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We show that continuous quantum nondemolition (QND) measurement of an atomic ensemble is able to
improve the precision of frequency estimation even in the presence of independent dephasing acting on each
atom. We numerically simulate the dynamics of an ensemble with up to N = 150 atoms initially prepared in
a (classical) spin coherent state, and we show that, thanks to the spin squeezing dynamically generated by the
measurement, the information obtainable from the continuous photocurrent scales superclassically with respect
to the number of atoms N . We provide evidence that such superclassical scaling holds for different values
of dephasing and monitoring efficiency. We moreover calculate the extra information obtainable via a final
strong measurement on the conditional states generated during the dynamics and show that the corresponding
ultimate limit is nearly achieved via a projective measurement of the spin-squeezed collective spin operator.
We also briefly discuss the difference between our protocol and standard estimation schemes, where the state
preparation time is neglected.

Quantum enhanced metrology [1, 2] is one of the most
promising and well developed ideas in the realm of quantum
technologies, with application ranging from the probing of
delicate biological systems [3] to the squeezing enhanced op-
tical interferometry [4, 5] recently exploited in gravitational
wave detectors [6, 7]. Atom-based quantum enhanced sen-
sors [8, 9] have also been intensively studied and have myriad
of potential applications [10], most notably in magnetome-
try [11–15] and atomic clocks [16–18].

Continuous measurements [19, 20] have proven to be very
useful tools for the exquisite control of quantum systems, a
necessary requirement for the realization of quantum tech-
nologies. The genuinely quantum regime of observing sin-
gle trajectories has been reached in different platforms, such
as superconducting circuits [21–23], optomechanical [24, 25]
and hybrid [26] systems. Crucially, continuously monitoring
a quantum system allows for the estimation of its character-
istic parameters. A literature has emerged, discussing both
practical estimation strategies [27–37] and the fundamental
statistical tools to assess the achievable precision [38–45].

Being also particularly robust against noise [46], spin
squeezing [47, 48] of atomic ensembles has been long stud-
ied as a resource for quantum enhanced metrology. Imple-
menting a continuous quantum nondemolition (QND) mea-
surement of a collective spin observable is a well known ap-
proach to generate a conditional spin-squeezed state and the
prototypical realization of such schemes relies on the collec-
tive interaction between light and atoms [49–52]. Several
measurement-based schemes have been experimentally real-
ized on large atomic ensembles, witnessing spin squeezing of
up to N≈1011 atoms [53–60].

In the ideal noiseless scenario, continuous QND measure-
ments allow one to overcome projection noise and to achieve
estimation with Heisenberg limited uncertainty, i.e. inversely
proportional to the number of atoms, just by processing the
continuous detected signal [29, 45, 61–64]. In conventional
metrological schemes exploiting an initial entangled state,
Heisenberg scaling is lost in the presence of most kinds of in-

dependent noises [65–68]. If the external degrees of freedom
causing the noise can be continuously observed, however, its
effect can be (at least partially) counteracted and the useful-
ness of the initial entangled state preserved [69–72]. The ef-
fect of independent noises on continuous QND strategies, in
which the entanglement is created dynamically, has not been
explored and it will be the main focus of this work. In more
detail, we have the following goals: (i) verify if an enhance-
ment is still observed comparing to the situation where no
continuous monitoring is performed; (ii) verify if a quantum
enhancement due to non-classical correlations such as spin
squeezing and entanglement can still be observed.

Quantum metrology via continuous QND monitoring in the
presence of dephasing. We consider the following scenario:
an ensemble of N two-level atoms (qubits) is rotating around
the z-axis with angular frequency ω; each atom is subjected
to equal and independent Markovian dephasing with rate κ,
leading to the following Lindblad master equation

d%

dt
= L% ≡ −iω[Jz, %] +

κ

2

N∑
j=1

D[σ(j)
z ]% , (1)

where Jz =
∑N
j=1 σ

(j)
z /2, D[A]% = A%A† − (A†A% +

%A†A)/2. Our aim is the estimation of the frequency ω, which
in optical magnetometry corresponds to the Larmor frequency
ω = γB (γ being the gyromagnetic ratio), thus equivalent to
the estimation of the intensity B of a magnetic field.

For noisy quantum frequency estimation schemes, the ulti-
mate limit on the estimation uncertainty δω for an experiment
of total duration T , optimized over the duration t of a single
experiment repeated M = T/t times, is given by a quantum
Cramér-Rao bound (CRB) of the form [65]

(δω2)T ≥ 1

maxt[Q/t]
, (2)

where Q corresponds to the quantum Fisher information
(QFI) of the quantum state evolved up to time t (see Sup-
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plemental Material [73] for more details on estimation the-
ory [74–78]).

If the initial state is prepared in a coherent spin state (CSS),
i.e. the tensor products of eigenstates of the single atom Pauli
matrices σ(j)

x , |ψCSS〉 =
⊗N

j=1(|0〉j + |1〉j)/
√

2, the state
remains separable at all times. The QFI of the CSS state,
optimized over the monitoring time t, follows the standard
quantum limit (SQL), i.e. it is linear in N (corresponding to
δω ∼ 1/

√
N for the uncertainty) and reads

Q?CSS ≡ max
t

[QCSS/t] =
N

2eκ
. (3)

By allowing initial entangled states, such as a GHZ state
|ψGHZ〉 = (⊗Nj=1|0〉j + ⊗Nj=1|1〉j)/

√
2, one can achieve a

Heisenberg scaling of the QFI, i.e. Q ∼ N2 in the noiseless
scenario (κ = 0).

