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ABSTRACT. We prove versions of the Rubio de Francia extrapolation theorem in general-
ized Orlicz spaces. As a consequence, we obtain boundedness results for several classical
operators as well as a Sobolev inequality in this setting. We also study complex interpo-
lation in the same setting, and use it to derive a compact embedding theorem. Our results
include as special cases classical Lebesgue and Sobolev space estimates, and their variable
exponent and double phase growth analogs.

1. INTRODUCTION

Generalized Orlicz spaces, also known as Musielak–Orlicz spaces and Nakano spaces,
are a class of Banach spaces that include a number of spaces of interest in harmonic anal-
ysis and PDEs as special cases. They were introduced by Nakano [45, 46] and others,
following Orlicz [48]. We refer to the monograph of Musielak [44] for a comprehensive
synthesis of this earlier work. Intuitively, given a function ϕ(·) : Ω× [0,∞)→ [0,∞], the
generalized Orlicz space Lϕ(·) consists of all measurable functions f such thatˆ

Rn
ϕ(x, |f(x)|) dx <∞.

If ϕ(x, t) = tp, 1 6 p < ∞, then we get the classical Lebesgue spaces Lp. If ϕ(x, t) =
tpw(x), we get the weighted Lebesgue spaces Lp(w). If ϕ(x, t) = Φ(t), where Φ is a
Young function, then we get the classical Orlicz spaces [38, 50]. When ϕ(x, t) = tp(x)

we get the variable Lebesgue spaces which have been extensively studied in the past 25
years [18, 24, 33], and when ϕ(x, t) = tp + a(x)tq, p < q, we get the double phase
functional recently studied in [5, 13].

The generalized Orlicz spaces are of interest not only as the natural generalization of
these important examples, but also in their own right. They have appeared in many prob-
lems in PDEs and the calculus of variations [4, 5, 6, 13, 27] and have applications to image
processing [10, 32, 37] and fluid dynamics [53].

The operators of classical harmonic analysis (e.g., convolution operators, maximal op-
erators, fractional and singular integrals) and generalized Sobolev spaces in the variable
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exponent setting have been studied for many years. Subsequently, results were proved in
specific generalized Orlicz spaces: for instance, ϕ(x, t) = tp(x) log(e + t)q(x) [17, 36, 40].
Recently, however, attention has shifted to studying these problems in more generality:
see [41, 42, 47]. The second author and his collaborators [30, 31, 34, 35] have systemat-
ically studied these questions and established a very broad theory that unites and extends
previous work. A framework in the same spirit was also recently introduced in [6]

The goal of this paper is to develop harmonic analysis on generalized Orlicz spaces by
extending the theory of Rubio de Francia extrapolation to this setting. Extrapolation is
a powerful tool in the study of weighted norm inequalities: roughly, it shows that if an
operator T is bounded on the weighted spaces L2(w), where the weights belong to the
Muckenhoupt class A2, then for all p, 1 < p < ∞, the operator T is bounded on Lp(w)
when w ∈ Ap. Extrapolation was originally discovered by Rubio de Francia [51]; for more
information on the history of extrapolation and an extensive bibliography, see [20].

The power of extrapolation is that it can be used to prove norm inequalities on Banach
spaces, provided that the maximal operator is bounded on the dual space (or, more pre-
cisely, the associate space). This approach was first explored in [19], where extrapolation
was used to prove norm inequalities on variable Lebesgue spaces. (See also [18, 20, 22].)

The main results of this paper are the following three extrapolation theorems, which
show that weighted norm inequalities for operators imply norm inequalities on general-
ized Orlicz spaces. For the definition of the notation used, please see Sections 2 and 4
below. Our first result is the natural generalization of Rubio de Francia extrapolation to
generalized Orlicz spaces. In the variable Lesbesgue spaces, i.e., when ϕ(x, t) = tp(x),
Theorem 1.1 was proved in [19].

