
A Model for Gamifying Programming Education:
University-Level Programming Course

Quantified
E. Kaila*, M.-J. Laakso*, T. Rajala* and E.Kurvinen*

* Department of Future Technologies, University of Turku, Finland
{ertaka, milaak, temira, emakur} @utu.fi

Abstract - Utilizing gamification in course holistically
requires that all areas of the course can be quantified, and the
progress made transparent to students as well. However,
keeping track of all students’ scores, submissions and other
tasks can be too big of a workload to be practical, especially
in the larger courses. We have successfully adapted a
collaborative education tool to university-level programming
courses. The tool is used to record student performance in all
areas of the course, including for example attendances,
demonstration and tutorial scores, weekly surveys and
additional exercises. In addition to providing comprehensive
statistics to teachers, all progress is also visible to students in
real time. In this paper, we describe the re-design of the
course, with gamification and transparency to students in
focus. Moreover, we analyze students’ scores in different
components of the course, and find out if there are
correlations to be found between different areas. The results
seem to indicate, that methods emphasizing active learning
are the most beneficial for students’ performance in the
course.

Programming education; gamification; quantification;
student performance;

I. INTRODUCTION

Programming is an essential skill in computer science
and information technology education. Hence, various
studies have been conducted about how the introductory
programming courses should be taught, and what kind of
tools can be utilized to improve student performance.
Typical changes in the course methodology include for
example emphasizing active learning (typical application is
Flipped learning, [1, 2]) and utilizing gamification [3].
However, often the effect of changes in the methodology is
not evaluated in detail. Although holistic changes in the
student performance, motivation or other factors are
important, it is interesting (and also important) to find out
how the students perform in courses’ different components
and what is their effect into the final performance.

We have previously presented a tutorial-based
programming methodology [4, 5] which was applied to an
introductory programming course. The emphasis of
changes is in active learning, which is implemented with
tutorials (combinations of learning material and
automatically assessed exercises), additional exercises and
demonstrations. Gamification is utilized by making all
scores transparent to students, by utilizing virtual trophies
and by offering external reward (in form of small bonus to

course grade) to student for completing more than a
required minimum.

In this article, we explore the students’ performance
during the course by quantifying different components.
Moreover, we discuss the effect of individual components
towards students’ performance in the final exam. The paper
is structured as follows: first, related research by the
community is presented. Next, the redesigned course is
discussed along with the educational technology used and
the quantifying of different components in the course. Next,
students’ performance in different components (and in
total) is visualized and the correlation of components with
the final exam presented. Finally, the results are discussed
and the article concluded with possibilities to future
research opportunities..

II. RELATED WORK

Programming is a difficult task to learn. According to
several studies (for example [6, 7]), typical issues are for
example the lack of adequate mental models, using overly
simplified strategies and too little time spent on planning
and testing problems. Several solutions have been provided
to fix this problem. Educational technology, for example,
can potentially help students to perform better. Examples
of such technology are program visualization [8, 9], where
program visualization is made visible step by step, and the
tools for automatically assessing program code [10, 11],
which can significantly reduce the time spent on evaluating
the programs written by students. However, the tools alone
cannot solve the problems in the programming courses,
more important is how they are used and how active
learning is emphasized in courses.

Different methodologies have been utilized to try to
improve the outcome and the students’ experience in
programming courses. Boyle et al. [12] report an
experience where blended learning was utilized in
introductory course. They found out, that the online
environment used in the course (along with other changes)
resulted into better pass rates. In a systematic review [13]
about different methodologies used in programming
education, the authors found that of all reviewed features,
the most effective ones were the utilization of relatable
content, collaboration and adapting an introductory course
(typically referred as CS0) before the introductory
programming course.

A review of gamification literature [14] identifies
several gamified elements that can be used in education.
These include for example points, levels or stages, progress
bars and feedback. Gamification can potentially increase
students’ motivation in courses. In [15] the authors present
an experiment where game thinking and game mechanics
were utilized with a software development team. The
authors found out, that almost 80 % of the students favored
the introduced, gamified mechanics in comparison to
traditional setups. Similarly, in [16] the authors found out,
that utilizing gamification to enhance online student
collaboration lead up to 88% more efficient collaboration.
Moreover, [17] reports various motivational impacts in
different study groups when gamification was utilized by
digital badges.

