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Abstract

The designer’s exercise consists of designing a rights structure that formalizes the idea

of power distribution in society. A solution is implementable in largest consistent set

by a rights structure if there exists a rights structure such that for each preference

profile, the largest consistent set of the game played by agents coincides with the set

of outcomes that the solution would select for it. In a setting with transfers, every

Maskin monotonic solution is implementable. This finding implies that the class of

implementable solutions in core equilibria is unaltered by farsighted reasoning.
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1 Introduction

The challenge of implementation lies in designing a mechanism (i.e., game form) in which

the behavior of agents always coincides with the recommendation given by a social choice

rule (SCR). If such a mechanism exists, the SCR is implementable.

Thus, the key question is how to design an implementing mechanism so that its out-

comes can be predicted through the application of game theoretic solution concepts. Most

early studies of implementation focused on noncooperative solution concepts, such as the

Nash equilibrium and its refinements. As demonstrated in the seminal paper by Koray and

Yildiz (2018), an alternative to the noncooperative approach is to allow groups of agents

to coordinate their behaviors in a mutually beneficial manner. To move away from non-

cooperative modeling, the details of coalition formation are left unspecified. Consequently,

coalitions—not individuals—become the basic decision-making units. Here, the role of the

solution concept is to explain why, when, and which coalition forms and what it can achieve.

More importantly, the chosen coalitional solution concept is independent of the physical

structure under which coalition formation takes place (e.g., Chwe, 1994). This structure,

often defined by an effectivity relationship, specifies which coalitions can form given a status

quo outcome, and what they can achieve when they form (i.e., what new status quo outcomes

they can induce). From an implementation viewpoint, the effectivity relationship is the

design variable, playing the role of the mechanism.

Koray and Yildiz (2018) formalize this idea and study its implications. In their frame-

work, the implementation of an SCR is achieved by designing a generalization of the effec-

tivity relationship, introduced by Sertel (2001), called a rights structure.1 A rights structure

Γ consists of a state space S, an outcome function h that associates every state with an

outcome, and a code of rights γ. A code of rights specifies, for each pair of states (s, t), a

collection of coalitions γ(s, t) that are effective at moving from s to t. The rights structure

is more flexible than the effectivity function, as it allows the strategic options of coalitions

to depend on how the status quo outcome is reached (i.e., on the current state).

As a coalitional solution, Koray and Yildiz (2018) and Korpela et al (2018, 2020) adopt a

version of the core.2 State t directly dominates state s if a coalition K exists that is effective

at moving from s to t, and each member of K receives a larger payoff under t than they

1McQuillin and Sugden (2011) propose a similar notion, named the game in transition function form, as

a generalization of effectivity functions.
2Korpela et al. (2020) study the implementation in core by a code of rights. A code of rights is a

rights structure Γ = (S,h, γ) where S is the set of outcomes and h is the identity map. Korpela et al

(2018) generalize the characterization result of Koray and Yildiz (2018) by relaxing their preference domain

assumptions.
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receive under s. State s is a core state under a given rights structure and agents’ preferences

if no state that directly dominates it exists.

This classical solution is based on a myopic notion of dominance, which creates inevitable

problems. Ray and Vohra (2015) illustrate this point clearly in the following example using

two agents and three states. Suppose that only agent 1 is effective in moving from s to t,

i.e., s →{1} t, and only agent 2 is effective in moving from t to s′, i.e., t →{2} s′. Figure 1

depicts this example, where the payoffs to the agents in each of the states are in parentheses.

s t s’{1} {2}u u u- -

(1,1) (0,0) (10,10)

Figure 1. A rights structure where farsightedness makes a difference

The core consists of states s and s′. Although agent 1 has the power to move from s to

t, agent 1 has no incentive to do so: t does not directly dominate s. However, the stability

of s is based on myopic reasoning. If agent 1 was farsighted, the agent should move to t

because agent 2 (who is rational) will in turn move to s′. Thus, farsighted agents do not

necessarily move because they have a direct objection but because their moves can trigger

further changes, eventually leading to a better outcome. Clearly, the classic notion of core

does not incorporate any farsightedness.

To address this gap, two questions must be answered. Where does the objection process

lead? Can we be sure that the end state of the process creates an effective deterrence

for the deviating coalition? These questions, which form the scope of an expanding body

of literature on farsighted coalition formation, do not have a clear answer in the current

context.3 However, as noted by Koray and Yildiz (2018), the notion of equilibrium by these

authors’ is shortsighted.

Harsanyi (1974), in his critique of the vNM stable set (von Neumann and Morgenstern,

1947), suggests replacing the notion of direct dominance with “indirect dominance”. In

defining his largest consistent set (LCS), Chwe (1994) formalizes a version of Harsanyi’s

indirect dominance. State t indirectly dominates s if t can replace s via a sequence of “moves”

such that, at each move, the effective moving coalition prefers the outcome associated with

t (the final state) to the outcome it would obtain if it decided not to move (for a formal

definition, see Definition 3). Figure 1 shows that s′ indirectly dominates s. This is so because

agent 1 can move from s to t, and agent 1’s payoff at s′ is larger than the payoff at s, and

3See, for example, Chwe (1994), Vartiainen (2011), Vohra and Ray (2019), and Dutta and Vohra (2017).
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agent 2 can move from t to s′. Additionally, agent 2’s payoff at s′ is larger than the payoff

at t. Thus, indirect dominance captures the fact that farsighted agents consider the final

states to which their moves may lead.

Based on this notion of indirect dominance, Chwe (1994) suggests a new concept of

stability, namely, the largest consistent set (LCS), which has the advantages of “ruling out

with confidence” and being non-empty under weak conditions.4 To check whether state s is

stable, suppose that coalition K deviates to state t. Further deviations from t may occur,

which end up at s′, where s′ indirectly dominates t. Alternatively, no further deviations

from t may occur, making t = s′ the final state. In either case, the final state, s′, should

itself be stable. If a member of the deviating coalition does not prefer s′ to the original

state, s, then the deviation is deterred. State s is stable if all deviations are deterred. Since

whether a state is stable depends on whether other stable states exist, a set of stable states

is called a consistent set. Although many consistent sets may exist, the LCS uniquely exists;

that is, a consistent set that includes all others. If state s is not contained in the LCS, the

interpretation is that s cannot be stable; there is no consistent story behind s.