This quantum enhancement is however lost as soon as some
non-zero dephasing acts on the system [65–68]. Dephasing is
the most detrimental among independent noise channels: re-
markably enough, the change of scaling is observed not only
asymptotically, but also at finite N [65], and most of the ap-
proaches suggested in the literature to circumvent the no-go
theorems for noisy quantum metrology are useful only in the
presence of noise transverse to the Hamiltonian [98–102] or
for time-correlated dephasing [103, 104].

We now assume to prepare the atoms in a CSS state |ψCSS〉
at time t = 0, and to perform a continuous monitoring of
the collective spin operator Jy =

∑N
j=1 σ

(j)
y /2, such that the

conditional dynamics of the atom ensemble is described by
the stochastic master equation (SME)

d%c = L%c dt+ ΓD[Jy]%c dt+
√
ηΓH[Jy]%c dw , (4)

conditioned by the measured photo-current

dyt = 2
√
ηΓ Tr[%cJy] dt+ dw . (5)

The parameter Γ corresponds to the collective measurement
strength, η to the measurement efficiency, dw to a Wiener
increment (s.t. dw2 = dt) and we have introduced the su-
peroperator H[A]% = A% + %A† − Tr[%(A + A†)]%. This
conditional dynamics can be obtained for instance by consid-
ering the setup depicted in Fig. 1: a laser is collectively cou-
pled to the total spin of the atoms (possibly inside a cavity)
and the outcoming light is continuously measured after the in-
teraction [51, 61, 62, 90, 105] (more details on these physical
implementations are given in the Supplemental Material [73]).

When one considers these estimation strategies based on
continuous measurements, with a dynamics obeying a SME
such as Eq. (S4), the parameter can be inferred from two
sources of information: the continuous photo-current dyt and
a final strong measurement on the conditional state %c. In this
case the QFIQ in Eq. (2) is replaced by the so-called effective
QFI [45]

Q̃eff = Fyt +
∑
traj

ptrajQ[%(traj)
c ] , (6)

FIG. 1. Quantum magnetometry via continuous measurements: an
atomic ensemble of N atoms is sensing a magnetic field that causes
precession of the spin around the z-axis, and is subjected to indepen-
dent dephasing on each atom with strength κ. A far-detuned laser
shines the atoms, collectively coupling to the total spin Jy with a
strength Γ, and it is then measured continuously with efficiency η.

that is the classical Fisher information (FI) Fyt that quantifies
the information obtainable from the continuous photocurrent
dyt, plus the average of the QFI of the conditional states %(traj)

c

corresponding to the different trajectories (more details in the
Supplemental Material [73]). Furthermore, one can also con-
sider the situation where the parameter is inferred from the
continuous photocurrent dyt only; in this scenario the appro-
priate bound is obtained by replacing Q with Fyt .

In the limit of a large number of atoms N � 1 and with no
noise (κ = 0), it has been already demonstrated that, thanks to
this measurement strategy, one can estimate the frequency ω
with a Heisenberg-like scaling, despite the initial state being
uncorrelated. The collective monitoring dynamically gener-
ates spin squeezing in the conditional states (and thus entan-
glement between the atoms), allowing one to observe a N2

scaling both for the effective QFI and the classical FI [45].
Furthermore, in this work we consider a much more prac-

tical strategy than the one described in [71, 72]. There, we
have shown that the advantage of an initial entangled state can
be recovered by monitoring the N independent environments
responsible for the dephasing (typically inaccessible, in prac-
tice). Here, not only we consider a classical (separable) initial
state, but we perform continuous monitoring on an ancillary
quantum system over which we can assume to have full con-
trol; this may correspond, for instance, to an optical field, as
depicted in Fig. 1.

Results. The SME (S4) is invariant under permutation of
the different atoms. This symmetry can be exploited to dra-
matically reduce the dimension of the density operator %c as
described in [93, 106]. By exploiting some dedicated func-
tions of QuTiP [94, 107] introduced in [93], we have devel-
oped a code in Julia (available at [92]) that has allowed us
to simulate quantum trajectories solving the SME (S4) and to
calculate the figures of merit introduced above up toN = 150
atoms (see Supplemental Material [73] for details on the nu-
merics).