Theorem 1.1 (Extrapolation). Given an operator T , suppose that for some p, 1 6 p <∞
and all w ∈ A1,

‖Tf‖Lp(w) 6 C(T, n, p, [w]A1)‖f‖Lp(w).

Then, given any weak Φ-function ϕ such that simple functions belong to Lϕ
∗
p(·) and the

Hardy–Littlewood maximal operator is bounded on Lϕ
∗
p(·), where ϕp(x, t) = ϕ(x, t1/p), we

have that
‖Tf‖Lϕ(·) 6 C‖f‖Lϕ(·) .

Remark 1.2. In Theorem 1.1 we implicitly assume that T is defined on Lϕ(·) and that Tf is
a measurable function. However, we do not assume that T is linear or sublinear. We make
the analogous assumptions in the next two results.

Our second result generalizes the off-diagonal extrapolation theorem of Harboure, Ma-
cias and Segovia [28]. In the variable Lebesgue spaces, this result was also proved in [19].

Theorem 1.3 (Off-diagonal extrapolation). Given an operator T , suppose that for some
p, q, 1 6 p 6 q <∞ and all w ∈ A1,

‖Tf‖Lq(w) 6 C(T, n, p, q, [w]A1)‖f‖Lp(wp/q).

Let β := 1
p
− 1

q
. Then, given weak Φ-functions ϕ and ψ with ψ−1(x, t) = t−βϕ−1(x, t)

such that simple functions belong to Lψ
∗
q (·) and the Hardy–Littlewood maximal operator is
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bounded on Lψ
∗
q (·), where ψq(x, t) := ψ(x, t1/q), we have that

‖Tf‖Lψ(·) 6 C‖f‖Lϕ(·) .
Our final result generalizes the limited range extrapolation theorem of Auscher and

Martell [3]. In the particular case of the variable Lebesgue spaces, this was proved very
recently in [22].

Theorem 1.4 (Limited range extrapolation). Given an operator T , suppose that for some
p, 1 < q− < p < q+ <∞ and all w ∈ Ap/q− ∩RH(q+/p)′ ,

‖Tf‖Lp(w) 6 C(T, n, p, [w]Ap/q− , [w]RH(q+/p)
′ )‖f‖Lp(w).

Let α = (q+/p)
′. Then, given any weak Φ-function ϕ such that simple functions belong to

Lϕ
∗
p(·) and such that the Hardy–Littlewood maximal operator is bounded on Lψ(·), where

ψ(x, t) = ϕ∗p(x, t
1/α), we have that

‖Tf‖Lϕ(·) 6 C‖f‖Lϕ(·) .

One drawback of these results is that they are stated abstractly for generalized Orlicz
spaces that contain the simple functions and where the Hardy–Littlewood maximal opera-
tor is bounded; moreover, these assumptions pertain to generalized Orlicz spaces that are
related to, but not the same as, the spaces on which we want to prove our norm inequalities.
By using the recent work in [31, 34] we can give sufficient conditions on the Φ-functions
ϕ for the hypotheses of each of these theorems to hold. These conditions are somewhat
technical, so we defer their precise statement: see Corollaries 4.8 and 4.21 below. Here,
however, we want to emphasize that they are easy to check and sufficiently general as to
encompass almost all of the examples of generalized Orlicz spaces discussed above. The
one exception is that our corollaries do not recapture results for weighted Lebesgue spaces:
see the discussion after Theorem 3.3.

As immediate consequences of our extrapolation results, we derive norm inequalities for
a number of operators on generalized Orlicz spaces: in particular, for

• the maximal operator,
• Calderón–Zygmund singular integrals and commutators,
• the Riesz potential and fractional maximal operators,
• the spherical maximal operator.

These results are not intended to be exhaustive, but to show the versatility of extrapolation
in proving inequalities with very little additional work. While extrapolation allows us to
obtain easily a vast array of tools, it is worth noting that there is a small price: since the
technique uses the maximal operator in the dual space, it means that we must assume the
Φ-function is doubling. Thus results such as regularity under exponential growth (e.g. [39])
are out of our reach. Consequently, it is of interest also to find direct proofs for the above
mentioned operators.