III. ABOUT THE COURSE

As an example course, the Basic Course of Algorithms
and Programming is used. The course is taught annually at
University of Turku, Finland, and serves as essential part of
programming education offered for computer science
majors and other students. Content-wise, the course is quite
typical CS1 course. It is taught using Java, and focuses on
procedural paradigm. The course lasts for seven weeks and
is concluded with a final exam at the eight week.

The topics covered in seven weeks of the course are
listed in Table 1.

TABLE 1. THE CONTENTS OF THE COURSE, DIVIDED INTO 7 WEEKS.

Week # Topic
1 Introduction to course, transfer

from Python to Java
2 Variables, strings, conditional

statements
3 Repetition
4 Methods (i.e. procedures and

functions)
5 Arrays
6 Using external modules, other

data structures
7 Summary

As seen in the table, the course covers basic
introductory concepts related to procedural programming.
Each week there are two 2-hour sessions. Moreover, there
are a total of four 2-hour demonstration sessions where
students demonstrate and discuss their answers to
programming tasks.

A. Utlizing Educational Technology
The implementation of the course relies heavily on

usage of educational technology. Because of this, a suitable
tool was required when the course was redesigned. ViLLE,
an exercise-based collaborative education tool was chosen
to be used in all areas of the course. ViLLE has a support
for multiple programming languages (including Java,
Python, C#, C++, JavaScript, to name a few). Moreover,
there are more than one hundred different exercise types. A
number of these types are designed especially for
programming education, including for example program
visualization [18], Parsons puzzles [19] and code writing.

There is also a program simulation exercise, where the
students need to simulate program code execution (for
example by creating and modifying variables and method
instances) while the example program is executed. All these
exercise types are automatically assessed and provide
immediate feedback upon submission. An example of
programming-related ViLLE exercise is shown in Figure 1.

Figure 1. An example of programming-related exercise in ViLLE. The
students need to move the boxes into their target positions by writing a

program.

ViLLE works as a web-based application, usable with
any modern browser with no additional plugins required.
The exercises are collected into rounds, and a number of
rounds form a course. There are three types of rounds
needed in the programming course: normal rounds, exam
rounds and tutorial rounds. All rounds have an opening and
closing times set by the course teacher. Exam rounds offer
a possibility to modify several properties, including the
amount of feedback given. Tutorials in ViLLE are
combinations of learning material (such as text, images,
videos or code examples) with automatically assessed
exercises. All exercises in ViLLE can be done in
collaboration, but the group work is emphasized in
tutorials. Both students (or all students, as the group size
can be anything between 2 and 9) sit in front of same
computer solving the exercises together, and the points are
awarded to all students in the group.

ViLLE can also be used for recording other course
activities. Student attendances can be collected
automatically by using RFID (Radio-frequency
identification) tags handed to students. When a tag is used
with a reader in any classroom, the attendance is
automatically registered. The same mechanism can be used
to register demonstration points as well. ViLLE has a
support for surveying students’ perceptions, which can be
a powerful tool in course quality control [20]. Survey
answers and all other statistics can be easily viewed in
ViLLE by course teachers. The statistics can also be
exported as a plain text file or as a Microsoft Excel
spreadsheet for further analysis. Comprehensive
description of the tool can be found in [21].

B. Course redesign
With the redesign, several design principles were

chosen [5]. The redesigned course emphasized active
learning by replacing half of the lectures with tutorials.

Moreover, the remaining lectures were accompanied with
additional ViLLE exercises which were meant to be
answered right after the lecture. To enable student
feedback, a simple survey was used after each lecture and
tutorial. The survey consisted of three questions: “What did
you learn this week?”, “What things remain unclear after
this session?” and “How would you improve this session?”.
The answers to these questions were analyzed after each
session, and the consecutive sessions were modified, if
necessary. Finally, the course final exam was transferred
into electronic exam. Utilizing electronic exam enables the
students to test, modify and debug their answers, bringing
the whole process a lot closer to real programming.
Combining electronic exam with automatic assessment also
reduces teachers’ workload significantly and can make the
assessment process more reliable. In the redesign process,
three non-affiliated researchers confirmed that the
electronic version is at least as difficult as the traditional
one.