For this reason, and given the lack of clear theoretical guidance as to which farsighted

stability solution to follow, we adopt the LCS as a coalitional solution. The implementation

problem consists of designing a rights structure, Γ, with the property that, for each profile of

agents’ preferences, the outcome associated with the LCS always coincides with the recom-

mendation of the given SCR. If such a rights structure exists, the SCR is LCS-implementable

by a rights structure.

We investigate the LCS-implementation of SCRs in environments with transfers. Koray

and Yildiz (2018) show that an external myopic stability property on the implementing rights

structure can assure the convergence to core equilibria. This property requires that there is

a myopic improvement path from each non-equilibrium to each equilibrium state. Rather

than imposing an external stability property, we specify an initial state and require farsighted

improvement paths from the initial state to equilibrium states. There are situations in which

the initial state may be naturally determined. For instance, the initial state can be the no-

trade allocation in a house allocation problem, no production in a Cournot oligopoly market,

and so on. We also assume that agents’ preferences are continuous and money monotonic

(following Morimoto and Serizawa, 2015).

Although (Maskin) monotonicity is generally not necessary for LCS-implementation via

rights structures, we show that it is sufficient. This result is obtained by designing a rights

4A growing body of literature studies farsighted stability in coalitional games, which includes Aumann

and Myerson (1988), Xue (1998), Diamantoudi and Xue (2003), Herings et al. (2004), Jordan (2006), Ray

(2007), Mauleon et al. (2011), Vartiainen (2011), Kimya (2015), Ray and Vohra (2015), Bloch and van den

Nouweland (2020), Dutta and Vohra (2017), Dutta and Vartiainen (2019), and Vohra and Ray (2019).
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structure satisfying the following convergence property : Every stable state directly dominates

the initial state. Therefore, we establish a direct convergence from the initial (unstable) state

to the stable states, which is particularly important in our design framework. This result

relies on the domain assumption that each agent considers the outcome corresponding to the

initial state to be worse than any outcome in the range of the SCR. For example, in a house

allocation problem, this would be satisfied by requiring traders to be (discernibly) strictly

better off when they trade.

The sufficiency of (Maskin) monotonicity is surprising because variants of this condition

are at the heart of the characterization results of Koray and Yildiz (2018) and Korpela et

al. (2018), who adopt a version of the core as a solution concept. Specifically, Korpela et al

(2018) show that monotinicity, when combined with unanimity, is necessary and sufficient

for implementation in core by a rights structure. Thus, the desire to design rights structures

that are immune to farsighted behavior leaves the class of SCRs that are implementable in

core equilibria unchanged in an environment with transfers.5

Finally, we also show that monotonicity fully characterizes the class of LCS-implementable

social choice functions (SCFs)—an SCF is a single-valued SCR. This result is both inter-

esting per se and also useful in providing a full characterization of various refinements and

modifications to which the definition of LCS has led (for further discussion see subsection

3.2). Indeed, although there is no clear theoretical guidance as to which farsighted stabil-

ity solution to follow, it is well accepted in the literature on coalition formation that any

farsighted solution concept needs to pass the minimal test of the LCS (see, e.g., Dutta and

Vartiainen, 2020).

The remainder of the paper is divided into four sections. Section 2 sets out the theoretical

framework and outlines the basic model. Section 3 provides our characterization results.

Section 4 concludes.

2 Preliminaries

We consider an environment with transfers, which consists of a collection of n agents (we

write N for the set of agents), a set of possible types Θ, and a (nonempty) set of outcomes

Z ≡D ×Rn. D is the set of potential social decisions, with d ∈D as a typical element. Rn is

the set of transfers to the agents, with t = (t1, ..., tn) ∈ Rn as a typical transfer profile. For

notational simplicity, sometimes we write d for outcome (d,0, ...,0) ∈ Z. For any agent i’s

transfer ti, (0−i, ti) denotes a transfer profile that assigns ti to agent i and zero to everyone

else.

5The rights structure devised in Theorem 1 also implements F in core equilibria.
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Agent i’s preferences are represented by a utility function: ui ∶ Z×Θ→ R. ui (x, θ) is agent

i’s utility at type θ when the outcome is x. Given type θ and outcome x, let agent i’s lower

contour set of ui (⋅, θ) at x be defined by Li (x, θ) ≡ {y ∈ Z ∣ui (x, θ) ≥ ui (y, θ)}, and agent i’s

strict lower contour set of ui (⋅, θ) at x be defined by SLi (x, θ) = {y ∈ Z ∣ui (x, θ) > ui (y, θ)}.
Fix any i ∈ N , any θ, θ′ ∈ Θ and any x ∈ Z. We say that θ′ is a monotonic transformation

of θ at x for agent i if Li(x, θ) ⊆ Li(x, θ′). If θ′ is a monotonic transformation of θ at x for

each agent i ∈ N , we say that θ′ is a monotonic transformation of θ at x.

For each agent i ∈ N , agent i’s utility function ui ∶ Z ×Θ → R is assumed to satisfy the

following properties.

Definition 1 Agent i’s utility function ui ∶ Z × Θ → R is money monotonic provided that

for each θ ∈ Θ, each d ∈D, each t−i ∈ Rn−1 and each ti, t′i ∈ R, if ti < t′i, then ui (d, (t−i, t′i) , θ) >
ui (d, (t−i, ti) , θ).

Definition 2 Agent i’s utility function ui ∶ Z × Θ → R is continuous provided that for

each θ ∈ Θ and each x ∈ Z, the sets Li (x, θ) and Ui (x, θ) are closed, where Ui (x, θ) =
{y ∈ Z ∣ui (y, θ) ≥ ui (x, θ)}.

We focus on complete information environments in which the true type is common knowl-

edge among agents but unknown to the designer. The power set of N is denoted by N , and

N0 ≡ N − {∅} is the set of all nonempty subsets of N . Each group of agents, K (in N0), is a

coalition.