We also use extrapolation to prove a Sobolev embedding theorem. We are not aware of
any method to obtain compact embeddings directly by extrapolation. Therefore, for this
purpose we prove a complex interpolation theorem (Theorem 5.1), which combined with
the Sobolev embedding theorem allows us to extend the Rellich–Kondratchov Theorem to
generalized Orlicz spaces.
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Remark 1.5. As we were completing this paper we learned that an extrapolation theorem in
the scale of generalized Orlicz spaces had been proved independently by Maeda, et al. [43].
Their result is analogous to Corollary 4.10 but with more complicated hypotheses.

The remainder of this paper is organized as follows. In Section 2 we give the neces-
sary definitions and preliminary results about generalized Orlicz spaces. In Section 3 we
discuss sufficient conditions for the Hardy–Littlewood maximal operator to be bounded
on generalized Orlicz spaces. We will show that these conditions hold for a wide variety
of examples. In Section 4 we first give some necessary definitions about weights, and we
introduce the abstract formalism of families of extrapolation pairs that we use to state and
prove our extrapolation results. We then prove Theorems 1.1, 1.3, and 1.4. In fact, we
will actually prove generalizations of these results, and then deduce a number of immedi-
ate corollaries that follow from the theory of extrapolation and the sufficient conditions in
Section 3. In Section 5 we prove our complex interpolation theorem. Finally, in Section 6
we give our applications of extrapolation.

Throughout this paper, C, c, etc. will denote constants whose value may change at each
appearance. If we writeC(X, Y, . . .), we mean that the constant depends on the parameters
X , Y , etc. The notation f . g means that there exists a constant C > 0 such that f 6 Cg.
The notation f ≈ g means that f . g . f . By L0 = L0(Rn) we denote the set of
(Lebesgue) measurable functions on Rn.

2. Φ-FUNCTIONS AND GENERALIZED ORLICZ SPACES

We recall some definitions pertaining to generalized Orlicz spaces. For proofs and
further properties, see [24, Chapter 2] and [44]. Our approach follows the development
in [31].

Hereafter, we say that a function f is almost increasing if there exists L > 1 such that
for all s 6 t, f(s) 6 Lf(t). Almost decreasing is defined analogously. If we can take
L = 1, we say that f is increasing/decreasing.

Definition 2.1. Let ϕ : [0,∞) → [0,∞] be an increasing function such that ϕ(0) =
limt→0+ ϕ(t) = 0 and limt→∞ ϕ(t) = ∞. Such a function ϕ is called a Φ-prefunction.
Furthermore, we say that ϕ is:

(1) a weak Φ-function, denoted ϕ ∈ Φw, if, additionally, t 7→ ϕ(t)
t

is almost increasing
on (0,∞);

(2) a Φ-function, denoted ϕ ∈ Φ, if, additionally, it is left-continuous and convex;
(3) a strong Φ-function, denoted ϕ ∈ Φs, if, additionally, it is continuous in R and

convex.

Two Φ-(pre)functions ϕ and ψ are equivalent, ϕ ' ψ, if there exists L > 1 such that
ψ( t

L
) 6 ϕ(t) 6 ψ(Lt) for all t. Equivalent Φ-functions give rise to the same space

with comparable norms. The converse, however, is false: there exist Φ-functions that
induce comparable norms but are not equivalent, cf. [24, Theorem 2.8.1]. We say that ϕ
is doubling if ϕ(2t) 6 Aϕ(t) for every t > 0. For doubling Φ-functions, ' and ≈ are
equivalent.
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While it is common in the literature to work with Φ-functions, it is also convenient
to work at times with either weak or strong Φ-functions. We can do so because every
weak Φ-function is equivalent to a strong one: the following result was proved in [31,
Proposition 2.3].

Lemma 2.2. Every weak Φ-function is equivalent to a strong Φ-function.

Given ϕ ∈ Φw, we let ϕ−1 denote the left-inverse of ϕ:

ϕ−1(τ) := inf{t > 0 : ϕ(t) > τ}.