The structure of the redesigned course and a
comparison to course instance before the redesign process
is displayed in Table 2.

TABLE 2. COURSE INSTANCES COMPARED.

Component Old instance New instance
Lectures 7 x 2 x 2h 7 x 2h
Tutorials None 7 x 2h
Demonstrations 4 x 2h 4 x 2h
ViLLE exercises None 3 to 5 weekly
Exam Pen and paper Electronic
Exam tasks 2 to 3 8 to 9
Attendances Not registered Registered

There is not a significant difference in students’ work
load when measured in hours in a week. However, in the
new instance, the amount of active learning via different
kinds of exercises is a lot larger than in the old version.

C. Quantifying the Course and Utilizing Gamification
As seen in Table 2, the new course instance consists of

five components: lectures, tutorials, demonstrations,
ViLLE exercises and the final exam. The first four
components are split among several weeks of the course. A
maximum score for all areas was defined to give them
proper weight in the whole evaluation scheme. The scores
are displayed in Table 2.

TABLE 3. THE MAXIMUM SCORES AND REQUIRED MINIMUMS FOR
DIFFERENT COURSE COMPONENTS.

Component Max. score Required minimum
Lecture attendance 200 None
Tutorials 650 325 (50 %)
Demonstrations 400 200 (50 %)
ViLLE exercises 200 100 (50 %)

Hence, the total maximum score at the course becomes
1450. The final exam was scored in scale of 0 to 90, but this
score was independent of the course total score. Exceeding
the minimum limits gave student a small bonus into the
final grade. However, this bonus was only applied if at least
50 % of the points was collected from the final exam.

To enable the gamifying effect from collecting points in
different categories (and in total), the progress must be
made visible to students. Hence, in ViLLE the students can
see their real-time total score, round scores and the scores
of individual assignments all time. The effect can be
boosted by using virtual trophies: hence, a bronze trophy is
awarded from reaching minimum score in a round (50 %),
silver trophy for 75 %, gold trophy for 90 % and the
diamond trophy for the full score. An example displaying
the trophies and the score in ViLLE is displayed in Figure
2.

Figure 2. Students' score displayed with a progress bar and virtual
trophies.

The figure displays one round with 6 exercises. The
user has completed the first five exercises with full points
but has not started the final one yet. The bar in the top
displays the full score gathered from the round (50 out of
60) and the trophies already reached (bronze and silver).

D. Earlier Results
In [5] we studied the effects of course redesign on

student performance on the course. An old instance of the
course (N=210) was compared to an instance using the
redesigned methodology (N=193). We found out that the
pass rate increased statistically significantly in the new
instance. Curiously, the course average grade remained
almost the same. A summary of the results is collected into
Table 4.

TABLE 4. THE RESULTS OF THE OLD METHODOLOGY AND NEW
METHODOLOGY COMPARED.

Old methodology New methodology
N 210 193
% passed course 53.33 % 80.82 %
Grade mean (1 to
5, 5 best; of
accepted)

3.63 3.57

As seen in the table, performance-wise the redesign was
highly successful. The pass rate in the new version of the
course is significantly better. Next, we quantify the
students’ performance in different areas of the course, to try
to find out how the better pass rate was achieved.

IV. RESEARCH

ViLLE automatically collects a lot of data from every
submission made by students. For example, submission
score and the time used answering are required.
Additionally, exercise-related data is stored. A coding
exercise, for example, stores all code student has written for
the submission. This opens up new possibilities for
studying student misconceptions and coding style [22]. In
this paper, the focus is in quantifying students’

performance, and hence on the scores collected. A single
instance of the course is studied. For consistency, the same
instance is observed than in the previous study [5] about
students’ performance.

A. Results
Students’ total scores are visualized in Figure 3.

Figure 3. Students’ total score collected from the course visualized.

As seen in the figure, majority of students collected
points quite well. The average number of points collected
was 1077.0 out of 1450. The distribution of total points
between different course components is visualized in
Figure 4.

Figure 4. All students' score collected from the course categorized into
different components.