The goal of the designer is to implement a social choice rule (SCR) F ∶ Θ → Z defined

by ∅ ≠ F (θ) ⊆ Z for every θ ∈ Θ. We refer to x ∈ F (θ) as the F -optimal outcome at θ. F is

said to be a social choice function (SCF) if F (θ) ∈ Z for every θ ∈ Θ.

Throughout the paper, we make the following assumption.

Assumption 1 There exists an outcome σ ∈ Z such that for all θ ∈ Θ, ui (x, θ) > ui (σ, θ)
for all i ∈ N and all x ∈ F (θ).

Assumption 1 is a requirement that σ is such that each agent considers it to be worse

than any F -optimal outcome at θ. For example, in a house allocation problem, this would

be satisfied by requiring all agents to gain from trade (at each state). Further, if, in addition

to money monotonicity and continuity, agents’ utility functions satisfy Finiteness and Weak

Desirability of Objects, the Minimum Price Walrasian SCF satisfies Assumption 1 by setting

σ = (0,0) where all agents have zero amounts of all goods (see Morimoto and Serizawa, 2015).

Assumption 1 is far from being innocuous. For instance, when the objective of the

designer is to sell an indivisible asset at auction, there is no natural outcome that could
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be selected as σ. For instance, it cannot be set equal to no-trade allocation (0,0) because

agents who loose the auction may have a utility level equal to the utility level enjoyed before

participating in the auction, that is, equal to the utility level enjoyed under σ. However, σ

can be part of the design and the auction designer can require that all participants pay a

fixed participation fee F > 0, which will be refunded at the end of the auction. In this case,

and provided that agents’ utility is quasilinear, Assumption 1 is satisfied because σ = (0,−F )
and agents who loose the auction will have a utility level greater than the utility at σ.

In our analysis, σ plays the role of the initial state and allow us to devise an implementing

rights structure in which every stable state ”inderectly dominates” σ. As discussed in the

introduction, there are situations in which σ is naturally determined, and it cannot be chosen

by the designer.

To implement his goal, the designer devises rights structure Γ, which is a triplet, (S,h, γ),
where:

• S is the state space;

• h ∶ S → Z is the outcome function; and

• γ is a code of rights, which is a (possibly empty) correspondence γ ∶ S × S ↠ N .

Code of rights γ specifies, for each pair of states (s, t), a family of coalitions γ (s, t)
entitled to approve a change from state s to t.

To capture farsightedness, Chwe (1994) formalizes the following notion of “indirect dom-

inance” relation—a notion informally introduced by Harsanyi (1974) in his criticism of the

vNM stable set (von Neumann and Morgenstern, 1947), which is based on “direct domi-

nance.” For all θ ∈ Θ and K ∈ N0, let x uθK y denote ui (x, θ) > ui (y, θ) for all i ∈K.

Definition 3 A state s is indirectly dominated by s′ at (Γ, θ), or s′ ≫(Γ,θ) s, if there exist

s0, s1, ..., sJ in S (where s0 = s and sJ = s′) and K0,K1, ...,KJ−1 in N0 such that Kj−1 ∈
γ (sj−1, sj) and h (s′) uθKj−1

h (sj−1) for j = 1, ..., J . A state s is directly dominated by s′ at

(Γ, θ) if J = 1.

Based on this indirect dominance, the LCS of Chwe (1994) can be defined as follows.6

Definition 4 (Chwe, 1994) For any Γ and any θ ∈ Θ, a set T ⊆ S is a consistent set at

(Γ, θ) if the following statement holds: s ∈ T ⇐⇒ for all t ∈ S and all K ∈ N0 such that

6Given a game, (Γ, θ), where Γ is such that S is the set of outcomes and h is the identity map, Chwe shows

that if S is countable and contains no infinite sequence s1, s2, ... such that j > i implies that sj ≫
(Γ,θ) si,

then LCS (Γ, θ) is nonempty. This result has been extended by Xue (1997) by removing the countability

requirement.
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K ∈ γ (s, t), there exists s′ ∈ T such that not h (s′) uθK h (s), where s′ = t or s′ ≫(Γ,θ) t. The

LCS at (Γ, θ), denoted by LCS (Γ, θ), is the unique maximal consistent set at (Γ, θ) with

respect to set inclusion. We refer to s ∈ LCS (Γ, θ) as a stable state (at (Γ, θ)).

The LCS is (internally) consistent in the sense that a deviation by coalition K from state

s in the LCS to state t is deterred, if subsequent deviations by other coalitions from t could

lead to a state s′ in the LCS which indirectly dominates t and at which not all members of

K are strictly better off with respect to s. Moreover, the LCS is (externally) consistent in

the sense that a defection from a state outside the LCS cannot be deterred. When the set

of states S is finite or countably infinite, the LCS is also externally stable in the sense that

every state not in the LCS is indirectly dominated by another state in the LCS (Chwe, 1994;

Proposition 2). In the context of stability, Chwe’s interpretation of indirect dominance is

that if s′ ≫(Γ,θ) t and s′ is presumed to be stable, then it is possible, not certain, that the

coalitions K0, ...,KJ−1 will move from t to s′.

Our notion of implementation can be stated as follows.

Definition 5 A rights structure Γ implements F in the LCS, or simply LCS-implements F ,

if F (θ) = h ○LCS (Γ, θ) for all θ ∈ Θ, where h ○LCS (Γ, θ) = {h (s) ∣s ∈ LCS (Γ, θ)}. If such

a Γ exists, then F is LCS-implementable by a rights structure.

3 Characterization results

A well-known condition in implementation theory is (Maskin) monotonicity (Maskin, 1999).

This condition states that if x is an F -optimal outcome at θ, and θ′ is a monotonic trans-

formation of θ at x, then x must be an F -optimal outcome at θ′. Formally:

Definition 6 F is monotonic provided that for all θ, θ′ ∈ Θ, if x ∈ F (θ) and

Li(x, θ) ⊆ Li(x, θ′) for all i ∈ N ,

then x ∈ F (θ′).

