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We address measurements of covariant phase observables (CPOs) by means of realistic eight-port
homodyne detectors. We do not assume equal quantum efficiencies for the four photodetectors and
investigate the conditions under which the measurement of a CPO may be achieved. We show that
balancing the efficiencies using an additional beam splitter allows us to achieve a CPO at the price
of reducing the overall effective efficiency, and prove that it is never a smearing of the ideal CPO
achievable with unit quantum efficiency. An alternative strategy based on employing a squeezed
vacuum as a parameter field is also suggested, which allows one to increase the overall efficiency
in comparison to the passive case using only a moderate amount of squeezing. Both methods are
suitable for implementantion with current technology.

PACS numbers: 42.50.Ar, 42.50.Ct, 03.65.-w

I. INTRODUCTION

In quantum mechanics, the concept of phase for a ra-
diation mode has always remained a somewhat contro-
versial topic, with both fundamental and technological
implications, see [1–7] and references therein for a re-
view. A major reason for this is that in trying to define
the phase of a quantum oscillator one can clearly see the
restrictions of the conventional approach which identi-
fies observables as self-adjoint operators, or equivalently,
their spectral measures. Indeed, it can be shown that no
spectral measure satisfies the physically relevant condi-
tions posed on phase observables [8–11]. However, this
problem has been overcome with the introduction of the
more general concept of observables as positive operator
measures. In this approach the concept of a covariant
phase observable (CPO) naturally emerges and these ob-
servables have been completely charaterized [10, 11]. An
important class of CPOs arise as the angle margins of cer-
tain covariant phase space observables, the most familiar
example being the Q-function of the field. Their phys-
ical significance is further emphasized by the fact that
any phase space observable can in principle be measured
via eight-port homodyne detection, a method which was
introduced in the microwave domain [12] and then ex-
tensively analyzed in the optical domain [13–21]. Other
multiport homodyne [22, 23] and heterodyne detection
[24–26] may be employed as well, the latter also in the
presence of frequency mismatch [27].

Any realistic measurement is subject to noise due to
imperfections in the measuring apparatus. In the case
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of eight-port homodyne detection, one of the relevant
sources of noise is the presence of detector inefficiencies.
Indeed, as reported in [28], the quantum efficiencies of
commercially available detectors range from very high to
as low as a few percents and their effect is far from be-
ing negligible. In eight-port homodyning the presence of
detector inefficiencies causes a Gaussian smearing on the
measured observable [29, 30]. This appears as a convolu-
tion structure which causes the actually measured distri-
butions to be smoothed versions of the ideal ones. As a
matter of fact, quantum efficiencies of the photodetectors
are traditionally assumed to be equal which results in a
rotation invariant convolving measure. In other words,
the smoothing effect is the same in any direction in the
phase space. A detailed analysis shows that this symme-
try is lost if we drop the assumption of equal efficiencies
[31]. This loss of symmetry is crucial when the measure-
ment is intended to gain information about the phase
properties of the field, and it is the purpose of this paper
to address this problem in detail.

We consider two methods for regaining this lost sym-
metry. At first, we show that the efficiencies can be bal-
anced by inserting an additional beam splitter in front
of one of the photodetectors. This results in a decreased
overall efficiency for the measurement scheme. We also
show that the angle margin of the measured phase ob-
servable is never a smearing of the ideal one. We then
consider the effect of squeezing the parameter field while
keeping the efficiencies fixed. As it turns out, this also
compensates the efficiencies mismatch, thus retrieving
the lost symmetry. We also compare the two methods
and show that the overall efficiency is always greater for
the squeezing strategy.

The paper is organized as follows. In Section II we
lay out the general framework and give the necessary
definitions. Section III is devoted to the mathemati-
cal description of eight-port homodyne detection involv-
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ing non-ideal photodetectors. In Sections IV and V we
describe in some details the aforementioned methods of
overcoming the problems arising from different quantum
efficiencies. The conclusions and future outlooks are pre-
sented in Section VI.