Before moving to the noisy case, we mention that we have
been able to verify that for κ = 0 the estimation precision
follows a Heisenberg scaling, not only in the limit N � 1,
but also for non-asymptotic values of N : our numerics show
that both the classical FI Fyt and the average QFI Q̄c =∑

traj ptrajQ[%
(traj)
c ] (and thus their sum Q̃eff ) are quadratic in

N (see Supplemental Material [73]).
We now focus on the effect of independent dephasing on

this measurement strategy. In the upper panels of Fig. 2 we
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FIG. 2. Top: Information rate Q/t for noisy frequency estimation
as a function of time in terms of different figures of merit. Blue
line: effective QFI Q̃eff/t; orange line: continuous monitoring clas-
sical FI Fyt/t; green line: conditional states average QFI Q̄c; jade
green dashed line: conditional states average FI for a Jy measure-
ment F̄c[Jy]; black dashed line: QFI for a CSS QCSS/t. Bottom:
average spin squeezing ζ̄y as a function of time Γt. Left panels:
N = 50; right panels: N = 100. The dashed vertical gold line cor-
responds to the monitoring time where the average spin squeezing
violation is maximum. Parameters: κ/Γ = 1, ω/Γ = 10−2, η = 1,
number of trajectories: ntraj = 15 000. The shaded areas represent
the 95% confidence interval (see Supplemental Material [73]).

plot different figures of merit characterizing our strategy for
N = 50 and N = 100, comparing them with the results
obtained with CSS without monitoring. We observe that the
effective QFI Q̃eff/t is larger than the CSS QFI QCSS/t at
all times. Remarkably, we observe that for N = 100 also
the maximum of the monitoring FI maxt[Fyt/t] surpasses the
maximum for the standard strategy maxt[QCSS/t]. In gen-
eral, this behavior is confirmed for different values of κ. This
clearly shows that, by increasing N , the information obtained
from the photocurrent dyt is enough to achieve a higher pre-
cision than via coherent spin states without monitoring.

We also find that Q̄c/t is larger than QCSS/t at certain
times. This result can be explained by studying the spin-
squeezing witness [48, 51, 108] ζy[%] = 〈Jz〉2+〈Jx〉2

N∆J2
y

, where

〈A〉 = Tr[%A] and ∆J2
y = 〈J2

y 〉 − 〈Jy〉2. If ζy[%] > 1,
the state % is spin-squeezed along the y-direction. In the
bottom panels of Fig. 2 we plot the average spin squeezing
ζ̄y =

∑
traj ptrajζy[%

(traj)
c ] and indeed we observe the maxi-

mum violation approximately at the same time t for which
Q̄c/t > QCSS/t (for more details about the distribution of
trajectory dependent quantities, as ζy[%

(traj)
c ] and Q[%

(traj)
c ],

see Supplemental Material [73]). The generation of spin-
squeezed conditional states leads us to investigate the effec-
tiveness of a strong measurement of the operator Jy , optimal
in the noiseless case [45]. We evaluate the corresponding clas-
sical Fisher information, and we average it over the different
trajectories, yielding F̄c[Jy]. As shown in Fig. 2, F̄c[Jy] is ap-
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FIG. 3. Ratio between the optimized effective QFI Q̃?
eff and the opti-

mized Q?
CSS (dashed lines) as a function of N for different values of

the dephasing rate κ, with ω/Γ = 10−2 and ntraj = 10 000 trajecto-
ries. See the Supplemental Material [73] for details on the statistical
error. In the inset, log-log plot of Q̃?

eff (markers) and QCSS (dashed
lines) as a function of N for the same values of κ.

proximately equal to Q̄c for evolution times near to the maxi-
mum of both Q̄c and Q̃eff . In general, our numerics show that
a strong measurement of Jy is nearly optimal in the parameter
regime relevant for our protocol.

Importantly, the behaviour of the spin-squeezing witness
ζ̄y helps us also to better understand the optimal monitoring
times for the different figures of merit plotted in Fig. 2. The
following relationship holds:

topt[Q̄c] < topt[Q̃eff ] < topt[Fyt ] . (7)

In order to maximize the average QFI Q̄c/t, as we discussed
above, one therefore needs to stop the monitoring at a time
topt[Q̄c] corresponding approximately to the maximum spin
squeezing. On the other hand, since Fyt quantifies the infor-
mation contained in the photo-current yt accumulated during
the whole monitoring time, one can fully exploit the generated
spin squeezing and the encoding of the parameter by waiting
longer, i.e. topt[Fyt ] > topt[Q̄c]. Consequently, since the ef-
fective QFI Q̃eff is the sum of Fyt and Q̄c, the corresponding
optimal time has to satisfy the relation in (7).

Fig. 3 shows the ratio between the optimized effective QFI
Q̃?eff ≡ maxt[Q̃eff/t] and the CSS bound Q∗CSS as a function
of N and for different values of the dephasing rate κ. It is
clear from the plot and from the inset, where the two quan-
tities are plotted in logarithmic scale, that not only the CSS
bound is always surpassed, but also the effective QFI shows
a super-linear behavior. An important role in this result is
played by the photo-current FI Fyt , which corresponds to the
most practical strategy of estimating ω without any strong fi-
nal measurement. As it is apparent from Fig. 4, the behav-
ior of F?yt ≡ maxt[Fyt/t] is very peculiar: a κ-independent
super-classical scaling F?yt ∼ N4/3 seems to hold for all the
considered values of the dephasing strength κ (notice that by
increasing κ the scalingN4/3 is obtained and then maintained
for large enough N ). It is also important to mention that a re-
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FIG. 4. Continuous monitoring FI maxt[Fyt/t] (markers) as a func-
tion of N for different values of the dephasing rate, with ω/Γ =
10−2 and number of trajectories ntraj = 10 000. Dashed lines show-
ing super-linear functions scaling as N4/3 have been plotted as a
guide to the eye.

duced measurement efficiency (e.g. η = 0.5 in one of the
curves in Fig. 4) yields the same qualitative results as hav-
ing a larger dephasing: (i) the CSS QFI is surpassed as long
as N is large enough; (ii) despite non-unit efficiency, the κ-
independent scaling N4/3 is still observed for Fyt , but for
larger N and with a reduced proportionality constant (more
plots for η < 1 are found in the Supplemental Material [73]).