Remark 1 Observe that since the agents’ preferences are continuous and money monotonic,

we have

SLi(x, θ) ⊆ SLi(x, θ′) ⇐⇒ Li(x, θ) ⊆ Li(x, θ′),

for all θ, θ′ ∈ Θ, all x ∈ Z and all i ∈ N .

Monotonicity is not, in general, necessary for LCS-implementation by a rights structure.

The reason is that monotonicity is a condition formulated for Nash implementation. In
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contrast to the definition of consistent set, which is a setwise definition, the definition of

Nash equilibrium is based on a pointwise definition. To illustrate this, we construct a non-

monotonic SCR that is LCS-implementable in a quasilinear environment. An environment

Θ is quasilinear when for each θ ∈ Θ, each i ∈ N , and each (d, t) ∈ Z, agent i’s utility

ui ((d, t) , θ) = vi (d, θ) + ti

is linear in ti.

Example 1 Let Θ = {θ, θ′} be a quasilinear environment. Suppose that n = 2 and that

D = {v,w, x, y, z, σ}. Agents’ rankings of the outcomes in D are represented in the table

below:

v1 (⋅, θ) = v1 (⋅, θ′) v2 (⋅, θ) v2 (⋅, θ′)
v 2 1 3

w 0 3 2

z 4 4 4

y 3 2 1

x 1 -2 0

σ -4 -4 -4

Suppose that F is such that for all θ̂ ∈ Θ and all (d, t) ∈ F (θ̂), it holds that t = 0. Define F

on Θ by F (θ) = {v,w, x, z} and F (θ′) = {v, z}. Note that Assumption 1 is satisfied because

for all θ̂ ∈ Θ, ui (d, θ̂) > ui (σ, θ̂) for all i ∈ N and all d ∈ F (θ̂).
To see that F is not monotonic, assume, to the contrary, that it is monotonic. Since x ∈
F (θ) /F (θ′), monotonicity implies that there exists agent i and outcome (d, t) such that

vi (x, θ) ≥ vi (d, θ) + ti

and

vi (d, θ′) + ti > vi (x, θ′) .

By construction, it must be that agent i coincides with agent 2. Combining these two

inequalities and simplifying produces

v2 (x, θ) − v2 (x, θ′) > v2 (d, θ) − v2 (d, θ′) .

However, by construction, it holds that

v2 (x, θ) − v2 (x, θ′) ≤ v2 (d′, θ) − v2 (d′, θ′)

9



for all d′ ∈D, which is a contradiction. Thus, F is not monotonic.

However, F is LCS-implementable by a rights structure. To see this, let us consider the

following rights structure Γ = (S,h, γ) where the state space is S =D, the outcome function

h is the identity map, and the code of rights γ ∶ S × S ↠ N is defined as follows:

γ (σ,x) = γ (x, y) = {1} and γ (y, z) = γ (y,w) = γ (w, v) = {2} ,

and empty in all other cases. Figure 2 below gives a graphical illustration of the implementing

rights structure.

σ x y

z

w

vu u u
u

u
u- - �

��
�
��
��*

HH
HHH

HHHj ��
�
��
�
��*

{1} {1}

{2}

{2}

{2}

Figure 2. The implementing rights structure

We can now check that LCS (Γ, θ) = F (θ) = {v,w, x, z} and LCS (Γ, θ′) = F (θ′) = {v, z}.
Note that states v and z are stable since no coalition can deviate from these states, regardless

of type.

Let us first consider type θ. State w is stable since agent 2 does not benefit from deviating

to stable state v. State y is not stable since it is dominated both by stable state z and by

stable state w—y cannot be dominated by v because v does not dominate w. State x is

stable since agent 1’s deviation to y is deterred by the further deviation of agent 2 to stable

state w. σ cannot be stable since it is dominated by x, z and w—it cannot be dominated by

v because v does not dominate w. We conclude that LCS (Γ, θ) = {v,w, x, z}.
Next, let us consider type θ′. In this case, given that every outcome in D/ {v, z} is indirectly

dominated by both z and v, we conclude that LCS (Γ, θ′) = {v, z}.

3.1 Monotonicity is sufficient for LCS-implementation of SCRs

Though monotonicity is not, in general, a necessary condition, we show that it is sufficient

for LCS-implementation of SCRs. This is an interesting result. The reason is that the

implementation of SCRs in core equilibria by a rights structure can be made robust to

farsighted reasoning. This is because variants of monotonicity fully characterize the class of
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SCRs that are implementable in core equilibria via rights structure (Koray and Yildiz, 2018;

Korpela et al., 2018) and in our implementing rights structure the set of core equilibria

coincides with the LCS at each state. Thus, the desire to design rights structures that

are immune to farsighted behavior leaves the class of SCRs that are implementable in core

equilibria unchanged.
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Figure 3. An illustration of the implementing rights structure.

Let us give an intuitive explanation of the implementing rights structure Γ, which is

shown in Figure 3, and how we use monotonicity.

Recall that σ is the initial outcome, which is exogenously given. For this reason, we set

σ as the origin of our ”star graph.” The outcome function h maps σ into itself. The code of

rights, γ, simply allows only grand coalition N to move away from σ to points of the graph

of F , i.e., {(θ, x) ∈ Θ ×Z ∣x ∈ F (θ) , θ ∈ Θ}, and from any point of this set back to σ. The

outcome function h maps point (θ, x) of the graph of F into outcome x.

An important property of the designed rights structure is that no coalition has the power

to directly move from a point of the graph of F to another point of the graph. However, any

two points of the graph of F are connected via state σ—see Figure 3.

Let us consider state (θ, x). Suppose that outcome (d, t) is in agent i’s strict lower

contour set of ui (⋅, θ) at x. Given that ui (x, θ) > ui ((d, t) , θ) and that ui is continuous,

there exists an arbitrarily small transfer t̂i such that

ui (x, θ) > ui ((d, t + (0−i, t̂i)) , θ) > ui ((d, t) , θ) .