II. COVARIANT PHASE OBSERVABLES AND

PHASE SPACE OBSERVABLES

Let H be the infinite dimensional separable Hilbert
space associated with a single mode electromagnetic field,
and let L(H) denote the set of bounded operators act-
ing on H. We fix the photon number basis {|n〉|n =
0, 1, 2, . . .} and denote by N the number operator associ-
ated with this basis. By diagonality of a bounded opera-
tor we always mean diagonality with respect to the num-
ber basis. We will use without explicit indication the co-
ordinate representation in which case H is identified with
L2(R) and the basis vectors with Hermite functions. The
states of the field are represented by positive operators
with unit trace, and the observables are represented by
normalized positive operator measures E : B(Ω) → L(H),
where B(Ω) stands for the Borel σ-algebra of subsets of
the measurement outcome space Ω. For a field in a state
ρ, the measurement outcome statistics of an observable
E is given by the probability measure X 7→ tr[ρE(X)].
An observable Φ : B([0, 2π)) → L(H) is a covariant

phase observable (CPO) if

eiφNΦ(X)e−iφN = Φ(X+̇φ)

for all X ∈ B([0, 2π)) and φ ∈ [0, 2π), where +̇ denotes
addition modulo 2π. According to the Phase Theorem
[11, Theor. 2.2], each phase observable is of the form

Φ(X) =

∞
∑

m,n=0

cmn
1

2π

∫

X

ei(m−n)α dα |m〉〈n|, (1)

for some unique phase matrix (cmn)
∞
m,n=0, that is, a pos-

itive semidefinite complex matrix satisfying cnn = 1 for
all n ∈ N. The phase observables measured by eight-port
homodyne detection arise as angle margins of certain co-
variant phase-space observables.
An observable G : B(R2) → L(H) is a covariant phase-

space observable if

W (q, p)G(Z)W (q, p)∗ = G(Z + (q, p))

for all Z ∈ B(R2) and (q, p) ∈ R
2, where W (q, p) =

ei
qp

2 e−iqP eipQ are the Weyl operators. Any covariant
phase-space observable is generated by a unique positive
unit trace operator σ so that the observable is of the form
[32, 33]

G
σ(Z) =

1

2π

∫

Z

W (q, p)σW (q, p)∗ dqdp

Now let us denote by Φ
σ : B([0, 2π)) → L(H) the angle

margin of Gσ, that is,

Φ
σ(X) = G

σ(X × [0,∞)), X ∈ B([0, 2π)),

where the relation between the polar and Cartesian co-
ordinates is given by reiα = 1√

2
(q + ip). The key result

needed in our study is [11, Theor. 4.1] which states that
Φ

σ is a phase observable if and only if σ is diagonal.
The simplest and from the experimental point of view
the most useful example is the case σ = |0〉〈0|, that is,
when the observable is generated by the vacuum state. In
this case the phase distribution is just the angle margin
of the Husimi Q-function of the field.

It should be stressed that even though CPOs arise nat-
urally as the margins of covariant phase space observ-
ables, not all CPOs are obtained in this way. In par-
ticular, the canonical phase observable is not the angle
margin of any phase space observable [11]. In order to
go into the analysis of phase observables related to eight-
port homodyne detection, we need to recall the details of
the measurement scheme. This is the subject of the next
Section.

III. EIGHT-PORT HOMODYNE DETECTOR

The eight-port homodyne detector consists of four in-
put modes, four balanced 50:50 beam splitters, a phase
shifter which provides a phase-shift of π

2 on one of the
modes and four photodetectors with quantum efficiencies
ǫj, j = 1, 2, 3, 4 (see Fig. 1) which are not assumed to be
equal. The measured quantities are the suitably scaled
photon number differences between modes 1 & 3, and 2
& 4, respectively. The signal field in mode 1 is the field
under investigation while the parameter field in mode 2
determines the measured observable. The input mode 3
is left empty so it corresponds to a vacuum field and the
local oscillator in mode 4 is in a coherent state |

√
2z〉.