Finally, we consider the performance of our strategy in the
presence of collective Markovian dephasing, that is, a dynam-
ics described by a master equation as in Eq. (1), but with the
last term replaced by κcollD[Jz]%. Also in this case our scheme
based on continuous QND monitoring performs better than a
standard strategy with CSS states and no monitoring. How-
ever, we observe that spin-squeezing is hardly generated and
that no enhancement in the estimation precision due to quan-
tum correlations can be observed (see more details in the Sup-
plemental Material [73]). It is crucial to remark that collective
dephasing is best tackled with specific estimation protocols,
exploiting decoherence-free subspaces, that are able to restore
Heisenberg scaling [79]. We therefore leave to future investi-
gations the possibility of combining these strategies with our
approach, to jointly counteract both independent and collec-
tive dephasing.

Discussion. We showed that continuous QND monitoring
leads to an enhancement in the estimation precision, even in
the presence of Markovian dephasing, known to be the most
detrimental noise for quantum metrology.

One last remark regarding the precision our protocol can
ultimately achieve is in order. A fundamental bound that cov-
ers strategies with ancillary systems and full and fast con-
trol [100, 101] shows that only an improvement of a factor e
on Q?CSS in Eq. (3) can be obtained, i.e. Bent = N/(2κ). This
bound is attained asymptotically for N � 1 by preparing a
spin squeezed initial state, without ancillas and control opera-
tions [46]. At present it is not clear if the effective QFI for our
scheme should also obey this bound. Continuous monitoring
can be described as qubits interacting with the system and be-

ing sequentially measured [109–111]. However, it is unclear
if the assumptions beyond the derivation in [100, 101] are sat-
isfied in the limit of infinitesimal time steps with simultaneous
enconding, noise and interaction with the ancillas. Despite the
high optimization level of our code, we could not investigate
regimes where our strategy would be able to reach values near
to Bent. We thus leave as an open question if our protocol,
thanks in particular to the observed scaling of the classical FI
F∗yt , may be able to attain (or possibly surpass) this bound in
experimentally relevant regimes (state of the art experiments
with atomic clouds involve 105 – 1011 atoms [58–60]).

Finally, we highlight again one of the main features of
our protocol: the monitoring-induced dynamics generates
the resourceful state simultaneously with the frequency en-
coding. In fact, in the standard analysis of quantum esti-
mation strategies the state preparation time is typically ne-
glected. A fair comparison between “classical” and “quantum
enhanced” strategies accounting also the preparation time as a
resource is discussed, for the noiseless scenario, in [112–114].
In [113, 114], in particular, the generation of spin squeez-
ing via one-axis and two-axis twisting is considered and it
is shown that the best strategy is to allow the encoding and
the spin-squeezing Hamiltonians to act simultaneously. Re-
markably enough, this enhancement is comparable to the one
we observe in our protocol, with no need of time-dependent
control Hamiltonians.

The role of preparation time in noisy metrology with
Markovian independent dephasing has been discussed
in [112]. There, however, only initial GHZ states have been
considered and, unsurprisingly, they offer no improvement
over CSS states; the same is true when the preparation time
is not taken into account [65]. Optimal entangled states for
standard frequency estimation in the presence of dephasing
have been numerically obtained in [115]. We observe that,
remarkably, our protocol can achieve an enhancement of the
same order of magnitude (cf. Fig. 3 and Fig. 3(b) of [115]).
We therefore expect that, if the preparation time is counted as
a resource, our protocol should be able to outperform the one
involving the preparation of those optimal states.

Concluding, our results pave the way to further theoretical
and experimental investigations into noisy quantum metrol-
ogy via QND continuous monitoring, as a practical and rele-
vant tool to obtain a quantum enhancement in spite of deco-
herence.
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tum 1, 27 (2017).
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Supplemental material: Noisy quantum
metrology enhanced by continuous

nondemolition measurement

The structure of this Supplemental Material is as follows: in
Sec. A we present a more detailed discussion of quantum es-
timation theory for continuous measurements, introducing the
quantities defined in the main text; in Sec. B we elaborate on
the physical meaning of the stochastic master equation (SME)
we consider in this work; in Sec. C we discuss the implemen-
tation of the numerical solution of the dynamics and on its
computational complexity, and we discuss the statistical error
analysis; in Sec. D we show the results in absence of dephas-
ing noise; in Sec. E we show some additional properties of the
conditional states generated during the dynamics, by study-
ing the distributions of the corresponding spin squeezing and
quantum Fisher information, and by presenting a specific real-
ization of the conditional state and visualizing its evolution on
the Bloch sphere; in Sec. F we present results for finite mea-
surement efficiency and finally in Sec. G we analyze the case
of collective dephasing noise.