These inequalities allow us to construct an infinite sequence of states s0, s1, ..., sk, ... such

11



that the outcome function h maps each state sk into (d, t + (0−i, k
k+1 t̂i)). This implies that

agent i’s payoff at state sk is ui ((d, ti + k
k+1 t̂i) , ⋅).7 By money monotonicity, the sequence

s0, s1, ..., sk, ... is a strictly increasing sequence of payoffs for agent i, regardless of the true

type. This is an important feature because it allows us to design code of rights γ in a way

that no state of type sk is stable.

Indeed, the devised code of rights γ allows only agent i to move from sk to sk+1, for

k = 0,1,2, ..., from (θ, x) to s0 and from s0 back to (θ, x), and it does not allow any coalition

to move from sk+1 to sk, for k = 0,1,2, ...—see Figure 3.

Since agent i has the incentive and power to move from state sk to sk+1, for k = 0,1,2, ...,

it follows that no state of type sk, for k = 0,1,2, ..., is stable. That is, no state of the sequence

s0, s1, ..., sk, ... can be part of the LCS, irrespective of the true type. This construction is

repeated for any outcome in agent i’s strict lower contour set of ui (⋅, θ) at x, for any agent

i and any state (θ, x) in the graph of F .

Let us now briefly discuss how monotonicity is used to obtain our characterization result.

Let θ be the true type.

Take any (θ′, x′) ∈ LCS (Γ, θ). Suppose that x′ ∉ F (θ). Monotonicity, in combination

with Remark 1, implies that there exists an agent i that experiences a preference reversal of

the form ui (x′, θ′) > ui (y, θ′) and ui (y, θ) ≥ ui (x′, θ). Since y is an element of agent i’s strict

lower contour set of ui (⋅, θ′) at x′, it follows that there exists a state s′0 such that agent i has

the power to move the state from (θ′, x′) to s′0, where h (s′0) = y, and from s′0 back to (θ′, x′),
by construction. Since (θ′, x′) ∈ LCS (Γ, θ), the move from (θ′, x′) to s′0 must be deterred,

in the sense that a deviation of agent i to s′0 should lead, via indirect dominance, to another

state t ∈ LCS (Γ, θ) in which agent i does not strictly prefer h (t) to h (θ′, x′), according to

his ranking at θ.8 However, by construction of the rights structure, the fact that t indirectly

dominates s′0 means that the sequence of states and the sequence of coalitions leading to t

are such that the grand coalition moves from (θ′, x′) to σ and that everyone strictly prefers

h (t) to h (θ′, x′), which contradicts the fact that the move from (θ′, x′) must be deterred.

The result can be stated as follows.

Theorem 1 Let F satisfy Assumption 1. If F is monotonic, then F is LCS-implementable

by a rights structure.

Proof. Suppose that F is monotonic. We now construct the implementing rights structure

Γ = (S,h, γ). Fix any θ ∈ Θ. State space Sθ is

Sθ = {(θ, x) ∣x ∈ F (θ)} ∪ T θ,
7Note that for k = 0, ui (s0, ⋅) = ui ((d, ti) , ⋅).
8Note that t ≠ s′0 since LCS (Γ, θ) is contained in the graph of F .
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where T θ is defined by

T θ = {((d, t) , x, θ, i, k) ∣ (d, t) ∈ SLi (x, θ) for i ∈ N , k ∈ Z+ and x ∈ F (θ)} , (1)

where Z+ denotes the set of non-negative integers. The outcome corresponding to (θ, x) is

x. To define the outcome corresponding to state ((d, t) , x, θ, i, k), we fix an arbitrarily small

transfer t̂i such that

ui (x, θ) > ui ((d, t) + (0−i, t̂i) , θ) > ui ((d, t) , θ) . (2)

This transfer exists because ui is continuous. The outcome corresponding to ((d, t) , x, θ, i, k)
is hθ ((d, t) , x, θ, i, k) = (d, t + (0−i, k

k+1 t̂i)), so that agent i’s outcome is (d, ti + k
k+1 t̂i). This

definition is important because it rules out state ((d, t) , x, θ, i, k) as a stable state, irrespective

of the true type. To see this, let us first define code of rights γθ as follows:

(1) For all (y, x, θ, i,0) , (θ, x) ∈ Sθ, γθ ((θ, x) , (y, x, θ, i,0)) = γθ ((y, x, θ, i,0) , (θ, x)) = {i}.

(2) For all (y, x, θ, i, k) , (y, x, θ, i, k + 1) ∈ T θ, γθ ((y, x, θ, i, k) , (y, x, θ, i, k + 1)) = {i}.

(3) Otherwise, it is empty.

Let x ∈ F (θ) and (d, t) ∈ SLi (x, θ). We allow only agent i to be effective in moving from

(θ, x) to ((d, t) , x, θ, i,0), from ((d, t) , x, θ, i,0) back to (θ, x), and from ((d, t) , x, θ, i, k) to

((d, t) , x, θ, i, k + 1). In all other cases, no coalition is effective. To see that no state of the

form ((d, t) , x, θ, i, k) can be a stable state, it suffices to observe that the money monotonicity

of agent i’s utility function assures that

ui (d, ti +
k + 1

k + 2
t̂i, θ

′) > ui (d, ti +
k

k + 1
t̂i, θ

′)

for every non-negative integer k ≥ 0 and every type θ′ ∈ Θ, so that agent i always has the

power as well as incentive to move from ((d, t) , x, θ, i, k) to ((d, t) , x, θ, i, k + 1).
Let us define rights structure Γ = (S,h, γ) as follows. We define state space S by

S = ∪θ∈ΘSθ ∪ {σ} .

We define outcome function h ∶ S → Z by h (s) = hθ (s) for all s ∈ Sθ and all θ ∈ Θ, and

h (σ) = σ. Define the code of rights γ ∶ S × S ↠ N as follows. For all s, s′ ∈ S,

(A) If s, s′ ∈ Sθ for some θ ∈ Θ, then γ (s, s′) = γθ (s, s′).

(B) For all θ ∈ Θ, if s = σ and s′ = (θ, x), then γ (σ, (θ, x)) = γ ((θ, x) , σ) = N .