The procedure for obtaining the phase distribution with
this setup can be described as follows. Each experimen-
tal event consists of a simultaneous detection of the two
commuting difference-photocurrents which trace a pair of
field-quadratures. Each event thus corresponds to a point
in the complex plane and the phase value inferred from
the event is the polar angle of the point itself. The exper-
imental histogram of the phase distributions is obtained
upon dividing the plane into “infinitesimal” angular bins
of equal width, from 0 to 2π, then counting the number
of points which fall into each bin. We shall next go into
the mathematical description in more detail.

In order to obtain measurements of covariant phase-
space observables, we need to take the high-amplitude
limit, that is, assume a very strong local oscillator. In-
deed, if σ′ is the state of the parameter field and we as-
sume ideal detectors (ǫj = 1 for all j), the measured ob-
servable in the high-amplitude limit |z| → ∞ is Gσ , where
the generating operator is σ = Cσ′C−1; here C denotes
the conjugation map (Cψ)(x) = ψ(x)∗ [34]. The pres-
ence of detector inefficiencies causes a Gaussian smear-
ing so that the actually measured observable is given by
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FIG. 1: Schematic diagram of the eight-port homodyne detec-
tion scheme. The scheme consists of four input modes, four
balanced 50:50 beam splitters, a phase shifter which provides
a phase-shift of π

2
on one of the modes and four photode-

tectors with quantum efficiencies ǫj , j = 1, 2, 3, 4 which are
not assumed to be equal. The measured quantities are the
photon number differences between modes 1 & 3, and 2 & 4,
respectively, rescaled by the amplitude of the local oscillator,
i.e. a strong coherent state |

√
2z〉 impinged into mode 4. The

signal field in mode 1 is the field under investigation, while
the parameter field in mode 2 determines the measured ob-
servable. The input mode 3 is left empty so it corresponds to
a vacuum field.

µǫ13,ǫ24 ∗ Gσ : B(R2) → L(H) defined as

(µǫ13,ǫ24 ∗ Gσ)(Z) =

∫

µǫ13,ǫ24(Z − (q, p)) dGσ(q, p),

where µǫ13,ǫ24 : B(R2) → [0, 1] is a probability measure
with the density

(q, p) 7→ 1

2π

√

ǫ13ǫ24
(1− ǫ13)(1 − ǫ24)

× exp

{

− ǫ13
2(1− ǫ13)

q2 − ǫ24
2(1− ǫ24)

p2
}

,

where ǫij =
2ǫiǫj
ǫi+ǫj

[31]. The quantities ǫ13 and ǫ24 may be

viewed as overall efficiencies related to the two balanced
homodyne detectors in the scheme. In particular,

min{ǫi, ǫj} ≤ ǫij ≤ max{ǫi, ǫj} .
The smeared phase-space observable is still covariant and
thus generated by some positive trace one operator. In-
deed, we have

µǫ13,ǫ24 ∗ Gσ = G
µǫ13,ǫ24

∗σ ,

where µǫ13,ǫ24 ∗ σ is the convoluted state [33]

µǫ13,ǫ24 ∗ σ =

∫

W (q, p)σW (q, p)∗ dµǫ13,ǫ24(q, p) .

The angle margin of the measured phase space observable
is then Φ

µǫ13,ǫ24
∗σ and the problem is to determine the

conditions under which this is a CPO. In other words,
we need to determine when the generating operator is
diagonal. At first we give a partial characterization in
the following Proposition.

Proposition 1. If σ is diagonal, then µǫ13,ǫ24 ∗ σ is di-

agonal if and only if ǫ13 = ǫ24. Conversely, if ǫ13 = ǫ24,
then µǫ13,ǫ24 ∗ σ is diagonal if and only if σ is diagonal.