Appendix A: Quantum estimation theory for continuous
measurements

We start from the classical problem of estimating the true
value of a parameter ω that enters into the conditional proba-
bility p(x|ω) of observing the measurement outcome x. Un-
der very general assumptions, the uncertainty (quantified by
the root mean square error) of any unbiased estimator is lower
bounded by the classical Cramér-Rao bound (CRB), as fol-
lows

δω ≥ 1√
MF [p(x|ω)]

, (S1)

where M is the number of measurements performed and
F [p(x|ω)] =

∑
x p(x|ω) [∂ω ln p(x|ω)]

2 is the classical
Fisher information (FI).

When dealing with quantum systems, probabilities densi-
ties are obtained from the Born rule p(x|ω) = Tr[%ωΠx],
where %ω is a family of quantum states parametrized by ω,
and {Πx} is a positive-operator valued measure (POVM) de-
scribing the statistical properties of the measurement appara-
tus. By optimizing over all POVMs one obtains the quantum
CRB [74–78]

δω ≥ 1√
MF [p(x|ω)]

≥ 1√
MQ[%ω]

, (S2)

where

Q[%ω] = lim
ε→0

8 (1− F [%ω, %ω+ε])

ε2
(S3)

is the quantum Fisher information (QFI), expressed in
terms of the fidelity between quantum states F [%1, %2] =
Tr
[√√

%1%2
√
%1

]
[77, 81, 82]. The QFIQ[%ω] depends only

on the local properties of the family of states around the true

value of ω, and the optimal POVM that satisfies F [p(x|ω)] =
Q[%ω] always exists (but a two-step strategy [76, 80] might be
needed to actually saturate the bound).

In this work we consider a quantum state evolving accord-
ing to the stochastic master equation (SME) introduced in
Eq. (4) of the main text,

d%c = L%c dt+ ΓD[Jy]%c dt+
√
ηΓH[Jy]%c dw , (S4)

conditioned on the observed photocurrent yt, which is a
stochastic process defined by

dyt = 2
√
ηΓ Tr[%cJy] dt+ dw (S5)

depending on ω through the expectation value of Jy .
As explained in the main text, we can extract information

on ω both from the current yt and by measuring the con-
ditional state %c. Once the SME (and thus the monitoring
choice) is fixed, the correct CRB is written in terms of an ef-
fective QFI [45, 83]

Q̃ = F [ptraj] +
∑
traj

ptrajQ[%(traj)
c ] , (S6)

where informally the sum over trajectories represents the in-
tegration over all the realizations of the stochastic process yt,
ptraj represents the probability density corresponding to a par-
ticular realization and %c the solution of the SME correspond-
ing to the same realization. In other words, Q̃ is equal to the
sum of the classical FI F [ptraj] =

∑
traj

(∂ωptraj)
2

ptraj
, plus the

average of the QFIs of the corresponding conditional states
Q[%c]. Physically, the first term quantifies the amount of infor-
mation obtained by continuous measurement of the light that
has interacted collectively with the atoms. The second term
quantifies the maximal amount of information that can be ob-
tained by stopping the conditional evolution and performing a
(strong) measurement on the resulting conditional state.

We mention that a more general bound, which only depends
on the interaction between the radiation and the atoms but is
optimized over the measurement strategy on the outgoing ra-
diation was presented [42, 43, 84]. Unfortunately, this type
of ultimate bound is not meaningful when the dynamics in-
cludes unmonitored noise channels, such as the independent
dephasing considered in this work.

The quantity F [ptraj] can in principle be obtained by con-
sidering a linear version of the SME

d%̃c = L%̃c dt+ ΓD[Jy]%̃c dt+
√
ηΓ (Jy%̃c + %̃cJy) dw ,

(S7)

since the quantity Tr %̃c corresponds to ptraj [19, 27] (up to a
parameter-independent proportionality constant).

A practical method to evaluate this FI numerically was pro-
posed in [41] and instead of solving (S7) it requires solving
the original SME (S4) plus an additional stochastic equation
coupled to it. In our previous paper [71] we have presented
a concrete implementation of this method that takes advan-
tage of a stable and effective method to solve SMEs numeri-
cally [85], and that also allows to evaluate efficiently the QFI
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of the conditional states Q[%c] and thus the full effective QFI
Q̃eff . In the following section we give more details about the
numerical implementation.

Appendix B: Physical implementations

In this section we give a brief overview of two different
physical setups that are described by the same SME (4), pro-
viding a more precise explanation of the schematic represen-
tation of Fig. 1.

The abstract idea is to engineer a quantum non-demolition
(QND) interaction of the form HQND ∝ Jyp, where Jy is a
collective spin operator of the atoms and p is the “momen-
tum” operator of an continuous variable “meter” system, ini-
tially prepared in a pure Gaussian state. In the limit of a very
strong QND interaction, measuring the conjugate “position”
observable x after the interaction effectively implements an
instantaneous (“strong”) measurement of Jy . On the other
hand, in the context of continuous measurements the interac-
tion is assumed to be very weak, but the “meter” is a contin-
uous train of modes on which x is continually measured, see
e.g. [86]. Continuous measurements are not instantaneous and
thus there is a nontrivial interplay between the free dynamics
of the system and the the measurement-induced backaction
that tends to collapse the state to an eigenstate of Jy .