(C) Otherwise, γ (s, s′) is empty.
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Let us show that Γ LCS-implements F . Suppose that θ is the true type.

Let us first show that {(θ, x) ∣x ∈ F (θ)} ⊆ LCS (Γ, θ). Fix any {(θ, x)}. Let us show that

it is a consistent set. By definition of γ, there are only two possible ways to move away from

(θ, x).
First, suppose that N moves to σ. Since N ∈ γ (σ, (θ, x)), by the definition of γ, and

since ui (x, θ) > ui (σ, θ) for all i ∈ N , by Assumption 1, it follows that coalition N has the

incentive as well as power to go back to (θ, x).
Second, suppose that agent i moves from (θ, x) to (y, x, θ, i,0). Since y ∈ SLi(x, θ), by

construction of T θ, agent i has the incentive as well as power to go back to (θ, x)—note that

{i} = γ ((y, x, θ, i,0) , (θ, x)) by construction.

Since the choice of (y, x, θ, i,0) is arbitrary, it follows that {(θ, x)} is a consistent set

of (Γ, θ). Since the choice of x ∈ F (θ) is arbitrary, it follows that {(θ, x) ∣x ∈ F (θ)} ⊆
LCS (Γ, θ).

Next, let us show that h ○LCS (Γ, θ) ⊆ F (θ). We already know that {(θ, x) ∣x ∈ F (θ)} ⊆
LCS (Γ, θ). Moreover, for the reasoning explained above, we also know that no state t ∈
∪θ̄∈ΘT θ̄ can be a stable state at (Γ, θ). Consequently, it follows that

LCS (Γ, θ) ⊆ {(θ̄, x̄) ∣θ̄ ∈ Θ and x̄ ∈ F (θ̄)} ∪ {σ} .

Let us show that σ ∉ LCS (Γ, θ). Assume, on the contrary, that σ ∈ LCS (Γ, θ). Take

any (θ, x). Since N ∈ γ (σ, (θ, x)), by construction, it follows from the definition of the LCS

that there exists s ∈ LCS (Γ, θ), where s = (θ, x) or s ≫(Γ,θ) (θ, x), such that not h (s) uθN
h (σ).

An immediate contradiction of Assumption 1 is obtained if s = (θ, x). Thus, let us

consider the case s ≫(Γ,θ) (θ, x). Again, an immediate contradiction of Assumption 1 is

obtained if s = σ. Thus, let s ∈ {(θ̄, x̄) ∣θ̄ ∈ Θ and x̄ ∈ F (θ̄)} be such that s ≠ (θ, x). Assump-

tion 1 implies that h (s) uθN h (σ), which is a contradiction. Thus, σ ∉ LCS (Γ, θ), and so

LCS (Γ, θ) ⊆ {(θ̄, x̄) ∣θ̄ ∈ Θ and x̄ ∈ F (θ̄)}.
Finally, take any (θ′, x) ∈ LCS (Γ, θ). Then, by definition, x ∈ F (θ′). Let us show that x ∈

F (θ). Assume, to the contrary, that x ∉ F (θ). Since F is monotonic, it follows from Remark

1 that there exist i ∈ N and y ∈ SLi(x, θ′) such that ui (y, θ) ≥ ui (x, θ). Then, (y, x, θ′, i,0) ∈
T θ

′

, by definition of T θ
′

given in (1). Note that {i} = γ ((θ′, x) , (y, x, θ′, i,0)), by definition

of γ. Since (θ′, x) ∈ LCS (Γ, θ), there exists s ∈ LCS (Γ, θ) ⊆ {(θ̄, x̄) ∣θ̄ ∈ Θ and x̄ ∈ F (θ̄)},
where s≫(Γ,θ) (y, x, θ′, i,0), such that not h (s) uθi x. Note that s ≠ (θ′, x) since only agent

i can move away from (y, x, θ′, i,0) and ui (y, θ) ≥ ui (x, θ). By the definition of indirect

dominance, it follows that there exist s0, s1, ..., sJ in S (where s0 = (y, x, θ′, i,0) and sJ = s)
and K0,K1, ...,KJ−1 in N0 such that Kj−1 ∈ γ (sj−1, sj) and h (s) uθKj−1

h (sj−1) for j = 1, ..., J .

By the definition of γ, it follows that for some j = 1, ..., J , Kj−1 = N , sj−1 = (θ′, x) and sj = σ.
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This means that h (s) uθN x, which contradicts the fact that not h (s) uθi x. We conclude

that x ∈ F (θ), and so h ○LCS (Γ, θ) ⊆ F (θ).

The above result relies on the construction of a rights structure that does not guarantee

that the LCS is also externally stable, in the sense that every state not in the LCS is indirectly

dominated by another state in the LCS. To see it, let us suppose that F is a monotonic SCF

and that for some θ, θ′ ∈ Θ, it holds that ui (f (θ′) , θ) > ui (f (θ) , θ) for all players i ∈ N . In

other words, suppose that F is monotonic but it is not Pareto efficient. Theorem 1 shows that

this SCF can be implemented in LCS. However, there cannot exist an indirect domination

path from (θ′, f (θ′)) ∉ LCS(Γ, θ) to a state in LCS(Γ, θ). The reason is that h (s) = f (θ)
for all s ∈ LCS (Γ, θ) and ui (f (θ′) , θ) > ui (f (θ) , θ) for all players i ∈ N .

We are left to show that the rights structure designed in the proof of Theorem 1 also

implements in core equilibria. To this end, we need some additional notation. For any rights

structure Γ and any θ ∈ Θ, a state s ∈ S is a core equilibrium at θ if, for no t ∈ S such

that h (s) ≠ h (t) and no K ∈ γ (s, t) is h (t) uθK h (s). We write C (Γ, θ) for the set of core

equilibria at θ.

Definition 7 A rights structure Γ implements F in core-equilibria, or simply core-implements

F , if and only if F (θ) = h ○ C (Γ, θ) for all θ ∈ Θ. If such a rights structure exists, F is

core-implementable by a rights structure.

Theorem 2 Let F satisfy Assumption 1. If F is monotonic, then F is LCS-implementable

and core-implementable by the same rights structure.