Proof. First notice that any two trace class operators σ
and ρ are equal if and only if tr[σW (q, p)] = tr[ρW (q, p)]
for all (q, p) ∈ R

2 and the diagonality is equivalent to the
condition

eiφNσe−iφN = σ

for all φ ∈ [0, 2π). Furthermore, since

e−iφNW (q, p)eiφN =W (q cosφ+p sinφ,−q sinφ+p cosφ)

it follows that a state σ is diagonal if and only if the
mapping

(q, p) 7→ tr[σW (q, p)]

is invariant with respect to rotations. According to [33,
Prop. 3.4] we have

tr[µǫ13,ǫ24 ∗ σW (q, p)] = µ̂ǫ13,ǫ24(p,−q)tr[σW (q, p)]

where

µ̂ǫ13,ǫ24(p,−q) =
∫

ei(px−qy) dµǫ13,ǫ24(x, y)

= exp

{

−1− ǫ24
2ǫ24

q2 − 1− ǫ13
2ǫ13

p2
}

is nonzero everywhere. If either of these functions is ro-
tation invariant, their product is invariant if and only
if the other function is also invariant. This proves the
Proposition.

Note that neither of the conditions in Proposition 1 is
necessary for µǫ13,ǫ24 ∗σ to be diagonal. Indeed, consider
a state σ = µǫ24,ǫ13 ∗ σdiag where σdiag is an arbitrary
diagonal state. For ǫ13 6= ǫ24 this state is not diagonal.
On the other hand, since the measure µǫ13,ǫ24 ∗ µǫ24,ǫ13

has the density

(q, p) 7→ 1

2π

ǫ13ǫ24
ǫ13 − 2ǫ13ǫ24 + ǫ24

exp

{

−1

2

ǫ13ǫ24
ǫ13 − 2ǫ13ǫ24 + ǫ24

(q2 + p2)

}

it follows from Proposition 1 and the associativity of con-
volutions [33, Prop. 3.2] that

µǫ13,ǫ24 ∗ (µǫ24,ǫ13 ∗ σdiag) = (µǫ13,ǫ24 ∗ µǫ24,ǫ13) ∗ σdiag

is diagonal.
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We close this section with a conceptual remark. Since
the observable measured with this setup is the covariant
phase space observable G

µǫ13 ,ǫ24
∗σ it is a slight misuse of

terminology to call this a direct measurement of the angle
margin Φ

µǫ13 ,ǫ24
∗σ. However, the brief analysis below

shows that this scheme can be used to directly measure
Φ

µǫ13,ǫ24
∗σ. Consider for convenience the case of ideal

detectors. For a local oscillator with a finite intensity |z|
this scheme defines an observable Eσ

z : B(R2) → L(H). It
was shown in [34] that, with the choice arg(z) = 0,

lim
|z|→∞

E
σ
z = G

σ

weakly in the sense of probabilities (see [34] for de-
tails). Now E

σ
z is a discrete observable and the mea-

surement outcomes consist of pairs (q, p) ∈ R
2. Let

f : R2 \ {(0, 0)} → [0, 2π) be the pointer function which
assigns to each pair the corresponding argument, that is,
f(q, p) = αqp defined by

cosαqp =
q

√

q2 + p2
, sinαqp =

p
√

q2 + p2

and denote E
f,σ
z : B([0, 2π)) → L(H),

E
f,σ
z (X) = E

σ
z

(

f−1(X) ∪ {(0, 0)}
)

Then it can be shown that

lim
|z|→∞

E
f,σ
z = Φ

σ

weakly in the sense of probabilities and the same argu-
mentation holds in the case of inefficient detectors. In
this sense, by choosing to record only the values αqp

we see that eight-port homodyne detection in the high-
amplitude limit can be used as a direct measurement of
Φ

µǫ13,ǫ24
∗σ.