The proposals to implement QND measurements on atomic
ensembles rely on coherent light-matter interactions, even if
the physical meaning of the operator p appearing inHQND can
be different. Anyhow, one has to assume a uniform coupling
of the light with all the 2J = N two-level atoms so that the
dynamics can be described by collective spin J operators as
in HQND and in Eq. (4). The motional degrees of freedom of
the atoms are neglected in this analysis.

In the first setting, the atoms are placed inside a leaky op-
tical cavity, with a resonant frequency far detuned from the
splitting of the two relevant atomic levels. This can be de-
scribed as a dispersive interaction that induces a phase shift
of the cavity field, proportional to the atom number difference
between the two levels. The cavity is driven by a strong classi-
cal field and the light leaking out of the cavity is continuously
measured with a homodyne detector.

Assuming a bad-cavity regime, i.e. in the presence of a
large cavity decay rate, the cavity mode can be adiabatically
eliminated, so that the sought QND interaction between the

atoms and the traveling light is effectively implemented and
the SME (4) describes the dynamics [51, 87].

While such cavity-based proposals were initially focused
on inducing spin-squeezing via QND measurements, it is in-
deed also possible to include a field to be sensed, perpendic-
ular to the driving, to fully reproduce our Eq. (4). A different
cavity based setup requiring two driving lasers has been re-
cently proposed and experimentally implemented in [37].

A similar analysis can be applied to atoms in free space,
ending up with the same dynamics, but with a different expres-
sion for the “measurement strength” parameter Γ [87]. How-
ever, for atomic ensembles probed by traveling light modes,
it is more common to take advantage of the magneto-optical
Faraday effect to implement a QND measurement [52, 61, 88].
The Faraday interaction of the atoms with a far-off-resonant
laser is effectively a QND interaction between the collective
spin of the ensemble and the Stokes operator of the light,
which takes the role of p.

In this setup a linearly polarized optical probe is transmit-
ted through the atomic cloud. Due to the Faraday interaction
the two circular components of the polarization have a differ-
ent coupling with the excited state and thus the probe field
acquires a phase proportional to the population difference be-
tween the two levels.

The continuous measurement is performed by a balanced
polarimeter, consisting of a polarizing beam splitter and a dif-
ferential photo detector at the two outputs. This measurement
scheme is physically different from homodyne detection, but
has the same formal description (treating the Stokes operators
perpendicular to the direction of propagation of the beam as
the optical quadratures) and the same SME (4) can thus be
obtained.

Finally, we remark that a rigorous mathematical treatment
of the adiabatic elimination, both of the cavity [89] and of the
excited states [90] is not trivial, but the usual expected results
are obtained in the appropriate regimes.

Appendix C: Details on the numerical implementation

The code used to obtain the results presented in this
manuscript is written in Julia [91] and is available on
Github.com [92].

In a nutshell, the code implements the algorithm described
in [71] which consists in the Montecarlo generation of the two
solutions of two coupled SMEs, which can be written as:

ρt+dt = %̃t+dt/Tr[%̃t+dt], where %̃t+dt = MdyρtM
†
dy + (1− η)ΓJyρtJ

†
ydt+

κ

2

N∑
j=1

σ(j)
z ρtσ

(j)†
z dt (S1)

τt+dt = Tr[%̃t+dt]
−1

∂ωMdyρtM
†
dy +MdyτtM

†
dy +Mdyρt(∂ωM

†
dy) + (1− η)ΓJyτtJ

†
ydt+

κ

2

N∑
j=1

σ(j)
z τtσ

(j)†
z dt

 , (S2)



3

where we have defined the Kraus operator

Mdy = I− iHωdt−
κ

4
NI dt− Γ

2
J2
ydt+

√
ηΓJydyt +

ηΓ

2
J2
y (dy2

t − dt). (S3)

In the third term of Eq. (S3), we have used
∑
j σ

(j)†
z σ

(j)
z =

NI, while the last term represents the Euler-Milstein correc-
tion (dt is not infinitesimal in the numerical integration of the
stochastic differential equation and therefore dy2

t 6= dt [85]).
The continuous photocurrent dyt was introduced in Eq. (5) of
the main text:

dyt = 2
√
ηΓ Tr[Jyρt+dt]dt+ dw (S4)

From ρt+dt and τt+dt we can evaluate the relevant fig-
ures of merit, as discussed in [71]: Fyt = E[(Tr τt)

2] and
Q̄c(t) = E[Q[ρt]], where E[·] denotes the average over the
sampled trajectories and

Q[ρt] = 2
∑

λi+λj 6=0

| 〈ψi|∂ωρt|ψj〉 |2

λi + λj
(S5)

is the QFI for the state Q[ρt] [78]. In Eq. (S5), ρt =∑
i λi |ψi〉〈ψi| is the diagonalization of the density matrix

and one can obtain ∂ωρt from ρt and τt with the formula
∂ωρt = τt − ρt Tr τt [71].