Proof. Let the premises hold. Let us consider the rights structure Γ designed in the proof

of Theorem 1. By this theorem, we already know that Γ LCS-implements F . Let us show

that F (θ) = h ○C (Γ, θ) for all θ ∈ Θ. Suppose that θ is the true type.

Taking any x ∈ F (θ), we show that x ∈ h ○ C (Γ, θ). Since x ∈ F (θ), we have that

(θ, x) ∈ Sθ. By construction, N has the power to move the state from (θ, x) to σ but no

agent has incentive to do so, by Assumption 1. Fix any i ∈ N and any ((d, t) , x, θ, i,0) ∈ T θ.
By definition, (d, t) ∈ SLi (x, θ), and so agent i does not have any incentive to move from

(θ, x) to ((d, t) , x, θ, i,0). Since these are the only two ways that agents can move away from

(θ, x), by construction, it follows that (θ, x) ∈ C (Γ, θ).
Next, let us show h ○C (Γ, θ) ⊆ F (θ). Observe that for the same reasoning given in the

proof of Theorem 1, no state t ∈ ∪θ̄∈ΘT θ̄ can be a core equilibrium at (Γ, θ). Consequently,

it follows that

C (Γ, θ) ⊆ {(θ̄, x̄) ∣θ̄ ∈ Θ and x̄ ∈ F (θ̄)} ∪ {σ} .
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Let us show that σ ∉ C (Γ, θ). Assume, on the contrary, that σ ∈ C (Γ, θ). Take any

(θ, x). Since N ∈ γ (σ, (θ, x)), by construction, and since Assumption 1 holds, it follows that

σ ∉ C (Γ, θ), which is a contradition. Thus, C (Γ, θ) ⊆ {(θ̄, x̄) ∣θ̄ ∈ Θ and x̄ ∈ F (θ̄)}.
Take any (θ′, x) ∈ C (Γ, θ), so that x ∈ F (θ′). Assume, to the contrary, that x ∉ F (θ).

Monotonicity implies that there exist i and y ∈ Li (x, θ′) such that ui (y, θ) > ui (x, θ). Since

ui is continuous and money monotone it follows that there exists y′ ∈ SLi (x, θ′) such that

ui (y′, θ) > ui (x, θ). Since by construction of γ it holds that i ∈ γ ((x, θ′) , y′), and since

ui (y′, θ) > ui (x, θ), it follows that (x, θ′) ∉ C (Γ, θ), which is a contradiction.

3.2 Monotonicity fully characterizes the class of LCS-implementable

SCFs

Our next result is that the class of LCS-implementable SCFs by a rights structure coincides

with the class of monotonic SCFs. This result has two main implications in the context of

our analysis.

First, comparing this result with the class of SCFs that are implementable in core equilib-

ria by a rights structure, we obtain that, in our environment, the class of LCS-implementable

SCFs coincides with the class of SCFs that are implementable in core equilibria. As already

mentioned, this is important because the desire to design rights structures that are robust

to farsighted behavior leaves the class of SCFs that can be implemented in core equilibria

unchanged.

Second, the LCS has led to various refinements and modifications, which are applied

in a variety of settings. For instance, the vNM FSS is derived from the classical vNM

solution by replacing direct dominance with indirect dominance—see Definition 3. Chwe

(1994) introduced the vNM FSS and showed that it is a refinement of the LCS. Refinements

and modifications of the LCS and vNM FSS can be found in various studies on coalition

formation, such as Mauleon and Vannetelbosch (2004), Nagarajan and Sošić (2007), Dutta

and Vohra (2017), and Dutta and Vartiainen (2020), and on network stability, such as Page

et al. (2005) and Herings et al. (2009). Although Konishi and Ray’s (2003) approach

to farsightedness is different from the reasoning leading to the LCS, one of the features

of their equilibrium (dynamic) process of coalition formation (EPCF) is that the set of all

absorbing states under all deterministic absorbing EPCFs is a proper refinement of the LCS

when the discount factor is large enough. Sošić (2006) and Nagarajan and Sošić (2007)

have used this result in their analyses of various models of operations management. Since

monotonicity fully characterizes the class of LCS-implementable SCFs in our setup with

transfers, monotonicity is also sufficient for the implementation by rights structures of every

refinement of the LCS provided that the refinement is not empty whenever the LCS is not
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empty. Note that if an SCF is LCS-implemented by a rights structure, then it automatically

coincides with any non-empty refinement of LCS under the same rights structure (since the

SCF is single valued).

Theorem 3 Let F satisfy Assumption 1. An SCF F is monotonic if and only if F is

LCS-implementable by a rights structure.

Proof. Let the premises hold. The proof of the ”only if” part follows from Theorem 1. To

complete the proof, we need to show that monotonicity is necessary for LCS-implementation.

To this end, suppose that Γ LCS-implements F . Fix any θ, θ′ ∈ Θ. Suppose that Li(F (θ) , θ) ⊆
Li(F (θ) , θ′) for all i ∈ N . We show that F (θ) = F (θ′).

By Remark 1, we have that SLi(F (θ) , θ) ⊆ SLi(F (θ) , θ′) for all i ∈ N . By the LCS-

implementability of F , we have that h ○ LCS (Γ, θ) = F (θ). Let us first show that the set

LCS (Γ, θ) is a consistent set at (Γ, θ′).
Fix any t ∈ S and any s ∈ LCS (Γ, θ). Nothing must be proved if γ (s, t) = ∅. Then,

suppose that K ∈ γ (s, t) for some K ∈ N0. Since LCS (Γ, θ) is a consistent set at (Γ, θ),
it follows that there exists s′ ∈ LCS (Γ, θ) such that either s′ = t or s′ ≫(Γ,θ) t, and not

h (s′) uθK h (s). Note that h (s′) = h (s) = F (θ). Then, we are done if s′ = t. Suppose that

s′ ≠ t. Thus, s′ ≫(Γ,θ) t. Since SLi(h (s′) , θ) ⊆ SLi(h (s′) , θ′) for all i ∈ N , it follows that

s′ ≫(Γ,θ′) t. Since t ∈ S, K ∈ N0 and s ∈ LCS (Γ, θ) have been chosen arbitrarily, we have

proved that LCS (Γ, θ) is a consistent set at (Γ, θ′).
Since LCS (Γ, θ′) is the LCS at (Γ, θ′) with respect to set inclusion and LCS (Γ, θ) is a

consistent set at (Γ, θ′), it follows that LCS (Γ, θ) ⊆ LCS (Γ, θ′). Therefore, F (θ) = F (θ′)
by the LCS-implementability of F . Thus, F is monotonic.