IV. BALANCING EFFICIENCIES BY AN

ADDITIONAL BEAM SPLITTER

Suppose that the state of the parameter field is diag-
onal, for instance, a vacuum state. In order to obtain a
CPO, we need to have ǫ13 = ǫ24. As illustrated in Fig. 2,
a given value of ǫij can be obtained with infinitely many
different values of ǫi and ǫj. It follows that there is a
great deal of freedom in choosing the detectors in order
to obtain the equality ǫ13 = ǫ24. This degree of freedom
may be exploited to modify the measurement setup in
order to compensate any difference in the overall efficien-
cies. Indeed, suppose that the efficiencies ǫj are fixed
and, for instance, ǫ24 < ǫ13. This means that the homo-
dyne detector consisting of detectors D1 and D3 is more
efficient than the other one.
Since a photodetector with efficiency ǫ is equivalent to

having a fictitious beam splitter with transparency ǫ in
front of an ideal detector (see, e.g. [35, 36]), one can
artificially decrease the efficiency of, say, detector D3 by

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ϵ13

ϵ
bs

ϵ24

ϵ13

ϵi

ϵj

FIG. 2: Contourlines for the overall efficiency ǫij as a func-
tion of ǫi and ǫj . The addition of a beam splitter with trans-
parency ǫbs can be used to balance the setup and and obtain
ǫ′13 = ǫ24.

placing an additional beam splitter with transparency ǫbs
in front of the detector. The resulting effective efficiency
of D3 is then ǫ′3 = ǫbsǫ3 and the new overall efficiency is

ǫ′13 =
2ǫbsǫ1ǫ3
ǫ1 + ǫbsǫ3

Hence, with the appropriate choice

ǫbs =
ǫ1ǫ24

2ǫ1ǫ3 − ǫ3ǫ24

we may balance the setup and obtain ǫ′13 = ǫ24. This is
illustrated in Fig. 2. In other words, we achieve a CPO at
the price of artificially decreasing the largest efficiency to
the value of the smallest one. For the remainder of this
section we denote ǫ = ǫ′13 = ǫ24 and use the notation
µǫ = µǫ,ǫ.
It is interesting to note that by balancing the efficien-

cies of the homodyne detectors we have a situation where
both the actually measured observable and the one corre-
sponding to ideal detectors are phase observables. There-
fore it is natural to study the connection between them.
Since the measured phase-space observable is a smear-
ing of the ideal one, one might expect that this property
is inherited into the angle margins, namely, that there
exists a probability measure ν : B([0, 2π)) → [0, 1] such
that Φµǫ∗σ = ν ∗ Φσ. However, this is not the case.

Proposition 2. The measured observable Φ
µǫ∗σ is never

a smearing of Φσ.

Proof. Assume that Φ
µǫ∗σ = ν ∗ Φ

σ for some probabil-
ity measure ν. Let (cµǫ∗σ

mn ) and (cσmn) denote the phase
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matrices of Φµǫ∗σ and Φ
σ, respectively. It is easily ver-

ified using Eq. (1) that the matrix elements satisfy the
relation

cµǫ∗σ
m,m+k = ν̂(k)cσm,m+k (2)

where ν̂(k) =
∫ 2π

0
eikα dν(α). It was shown in [37] that

limm→∞ c
|n〉
m,m+k = 1 for all k ∈ N, where (c

|n〉
m,m+k) is the

phase matrix related to the observable Φ|n〉. Now both σ
and µǫ ∗ σ are mixtures of number states and the convex
structure is inherited into the corresponding observables,
and thus into the phase matrices. Therefore, we have

lim
m→∞

cµǫ∗σ
m,m+k = 1 = lim

m→∞
cσm,m+k

for all k ∈ N. This, together with Eq. (2) shows that
ν̂(k) = 1 for all k ∈ N. It follows that Φµǫ∗σ = Φ

σ which
is possible if and only if µǫ ∗ σ = σ. This is satisfied if
and only if ǫ = 1, that is, the detectors are ideal.

In the simplest case of the vacuum parameter field and
balanced efficiencies the convoluted state can easily be
calculated. First notice that the necessary matrix ele-
ments of the Weyl operators are

〈n|W (q, p)|0〉 = 1√
n!