As seen in the table, the majority of collected points
comes from tutorials and the demonstrations. This is in line
with the intended workload of the components.

The course lasted for seven weeks (with exam at the
eight week). The average points collected from the
tutorials, ViLLE exercises and attendances each week are
displayed in Figure 5.

Figure 5 points collected from all components of the course weekly.

There are some important points to notice about the
figure. First, the maximum amount of ViLLE exercises was
50 at the first week, and only 10 at the last week. For weeks
2 to 5 the maximum was 30 points. This explains the larger
average on the first week and the smaller one on the last
week. Second, attending the first lecture only provided
students 10 points, while all the remaining ones awarded 15
points. Hence, the average number of points collected from
ViLLE exercises and attendances is quite constant during
the whole course. However, the number of points collected
from the tutorials drops noticeably in the second half of the
course. This is very likely due to topics getting more
difficult when the course advanced. There were four
demonstrations, taking place in weeks 4 to 7. The amount
of points collected seems to drop a little towards the end
(the average for last week was 45.7 while in the first three
weeks the average was more than 75 points). Again, the last
set may have been more difficult than the previous ones.

To find out whether the work done had an effect to the
course grade, a correlation between total points collected
and the final exam points (without bonus) was calculated.
The mapping of students is shown in Figure 6.

Figure 6. Students plotted according to their total score collected (y-
axis) and the point in final exam (x-axis) without added bonus.

The figure is by no means ambiguous. Still, it seems
that the majority of students who collected a lot of points
during the course also did quite well in the final exam. As
there were minimum requirements for collecting points
from different components, the students who did not meet
them were not allowed to participate into the final exam.
Hence the bottom half of the figure is mostly empty. A

0
200
400
600
800

1000
1200
1400
1600

0 50 100 150 200

0
200
400
600
800

1000
1200
1400

Tutorials ViLLE Exercises

Attendances Demonstrations

0

50

100

150

200

250

Week
1

Week
2

Week
3

Week
4

Week
5

Week
6

Week
7

Tutorials ViLLE Exercises

Attendances Demonstrations

0
145
290
435
580
725
870

1015
1160
1305
1450

0 10 20 30 40 50 60 70 80 90

correlation value of r = 0.443 between the total points
collected and the final exam score does indicate a moderate
correlation – a fact that is also visible in the figure. The
exam score correlation with all course components is
displayed in Table 5.

TABLE 5. CORRELATION BETWEEN COURSE COMPONENTS AND THE
FINAL EXAM SCORE WITHOUT ADDED BONUS.

Component Correlation with exam
score (r)

Total score 0,443657

Tutorials 0,495501

Attendance 0,156899

ViLLE exercises 0,345411

Demonstrations 0,39234

As seen in the table, the tutorials have the highest
correlation with the final exam score. Hence, the emphasis
of tutorials in the course total score seems to be justified.
Curiously, lecture attendances only have a minor
correlation (0.157) with the points collected from the final
exam. Hence, active learning methods seem to be the most
beneficial for learning.

V. DISCUSSION

The students seem to have collected points quite well
from all course components. The average amount of 1077.0
(out of 1450) is rather high average score, especially since
the students who dropped out from the course (pass rate
was 80.82 %) are included in the number. Most of the
points collected came from tutorials and demonstrations.
This emphasizes the course’s focus on active learning.
Curiously, the amount of points collected from these topics
also decreased towards the end of the course. We can think
about two possible explanations for this. First, it is possible
that the exercises got more difficult towards the end of the
course, and the students were not able to complete as many
of them as in the beginning. Second, it is also possible that
the students were not as eager to collect points when they
had completed the required minimum amounts from all
components. However, the average amount of points
collected from ViLLE exercises and attendances remained
constant during the course – likely because the points were
easier to collect from these categories.

There is a moderate correlation (r = 0.443) between the
total score collected and the final exam score (without the
bonus points collected during the course). This indicates,
that although there is a correlation between the work done
during the course and the skill level in the final exam, there
are some exceptions that need to be considered.
Collaboration has been proven quite useful to programming
learning [23, 24, 25, 26]. However, there is a possible
downside to doing tutorials and demonstrations
collaboratively: although the students are instructed to
work together and change the operator (i.e. the student who
is using the keyboard and mouse) frequently, it is still
possible that some students may have adopted a passive
role. Similarly, it is possible to copy the demonstration
answers from other students. There are also some students
who did quite well in the final exam without completing

much points during the course. These are probably students
with previous programming knowledge.