As explained in the main text, we exploit the permutational
symmetry of the state by expressing it in the Dicke basis
[93]. Thus, instead of considering the whole Hilbert space,
with size growing as 2N , we can restrict to a subspace of
size proportional to N4. Moreover, the density operator in
the Dicke basis has a block-diagonal structure, with blocks of
sizes 2j+1, where j is the spin number, a (half-)integer num-
ber ranging from N/2 to 0, 1/2 for N even or odd. The total
number of non-zero elements of ρ is thus of order N3 [93],
with a consequent advantage in memory consumption. The
initial coherent spin state occupies only the first block with
j = N/2. The other blocks are populated during the dynam-
ics due to the dephasing noise.

All the global spin operators present in Eqs. (S1-S3) can
be easily expressed in the Dicke basis, and their action is con-
fined to each subspace at fixed j. The last terms of Eqs. (S1)
and (S2), as they are written, would be computationally heavy
to calculate. However, they can be conveniently expressed in
the Dicke basis in terms of the Liouvillian L of the superop-
erator

∑
j D[σ

(j)
z ], acting on the vectorized density matrix ~ρt

(where the columns of the matrix ρt are stacked). Specifically,

κ

2

∑
j

σ(j)
z ρtσ

(j)†
z dt −→ κ

2
(L+NI)~ρt, (S6)

and similarly for the last element of Eq. (S2). We obtain the
matrix L by employing the PIQS module [93] of the QuTiP li-
brary [94]. All the operators and the matrix L contain a large
number of zeros, and hence they are encoded as sparse ma-
trices, for memory efficiency and computational speed, while

for ρt and τt each block is stored in dense format. The block-
diagonal structure of ρt and τt is also exploited in the evalua-
tion of the QFI, as the latter is simply the sum of the QFIs for
each block (thus requiring the diagonalization of small dense
matrices, instead of the full sparse matrix).

As explained in the text, in the case of zero dephasing (κ =
0), the dynamics is confined to the block j = N/2, which has
dimension N + 1, and hence the computational complexity of
the simulation is further reduced, allowing us to reach values
of N = 300 and even further.

Equations (S1-S2) are simulated for a large number ntraj of
trajectories. By averaging over the trajectories, we build our
estimators for Fyt and Q̃eff . The estimate errors are assessed
via standard bootstrapping, by considering 95% confidence
intervals for the deviations from our sample mean. The errors
are below 2% for Fyt and below 1.5% for Q̄c for all t for
ntraj = 10 000. Bootstrapping is also employed to estimate
95% confidence intervals for the optimal values F?yt and Q̃?eff .
For ntraj = 10 000, uncertainties are typically below 2%, and
are not shown in all the logarithmic plots, as the error bars
would be indistinguishable from the markers.

Finally, in order for the simulation to be accurate, the time
step dt need to be chosen so that it is much smaller than
the characteristic time of the dynamics. We have extensively
tested the convergence of the numerical dynamics for decreas-
ing values of dt, and we have verified that, for the values of
ω,Γ, κ andN we have considered, dt ≈ 10−4÷10−5 is suffi-
ciently small, with larger values ofN requiring smaller values
of dt.

Thanks to Julia’s distributed computing capabilities, the
code (available at this link [92]) can be readily run on HPC
clusters, with massively parallel simulation of the trajectories.
The data used to produce the figures in the manuscript is avail-
able at [95].

Appendix D: Noiseless results for finite N

As we mention in the main text, it was already demon-
strated that for κ = 0 the estimation precision follows a
Heisenberg scaling in the limit N � 1. Our numerics show
that this scaling is observed also for non-asymptotic values of
N as shown in Fig. S1. Both the classical FI Fyt and the av-
erage QFI Q̄c =

∑
traj ptrajQ[%

(traj)
c ] (and thus their sum Q̃eff )

are quadratic in N . One should notice that for κ = 0 all the
operators entering in the SME (S4) are collective operators
and therefore one can further reduce the dimension of the rel-
evant Hilbert space to d = N + 1, since the initial state also
belongs to the fully symmetric subspace. For this reason we
have been able to simulate the dynamics up to N = 300.
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FIG. S1. Effective QFI Q̃eff , monitoring FI Fyt and conditional
states average QFI Q̄c for noiseless frequency estimation (κ = 0)
as a function of N for Γt = 2, ω/Γ = 10−2 and η = 1. Linear
∼ N (dotted line) and quadratic ∼ N2 (dashed line) functions are
shown as a guide to the eye. The results are obtained from 10 000
trajectories, the statistical uncertainty is too small to be appreciated
(see Sec. C for details).

Appendix E: Properties of the conditional states

1. Distribution of trajectory-dependent quantities
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FIG. S2. (Left) histogram of the probability density p(ζy) of the
spin squeezing at the time where its average ζ̄y is maximum (Γt ≈
0.12). (Right) the distribution of Q[%

(traj)
c ] at the time where the

effective QFI is maximum (Γt ≈ 0.26). In both plots, the black
dashed (dotted) lines show the mean (median) of the distribution.
These plots are obtained with the same parameters of Fig. 2 in the
main text, for N = 50; in particular the histograms are obtained
from 15000 trajectories.

Figure 2 in the main text shows how the averages of the QFI
and the spin squeezing evolve in time. Here we look in more
detail at the distribution of such quantities, considering his-
tograms on a large number of trajectories and using the same
parameters as in Fig. 2. The left panel of Fig. S2 shows how
the spin squeezing ζy is distributed around its average value
in the point where it is maximum for N = 50, while the right
panel shows the distribution of the QFI.