(

1√
2
(q + ip)

)n

e−
1

4
(q2+p2)

so that with the polar coordinates reiα = 1√
2
(q+ ip), one

can calculate

〈n|µǫ ∗ |0〉〈0||n〉 =
∫

∣

∣〈n|W (q, p)|0〉
∣

∣

2
dµǫ(q, p)

=
1

n!

ǫ

1− ǫ

∫

r2n exp

{

− r2

1− ǫ

}

dr2dα

2π

= ǫ(1− ǫ)n

The convoluted state is thus

µǫ ∗ |0〉〈0| = ǫ

∞
∑

n=0

(1 − ǫ)n|n〉〈n| (3)

V. BALANCING EFFICIENCIES BY

SQUEEZING THE PARAMETER FIELD

There is an interesting alternative to the method of
balancing efficiencies considered above. As mentioned
before, the requirement of equal efficiencies is necessary
only in the case that the parameter field is in a diagonal
state. Therefore it is possible that for fixed efficiencies a
suitably chosen non-diagonal state can be used to com-
pensate for the difference in the efficiencies so that the
convoluted state is diagonal. Here we show that this can
always be done by employing a suitable squeezed vacuum
state as a parameter field.
Let us assume that we are able to prepare the pa-

rameter field into a squeezed vacuum state |ψa〉〈ψa|,

where a > 0 is the squeezing parameter and ψa(x) =

(a/π)1/4 e−
1

2
ax2

. As in the proof of Prop. 1, we need to
study the rotation invariance of the function

(q, p) 7→ tr [µǫ13,ǫ24 ∗ |ψa〉〈ψa|W (q, p)]

= µ̂ǫ13,ǫ24(p,−q)〈ψa|W (q, p)|ψa〉 (4)

= e
−
(

1−ǫ24
2ǫ24

+ a
4

)

q2−
(

1−ǫ13
2ǫ13

+ 1

4a

)

p2

It is clear that this is invariant with respect to rotations
if we can choose the squeezing parameter in such a way
that the equality

1− ǫ24
2ǫ24

+
a

4
=

1− ǫ13
2ǫ13

+
1

4a
(5)

holds. Solving Eq. (5) for a we have

a =
ǫ24 − ǫ13
ǫ13ǫ24

±

√

1 +

(

ǫ24 − ǫ13
ǫ13ǫ24

)2

(6)

where the solution with the plus sign is always positive.
Hence, we can compensate the difference in the efficien-
cies by using a suitably squeezed vacuum as the param-
eter field. In order to compare this with the method of
balancing efficiencies we need to solve the spectral de-
composition of the convoluted state

µǫ13,ǫ24 ∗ |ψa〉〈ψa|

First, define a parameter

η =
ǫ13 − 2ǫ13ǫ24 + ǫ24

ǫ13ǫ24
+

√

1 +

(

ǫ24 − ǫ13
ǫ13ǫ24

)2

so that by inserting the value (6) of the squeezing param-
eter into Eq. (4) we obtain

tr[µǫ13,ǫ24 ∗ |ψa〉〈ψa|W (q, p)] = e−
η

4
(q2+p2) (7)

On the other hand we know that

µǫ13,ǫ24 ∗ |ψa〉〈ψa| =
∞
∑

n=0

λn|n〉〈n|

so that

tr [µǫ13,ǫ24 ∗ |ψa〉〈ψa|W (q, p)] =

∞
∑

n=0

λn〈n|W (q, p)|n〉

=
∞
∑

n=0

λne
− 1

4
(q2+p2)Ln

(

1
2 (q

2 + p2)
)

(8)

where Ln(x) denotes the n-th Laguerre polynomial.
Upon rewriting the exponential function in Eq. (7) using
the series representation [38, 8.975(1)]

e
z

z−1
x = (1− z)

∞
∑

n=0

Ln(x)z
n, |z| < 1,
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one has

e−
η

4
(q2+p2) = e−

1

4
(q2+p2)e

1

4
(1−η)(q2+p2)