Of all course components, tutorials had the strongest
correlation with the final exam score. Moreover, lectures
had the smallest correlation with the exam. Hence, it seems
that active learning methods are the most useful for
students’ performance. Although not explicitly researched
in this study, we think that making scores of all components
transparent to students is important. Displaying score (with
possible virtual trophies) and offering a reward for
completing more than the required minimum are important,
gamifying factors that may have a positive effect towards
student motivation.

VI. CONCLUSION AND FUTURE WORK

Quantifying the individual score components seems to
provide valuable information for teachers and education
researchers. Students’ interest in completing different areas
can potentially be increased by utilizing gamification by
making the scores transparent and providing rewards on
completing more than required work. In the future, the
effect of gamification should be observed better. There are
some possibilities to complete this: first, we could have
course instances that are similar by all other aspects, but the
other would provide gamified features (such as ones
utilized in the course described here). Second, it may be
useful to survey students for their perceptions about
gamification in learning context.

Although there was only moderate correlation between
the total score collected in the course and the course final
exam scores, it still seems that the students benefit from
learning actively with versatile methods. In the future, it
would be useful to observer the correlations and specific
effects of individual components in the course even closer.
This way it would become possible to emphasize the most
effective methods. Still, utilizing different kinds of methods
in the course provides students heterogeneous ways to learn
the topic, and can hence increase motivation and make
learning programming more interesting. Finally, yet
another direction to future research is to quantify the effect
of components in different kinds of courses to find out if
the effects can be generalized.

REFERENCES

[1] A. Sams and J. Bergmann, “Flip your students' learning.
Educational Leadership”, vol. 70(6), 2013, pp.16-20.

[2] A. Amresh, A. R. Carberry and J. Femiani, “Evaluating the
effectiveness of flipped classrooms for teaching CS1”. In 2013
IEEE Frontiers in Education Conference (FIE), 2013, pp. 733-735

[3] S. Deterding, D. Dixon, R. Khaled and L. Nacke, “From game
design elements to gamefulness: defining gamification.” In
Proceedings of the 15th International Academic MindTrek
Conference: Envisioning Future Media Environments, ACM, 2011,
pp. 9-15

[4] E. Kaila, T. Rajala, M.-J. Laakso, R. Lindén, E. Kurvinen, V.
Karavirta and T. Salakoski, “Comparing student performance
between traditional and technologically enhanced programming
course”. In proceedings of the Seventeenth Australasian Computing
Education Conference (ACE2015), Sidney, Australia, 2015.

[5] E. Kaila, E. Kurvinen, E. Lokkila, and M.-J. Laakso, “Redesigning
an Object-Oriented Programming Course”. The ACM Transactions
on Computing Education 16 (4), 2016.

[6] M. Havenga, B. Breed E. Mentz, D. Govender, I. Govender, F.
Dignum and V. Dignum, “Metacognitive and problem-solving
skills to promote self-directed learning in computer programming:
Teachers’ experiences.” Sa-educ Journal, 10(2), 2013, pp.1-14

[7] A. Robins, J. Rountree and N. Rountree, “Learning and teaching
programming: A review and discussion.” Computer Science
Education, 13(2), 2003, pp.137-172.

[8] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari, “Visualizing
programs with Jeliot 3.” In proceedings of the Working Conference
on Advanced visual interfaces”, ACM, 2004, pp. 373-376.

[9] A. T. Virtanen, E. Lahtinen and H M. Järvinen, “VIP, a visual
interpreter for learning introductory programming with C++” In
proceedings of The Fifth Koli Calling Conference on Computer
Science Education, 2005, pp. 125-130.

[10] S.H. Edwards and M.A. Perez-Quinones, “Web-CAT:
automatically grading programming assignments.” In ACM
SIGCSE Bulletin, ACM, Vol. 40, No. 3, 2008, pp. 328-328.

[11] M. Joy, N. Griffiths and R. Boyatt, “The BOSS online submission
and assessment System”. ACM Journal on Educational Resources
in Computing. 5(3), 2005.