We can notice that the spin squeezing distribution is highly
asymmetric, most of the trajectories having higher squeezing
than the average. The distribution ofQ[%

(traj)
c ] is instead quite

symmetric and peaked around the mean value. The qualitative
features of these distributions do not depend on N .

2. Visualization of the conditional state

In this section we look more closely to the dynamics of
the conditional states. We can visualize the state of a N -spin
system on a Bloch sphere by using the Husimi Q function,
which is defined as [97]

Q(θ, φ) = 〈θ, φ|ρ|θ, φ〉 (S1)

where, by calling the maximum total angular momentum J =
N/2, the coherent spins states can be written as

|θ, φ〉 =

J∑
m=−J

(
2J

m+ J

)1/2(
sin

θ

2

)J+m(
cos

θ

2

)J−m
e−i(J+m)φ |J,m〉 , (S2)

Figure S3 shows the dynamics of the conditional state ρc for
a single trajectory. In the upper panel, the expectation values
of the components of the total momentum are shown, together
with the squeezing parameter. The lower panels show the Q
function, Eq. (S1), on the Bloch sphere for four different time
instants (here, Γ = 1).

Appendix F: Finite monitoring efficiency

As discussed in the main text, a reduced measurement effi-
ciency η < 1 for the continuous monitoring has the same qual-
itative effect as considering a larger dephasing. Interestingly,
the scaling N4/3 is preserved for Fyt , although it is achieved
for largerN , and with a reduced proportionality constant. Fig-
ure S4 shows Fyt as a function of N for various dephasing
rates for η = 0.75 (left panel) and η = 0.5 (right panel).

Appendix G: Collective dephasing noise

The discussion in the main text focuses on the effects of
our QND measurement scheme in the case of local dephasing.
Here, we consider the case of collective dephasing noise, i.e.
when the Lindbladian in Eq. (1) is replaced by

Lρ = −iω[Jz, ρ] + κcollD[Jz]ρ. (S1)

If κcoll = 2κ, in the absence of monitoring (Γ = 0), the expo-
nential decay of 〈Jx〉 is identical to the case of local dephas-
ing.

Fig. S5 shows the time dependence of the metrological fig-
ures of merit already studied in Fig. 2 (main text) for indepen-
dent dephasing with similar parameters. The values of Q̃eff

and Fyt are much smaller than in the case of local dephasing
and furthermore they are not increasing functions of N but
saturate to a constant, as shown clearly in Fig. S6. The lower
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FIG. S3. A single trajectory for the conditional state of a 50-qubit system, with κ = Γ = 1, ω = 0.01, η = 1. The upper panel shows, on the
left axis, the expectation values of Jx, Jy , and Jz , and on the right axis, the spin-squeezing parameter ζy . In the lower panel, the Husimi spin
Q function evaluated via Eq. (S1) is plotted on the Bloch sphere at four time instants, corresponding to the vertical dashed lines in the upper
panel. The initial CSS along x (a) gets squeezed along the y direction. The local dephasing populates the sectors with smaller total angular
momentum number and thus the average value of Q(θ, φ) decreases.

panel of Fig. S5 also shows that no spin squeezing is created
during the dynamics, since it would be observed for ξy > 1.

The extremely detrimental effect of collective dephasing on
standard metrological strategies is well-known [79, 96] and
we essentially show its effect also in the presence of continu-
ous QND monitoring. However, a fine comparison of the solid
blue line with the dashed black line (Qcoll

CSS/t i.e. the QFI for

a CSS affected by collective dephasing in absence of moni-
toring) shows that our protocol gives a (small) improvement,
as mentioned in the main text. We remark once more that
this kind of noise allows to exploit different schemes based on
decoherence-free subspaces [79] to obtain Heisenberg scal-
ing. Hybrid strategies exploiting both continuous QND mea-
surements and decoherence-free subspaces can thus be envi-
sioned, but we do not pursue this goal in this work.
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FIG. S4. Optimized Fisher information for the monitoring Fyt as a
function of N for various values of κ for finite efficiency η = 0.75
(top panel) and η = 0.5 (bottom panel). The remaining parameters
are the same as Fig. 5 of the main text.
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FIG. S5. Top: Information rate Q/t for noisy frequency estimation
with collective dephasing as a function of time in terms of different
figures of merit, for N = 50 (left panels) and N = 100 (right pan-
els). Blue line: effective QFI Q̃eff/t; orange line: continuous moni-
toring classical FI Fyt/t; green line: conditional states average QFI
Q̄c; dashed black line: QFI Qcoll

CSS/t for a CSS affected by collective
dephasing in absence of monitoring. Bottom: average spin squeezing
ζ̄y as a function of time Γt (dashed line is for the non-monitored dy-
namics). Parameters: κcoll/Γ = 1, ω/Γ = 10−2, η = 1. The shaded
areas represent the 95% confidence interval. The data is obtained
from 20 000 trajectories.
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FIG. S6. Effective QFI Q̃eff/t as a function of time Γt for N atoms
affected by collective dephasing with κcoll/Γ = 1. The data is ob-
tained from 20 000 trajectories.