=
2e−

1

4
(q2+p2)

η + 1

∞
∑

n=0

(

η−1
η+1

)n

Ln

(

q2 + p2

2

)

,

(9)

where 0 < η−1
η+1 < 1. Comparing Eqs. (8) and (9) we find

that the eigenvalues λn are

λn =
2

η + 1

(

η − 1

η + 1

)n

and the state is

µǫ13,ǫ24 ∗ |ψa〉〈ψa| = ǫeff

∞
∑

n=0

(1− ǫeff)
n|n〉〈n| (10)

where we have defined

ǫeff =
2

η + 1
,

which may be viewed as the overall effective efficiency of
this measurement scheme.
The remarkable feature of this method is the inequality

ǫeff ≥ ǫm ≡ min{ǫ13, ǫ24} (11)

which holds for any value of the quantum efficiencies.
Furthermore, the equality holds if and only if ǫ13 = ǫ24
and in this case no squeezing is needed. This means
that for ǫ13 6= ǫ24 the overall efficiency of this method
is always greater than the one obtained by balancing
the efficiencies by the insertion of an additional beam
splitter. Indeed, by multiplying both sides of (11) by
(η + 1)max{ǫ13, ǫ24} and after some algebra we see that
(11) is equivalent to

√

ǫ213ǫ
2
24 + (ǫ24 − ǫ13)2 ≤ |ǫ24 − ǫ13|+ ǫ13ǫ24

which holds for all ǫ13 and ǫ24.
In order to make our analysis more quantitative let us

introduce the quantity

γ =
ǫeff
ǫm

=
2

(1 + η)ǫm
, (12)

which represents the ratio between the effective efficiency
achievable by squeezing the parameter field at fixed value
of the four efficiencies ǫj , j = 1, .., 4 and the correspond-
ing quantity obtained by the insertion of a beam splitter.
From Eq. (11) we know already that γ ≥ 1, whereas in
Fig. 3 we report its behaviour as a function of ǫ13 and
ǫ24.
As it is apparent from the plot γ is symmetric under

the exchange of ǫ13 and ǫ24 and achieves its maximum
γ ≃ 1.17 for ǫ13 = 0.5 and ǫ24 = 1 or viceversa. The
function is not particularly peaked around its maximum

0

0.3

0.6

1

Ε13
0.3

0.6

1

Ε24

1

1.1

1.2

Γ

FIG. 3: (Color Online) The ratio γ between the effective ef-
ficiency achievable by squeezing the parameter field and the
corresponding quantity obtained by the insertion of a beam
splitter as a function of ǫ13 and ǫ24.

and this means that there is a wide range of values for ǫ13
and ǫ24 for which we have a significant gain in squeezing
the parameter field in comparison to the insertion of a
beam splitter. On the other hand, when one of the two
efficiencies is very small then the two methods are equally
ineffective. The amount of squeezing needed to achieve
CPO strongly depends on the values of the efficiencies.
The region of maximum improvement corresponds to a
moderate squeezing, i.e. a not too far from one. In Fig.
4 we report the parametric plot of γ as a function of
the corresponding squeezing: this is a multivalued plot
since there are many pairs (ǫ13, ǫ24) for which the same
γ is achievable, though employing different amounts of
squeezing.
The two symmetric maxima of Fig. 3 correspond to

squeezing parameters which are inverses of each other,
(a ≃ 2.414 and a ≃ 0.414) i.e. they correspond to the
same amount of squeezing, but in orthogonal directions.
In turn, when the values of the two efficiencies ǫ13 and
ǫ24 are close to each other we have

a ≃ 1 +
ǫ13 − ǫ24

ǫ2m
+O(ǫ13 − ǫ24)

2 ,

ǫeff ≃ ǫm +
1

2
|ǫ13 − ǫ24|+O(ǫ13 − ǫ24)

2 ,

γ ≃ 1 +
|ǫ13 − ǫ24|

2ǫm
+O(ǫ13 − ǫ24)

2 .