[12] T. Boyle, “Design principles for authoring dynamic, reusable
learning objects”. Australian Journal of Educational Technology,
19(1), 2003, pp. 46 – 58.

[13] A. Vihavainen, J. Airaksinen and C. Watson, “A systematic review
of approaches for teaching introductory programming and their
influence on success.” In proceedings of the Tenth Annual
Conference on International Computing Education Research,
ACM, 2014, pp. 19-26

[14] F.F.H. Nah, Q, Zeng, V.R. Telaprolu, A.P. Ayyappa and B.
Eschenbrenner, “Gamification of education: a review of literature.”
In International conference on hci in business (pp. 401-409).
Springer, 2014.

[15] B.S. ChamAkpolat, and W. Slany, “Enhancing software
engineering student team engagement in a high-intensity extreme
programming course using gamification.” In Software Engineering
Education and Training (CSEE&T), 2014 IEEE 27th Conference
on, pp. 149-153.

[16] A. Knutas, J. Ikonen, U. Nikula, and J. Porras, “Increasing
collaborative communications in a programming course with
gamification: a case study”. In Proceedings of the 15th International
Conference on Computer Systems and Technologies, 2014, pp.
370-377.

[17] M. Olsson, P. Mozelius and J. Collin, “Visualisation and
Gamification of e-Learning and Programming Education.”
Electronic journal of e-learning, 13(6), 2015, pp.441-454.

[18] T. Rajala, M.-J. Laakso, E. Kaila and T. Salakoski, ”Effectiveness
of Program Visualization: A Case Study with the ViLLE Tool.”
Journal of Information Technology Education, 7, 2018.

[19] D. Parsons and P. Haden, “Parson's programming puzzles: a fun and
effective learning tool for first programming courses.” In
Proceedings of the 8th Australasian Conference on Computing
Education-Volume 52, 2006, pp. 157-163.

[20] E. Kaila, E. Kurvinen, E. Lokkila, M.-J. Laakso and T. Salakoski,
”Enhancing Student-Teacher Communication in Programming
Courses: a Case Study Using Weekly Surveys”. In proceedings of
ICEE 2015 - International Conference on Engineering Education

[21] M.-J. Laakso, E. Kaila, E. and T. Rajala, “ViLLE – collaborative
education tool: Designing and utilizing an exercise-based learning
environment.” Educ. Inf. Technol., 2018.
https://doi.org/10.1007/s10639-017-9659-1

[22] E. Lokkila, E. Kurvinen, E. Kaila and M.-J. Laakso, “Automatic
Recognition of Student Misconceptions in Primary School
Mathematics.” In proceedings of EDULEARN15 - 7th International
Conference on Education and New Learning Technologies, 2015.

[23] T. Rajala, E. Kaila E., M.-J. Laakso and T. Salakoski, “Effects of
collaboration in program visualization.” Appeared in Technology
Enhanced Learning Conference 2009 (TELearn 2009), October 6 to
8, 2009, Academia Sinica, Taipei, Taiwan

[24] T. Rajala, E. Kaila E., M.-J. Laakso and T. Salakoski, ”How does
collaboration affect algorithm learning? A case study using
TRAKLA2 algorithm visualization tool.” In proceedings of 2010
International Conference on Education Technology and Computer
(ICETC 2010)

[25] T. Rajala, E. Kaila, J. Holvitie, R. Haavisto, M.-J. Laakso and T.
Salakoski, “Comparing the collaborative and independent viewing
of program visualizations.” In Frontiers in Education 2011
Conference, October 12-15, Rapid City, South Dakota, USA.

[26] T. Rajala, E. Lokkila, R. Lindén, M.-J. Laakso and T. Salakoski,
”Students’ perceptions on collaborative work in introductory
programming course”. In ICEE 2015 - International Conference on
Engineering Education.

	I. Introduction
	II. Related Work
	III. About the Course
	A. Utlizing Educational Technology
	B. Course redesign
	C. Quantifying the Course and Utilizing Gamification
	D. Earlier Results

	IV. Research
	A. Results

	V. Discussion
	VI. Conclusion and Future Work
	References

