n (z ∈ �). (3.13)

The logarithmic coefficients have an important role in Geometric Function Theory.
We remark that Kayumov [14] by use of these coefficients and under an additional
condition solved the Brennan conjecture for conformal mappings or before de Branges
by use of this concept, was able to prove the famous Bieberbach’s conjecture [2]. We
recall that the logarithmic coefficients γn of every function f (z) = z+∑∞

n=2 anz
n ∈ S

satisfy the inequalities

|γ1| ≤ 1, |γ2| ≤ 1

2
(1 + 2e−2) ≈ 0.635
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and

∞∑
n=1

|γn|2 ≤ π2

6
.

The sharp estimate of |γn| when n ≥ 3 and f ∈ S is still open.
In the sequel, we derive some inequalities involving the logarithmic coefficients in

the class S∗
k (p, q).

Theorem 3.2 If a function f ∈ A belongs to the class S∗
k (p, q) and γn is the loga-

rithmic coefficient of f , then the following sharp inequality holds

|γ1| ≤ 1

2
, |γ2| ≤

⎧⎨
⎩

1
4 (|p| + |q|), p �= q&|p + q| ≥ 1;
1
2 |p|, p = q&|p| ≥ 1/2

and

|γ3| ≤ 1

6
H(ρ, τ )

with

ρ = 2A2, τ = A3,

where H(ρ, τ ) is of the form as in Lemma 3.2, andA2 andA3 are defined in (3.8) and
(3.9), respectively. All inequalities are sharp.

Proof Let the function f ∈ A belong to the class S∗
k (p, q). Then by definition we

have

z f ′(z)
f (z)

− 1 = z

(
log

{
f (z)

z

})′
≺ kp,q(z),

where kp,q is given by (1.2). Now, by (1.2) and (3.13), the last subordination relation
implies that

2
∞∑
n=1

nγnz
n ≺ z +

∞∑
n=2

Anz
n,

whereAn are defined in (1.3). By definition of subordination and (3.1) the last relation
implies that

2
∞∑
n=1

nγnz
n = w(z) +

∞∑
n=2

Anw
n(z)
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= c1z +
(
c2 + A2c

2
1

)
z2 +

(
c3 + 2c1c2A2 + A3c

3
1

)
z3 + · · · . (3.14)

It follows from (3.14) that

2γ1 = c1, 4γ2 = c2 + A2c
2
1

and

6γ3 = c3 + 2c1c2A2 + A3c
3
1.

By Lemma 3.1, we obtain 2|γ1| = |c1| ≤ 1 or |γ1| ≤ 1/2. Thus the first inequality
holds true. To obtain the second inequality by using Lemma 3.1 and (3.8) we get

4|γ2| = |c2 + A2c
2
1| ≤ |c2| + |A2||c1|2 ≤ 1 − |c1|2 + |A2||c1|2

= (|A2| − 1)|c1|2 + 1 ≤ (|A2| − 1) + 1 = |A2|

or

|γ2| ≤ 1

4
|A2|.

This proves the second inequality. To estimate the third inequality it is enough to set
ρ = 2A2 and τ = A3 in Lemma 3.2.

For the sharpness we consider the function f p,q defined by (1.5). A simple check
gives that

∞∑
n=1

2γn( f p,q)z
n = log

{
f p,q(z)

z

}
= 1

p − q
log

1 − qz

1 − pz

= z + 1

2
(p + q)z2 + 1

3
(p2 + pq + q2)z3

+ 1

4
(p3 + p2q + pq2 + q3)z4 + · · · .

Comparison of the corresponding coefficients and an application of Lemma 3.2 show
the result is sharp, therefore the proof is completed. ��
For the next result we need the following theorem. By using this theorem we give the
sharp inequality for sums involving logarithmic coefficients.

Theorem 3.3 Let the function f ∈ A belong to the class S∗
k (p, q) and kp,q(z) be

defined by (1.2). Then

log

{
f (z)

z

}
≺
∫ z

0

kp,q(t)

t
dt .



Starlike functions associated with the generalized Koebe function Page 23 of 26   146 

Moreover

K p,q(z) :=
∫ z

0

kp,q(t)

t
dt (z ∈ �), (3.15)

is a convex univalent function.

Proof The proof is similar to the proof of [9, Theorem 2.1], and thus we omit the
details. ��
By (1.2), it is easy to see that Kp,q(z) has the following series expansion:

Kp,q(z) =
∞∑
n=1

An

n
zn (A1 = 1), (3.16)

where An are defined in (1.3).

Theorem 3.4 Let the f ∈ A belong to the class S∗
k (p, q). Then the logarithmic coef-

ficients of f satisfy the following sharp inequality

∞∑
n=1

|γn|2 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4|p−q|2

∑∞
n=1

1
n2

|pn − qn|2, p �= q, p �= 0, q �= 0;
1

4|p|2 Li2(|p|2), p �= 0 = q;
1

4|q|2 Li2(|q|2), q �= 0 = p;
1

4(1−|p|2) , p = q �= ±1,

where Li2 is the well-known dilogarithm function.

Proof If a function f ∈ A belongs to the classS∗
k (p, q), then by the previous Theorem

3.3 we have

log

{
f (z)

z

}
≺
∫ z

0

kp,q(t)

t
dt . (3.17)

Replacing (3.13) and (3.16) into (3.17) we get

∞∑
n=1

2γnz
n ≺

∞∑
n=1

An

n
zn (A1 = 1). (3.18)

Applying Rogosinski’s theorem [31], we can obtain

4
∞∑
n=1

|γn|2 ≤
∞∑
n=1

1

n2
|An|2
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=
⎧⎨
⎩

1
|p−q|2

∑∞
n=1

1
n2

|pn − qn|2, p �= q;
∑∞

n=1 |p|2(n−1), p = q.

We consider the following cases:
Case 1. Let q = 0 �= p. Then we have

∞∑
n=1

|γn|2 ≤ 1

4|p|2
∞∑
n=1

1

n2
|p|2n = 1

4|p|2 Li2(|p|
2) (|p|2 ≤ 1),

where Li2 denotes the dilogarithm function.
Case 2. Let p = 0 �= q. In this case we have

∞∑
n=1

|γn|2 ≤ 1

4|q|2
∞∑
n=1

1

n2
|q|2n = 1

4|q|2 Li2(|q|2) (|q|2 ≤ 1).

Case 3. Let p = q �= ±1. Thus we get

∞∑
n=1

|γn|2 ≤ 1

4

∞∑
n=1

|p|2(n−1) = 1

4(1 − |p|2) .

For the sharpness, it is enough to consider the function

K̃ p,q(z) := z exp(Kp,q(z)),

where Kp,q is defined by (3.15). It is easily seen that K̃ p,q(z) ∈ S∗
k (p, q) and

γn(K̃ p,q(z)) = An

2n
.

Thus the proof is complete. ��

Remark 3.1 Since Kp,q(z) is convex univalent in �, it follows from (3.18) and
Rogosinski’s theorem that 2|γn| ≤ 1 or |γn| ≤ 1/2. This means that in Theorem
3.2 in the third inequality we have

|γ3| ≤ 1

6
H(ρ, τ ) ≤ 1

2
.

Therefore H(ρ, τ ) ≤ 3/2 and consequently (ρ, τ ) /∈ �1 ∪ �2 where ρ and τ are as
Theorem 3.2.
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