Overall, we conclude that squeezing the parameter field
is always convenient, and may lead to a considerable gain
in the effective efficiency in comparison to the insertion
of a beam splitter. Since the maximum gain corresponds
to the use of a moderate amount of squeezing we fore-
see possible experimental implementations with current
technology.
We close this section by comparing the phase distribu-

tions obtained by using these two methods of balancing
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FIG. 4: (Color Online) Parametric plot of the ratio γ between
the effective efficiency achievable by squeezing the parameter
field and the corresponding quantity obtained by the insertion
of a beam splitter as a function of the squeezing a needed to
achieve the compensation.

the efficiencies. Suppose, for simplicity, that the signal
field is in a coherent state |z〉 with z = 1 and the over-
all efficiencies of the homodyne detectors are ǫ13 = 0.5
and ǫ24 = 1. The effective efficiency obtained by using
the squeezing method is then ǫeff ≃ 0.828. We show the
phase distributions in Fig. 5 where we have also added
the ideal case for comparison. It is clear that the squeez-
ing method provides a distribution which is more peaked
around its maximum. To make this more precise, con-
sider the minimum variance of the distribution defined
as [37]

Varmin(p) = inf
φ,ϕ∈R

1

2π

∫ ϕ+π

ϕ−π

(φ− ϕ)2p(φ) dφ

Let pid, psq and pbs be the phase distributions obtained
with ideal detectors, squeezing, and by using an addi-
tional beam splitter. Then the minimum variances are
given by

Varmin(pid) ≃ 0.76,

Varmin(psq) ≃ 0.89,

Varmin(pbs) ≃ 1.24,

which clearly shows the advantage of the squeezing
method.

VI. CONCLUSIONS AND OUTLOOKS

In this paper we have analyzed in detail the perfor-
mance of the eight-port homodyne detector as a suitable
device to measure covariant phase observables. We have
abandoned the traditional assumption of equal quantum

-Π -
Π

2 0 Π

2 Π
Φ

0.3

0.6
pHΦL

FIG. 5: The phase distributions of a coherent state |z〉 with
z = 1 in the case of ideal detectors (higher dashed line), bal-
ancing by squeezing (solid line), and balancing by an addi-
tional beam splitter (lower dashed line).

efficiencies for the four photodetectors involved in the
detection scheme and have investigated in detail the con-
ditions under which the measurement of a CPO may be
achieved. We have found that balancing the efficiencies
using an additional beam splitter allows to achieve CPO
at the price of reducing the overall effective efficiency and
we have proved that this CPO is never a smearing of the
ideal CPO achievable with unit quantum efficiency. We
have also suggested an alternative compensation strat-
egy, where a squeezed vacuum is used as a parameter
field, which allows one to increase the overall efficiency
in comparison to the passive case using only a moderate
amount of squeezing.

In ideal conditions, i.e. for photodetectors with unit
quantum efficiencies, the phase-space observables achiev-
able by eight-port homodyning are equivalent to those
achievable by six-port homodyning [23] or heterodyn-
ing [24–26]. Equivalence also holds in noisy conditions
if all the involved photodetectors are assumed to have
the same quantum efficiency. In this context a question
arises on whether the effects of different quantum efficien-
cies may result in different phase-space observables or in
inequivalent compensation schemes. Work along these
lines is in progress and results will be reported elsewhere.

Our results provide a more realistic characterization of
phase-space measurements of the optical phase by eight-
port homodyning, and are suitable for experimental veri-
fication. As a matter of fact, both compensation schemes
suggested in this paper may be implemented with current
quantum optical technology.
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[37] P. Lahti, J.-P. Pellonpää, J. Math. Phys. 41, 7352 (2000).
[38] I. S. Gradshteyn, I. M. Ryzhnik, Table of Integrals,

Series, and Products, Corrected and Enlarged Edition
(Academic Press, Inc., Orlando, 1980).