4 A necessary condition for SCRs

In this section, we introduce a new condition, called set-quasimonotonicity, which we show

to be necessary for the implementation of SCRs. Formally:

Definition 8 F is set-quasimonotonic provided that for all θ, θ′ ∈ Θ, if

SLi(x, θ) ⊆ SLi(x, θ′) and Li (x, θ)∩ F (θ) ⊆ Li (x, θ′)

for all x ∈ F (θ) and all i ∈ N , then F (θ) ⊆ F (θ′).

When F is an SCF and Remark 1 applies, set-quasimonotonicity coincides with mono-

tonicity. It requires that if for each agent i, his or her strict lower contour set at each

optimal outcome at θ does not shrink when the state changes from θ to θ′, as well as his
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or her set Li (x, θ)∩ F (θ) at each optimal outcome x ∈ F (θ) does not shrink, then the

set F (θ′) of optimal outcomes at θ′ is a superset of the set F (θ) of optimal outcomes at θ.

This condition is stronger than the weak set monotonicity condition of Mezzetti and Renou

(2012), which is a necessary and almost sufficient condition for implementation in mixed

Nash equilibria. It is stronger because weak set monotonicity requires that F (θ) ⊆ F (θ′)
whenever for all x ∈ F (θ), the following two conditions are satisfied for every agent i ∈ N :

(i) SLi(x, θ) ⊆ SLi(x, θ′) and (ii) Li (x, θ) ⊆ Li (x, θ′).

Theorem 4 If F is LCS-implementable by a rights structure, then it is set-quasimonotonic.

Proof. Suppose that Γ LCS-implements F . Take any θ, θ′ ∈ Θ. Suppose that SLi(x, θ) ⊆
SLi(x, θ′) and Li (x, θ)∩ F (θ) ⊆ Li (x, θ′) for all x ∈ h ○ LCS (Γ, θ) and all i ∈ N . The

statement follows if we show that LCS (Γ, θ) ⊆ LCS (Γ, θ′). To this end, it suffices to show

that the set LCS (Γ, θ) is a consistent set of (Γ, θ′).
Take any s ∈ LCS (Γ, θ). Fix any t ∈ S. Nothing has to be proved if γ (s, t) = ∅. Then,

suppose that K ∈ γ (s, t) for some K ∈ N0. Since s ∈ LCS (Γ, θ), there exists s′ ∈ LCS (Γ, θ),
where t = s′ or s′ ≫(Γ,θ) t, such that not h (s′) uθK h (s).

Since not h (s′) uθK h (s), it follows that ui (h (s) , θ) ≥ ui (h (s′) , θ) for some i ∈K. Since

s′ ∈ LCS (Γ, θ), it follows that h (s′) ∈ Li (h (s) , θ)∩ h ○LCS (Γ, θ). Since this intersection

is contained in Li (h (s) , θ′), by our initial supposition, we have that not h (s′) uθ′K h (s). We

proceed according to whether s′ = t or not.

Suppose that s′ = t. Since not h (s′) uθ′K h (s), we have that there exists s′ ∈ LCS (Γ, θ)
such that not h (s′) uθ′K h (s).

Suppose that s′ ≠ t, and so s′ ≫(Γ,θ) t. Since SLi(h (s′) , θ) ⊆ SLi(h (s′) , θ′) for all i ∈ N ,

it follows that s′ ≫(Γ,θ′) t. Thus, we established that there exists s′ ∈ LCS (Γ, θ), where

s′ ≫(Γ,θ′) t, such that not h (s′) uθ′K h (s).
Since s ∈ LCS (Γ, θ), t ∈ S and K ∈ N0 have been chosen arbitrarily, one can see that

LCS (Γ, θ) is a consistent set at (Γ, θ′). Thus, F is set-quasimonotonic.

Remark 2 Set-quasimonotonicity is a necessary condition for LCS-implementation in any

environment.

5 Conclusions

This paper extends the analysis of implementation through rights structures to farsighted

agents. We adopt Chwe’s (1994) LCS as the cooperative solution concept used to predict

the outcome of a rights structure. The study analyzes the implementation problems in a

18



setting with transfers in which there is a given, exogenous, initial state, and in which each

agent has a money monotonic and continuous preference. We show that any SCR is LCS-

implementable through rights structures if it is monotonic in the sense of Maskin (1999).

Monotonicity fully characterizes the class of LCS-implementable SCFs.

As a coalitional solution, Koray and Yildiz (2018) adopt a version of the core, which is

based on myopic reasoning: State s is an equilibrium state under a given rights structure

and agents’ preferences if no effective coalition can guarantee each of its members a utility

level higher than the one they received under s. At the heart of their characterization result

is (Maskin) monotonicity. Korpela et al. (2018) show that monotonicity fully characterizes

the class of implementable SCRs in core equilibria via a rights structure in a setting with

transfers in which each agent has a money monotonic and continuous preference. Our results

imply that the class of SCRs that are implementable in core equilibria can be made immune

to farsighted reasoning. We conjecture that this insight extends to other farsighted stability

solutions such as the farsighted stable set (Ray and Vohra, 2015).

Finally, let us remark that the full characterization of the class of SCRs that are LCS-

implementable by a rights structure is an important and difficult topic that is left for future

research. To this end, we have presented a necessary condition for LCS-implementation,

called set-quasimonotonicity, which is similar to the set-monotonicity condition of Mezzetti

and Renou (2012), which is a necessary and almost sufficient condition for implementation

in mixed Nash equilibria.
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