Then ϕ(ϕ−1(τ)) 6 τ and ϕ−1(ϕ(t)) 6 t. Equality holds in the former when ϕ is continu-
ous, in the latter when ϕ is strictly increasing. Note that ϕ ' ψ if and only if ϕ−1 ≈ ψ−1.

The conjugate Φ-function ϕ∗ is defined by the formula

ϕ∗(t) := sup
s>0

st− ϕ(s).

In [24, (2.6.12)], it was shown that ϕ−1(t)(ϕ∗)−1(t) ≈ twhen ϕ satisfied additional growth
conditions (more precisely, when it is an N-function—see [24, Definition 2.4.4]). Here we
show that this holds without these additional assumptions.

Lemma 2.3. If ϕ ∈ Φw, then ϕ−1(t)(ϕ∗)−1(t) ≈ t.

Proof. The claim is invariant under equivalence of Φ-functions, so by Lemma 2.2 we may
assume that ϕ ∈ Φs.

Since ϕ is convex, t 7→ ϕ(t)
t

is increasing. If we combine this with the definition of the
conjugate function, we get, for s > 0, that

ϕ∗
(ϕ(s)

s

)
= sup

t>0

(ϕ(s)

s
− ϕ(t)

t

)
t = sup

t∈[0,s]

(ϕ(s)

s
− ϕ(t)

t

)
t 6 sup

t∈[0,s]

ϕ(s)

s
t = ϕ(s).

On the other hand, choosing t = s in the supremum, we find that

ϕ∗
(

2
ϕ(s)

s

)
= sup

t>0
2
ϕ(s)

s
t− ϕ(t) > 2ϕ(s)− ϕ(s) = ϕ(s).

Thus we have shown that

(2.4) ϕ∗
(ϕ(s)

s

)
6 ϕ(s) 6 ϕ∗

(
2
ϕ(s)

s

)
.

The claim of the lemma is immediate for t = 0, so we may assume that 0 < t < ∞. In
this case we can find s > 0 such that t = ϕ(s) and ϕ−1(t) = s since ϕ ∈ Φs; then (2.4)
gives

ϕ∗
(

t

ϕ−1(t)

)
6 t 6 ϕ∗

(
2t

ϕ−1(t)

)
.

Since (ϕ∗)−1 is increasing and (ϕ∗)−1(ϕ∗(t)) 6 t, we obtain from this that

(ϕ∗)−1

(
ϕ∗
(

t

ϕ−1(t)

))
6 (ϕ∗)−1(t) 6

2t

ϕ−1(t)
.
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For the lefthand side we distinguish two cases. If ϕ∗(s) > 0, then (ϕ∗)−1(ϕ∗(s)) = s. If
ϕ∗(s) = 0, then s 6 (ϕ∗)−1(t) for any t > 0 (cf. [30, (2.2)]). In either case, we obtain that

t

ϕ−1(t)
6 (ϕ∗)−1(t) 6

2t

ϕ−1(t)
,

from which the claim follows when we multiply by ϕ−1(t) > 0. �

Generalized Orlicz spaces. To define generalized Orlicz spaces, we extend the definition
of Φ-functions to depend on the location in space.

Definition 2.5. The set Φ(Ω) of generalized Φ-functions consists of those functions ϕ : Ω×
[0,∞)→ [0,∞] such that

(1) ϕ(y, ·) ∈ Φ for every y ∈ Ω;
(2) ϕ(·, t) ∈ L0(Ω) for every t > 0.

The families Φs(Ω) and Φw(Ω) are defined analogously.

For simplicity, weak, strong and generalized Φ-functions will all be called Φ-functions.
In sub- and superscripts the dependence on x will be emphasized by ϕ(·): Lϕ (Orlicz)
versus Lϕ(·) (generalized Orlicz). The properties and definitions of Φ-functions carry over
to generalized Φ-functions pointwise.

We can now define generalized Orlicz spaces. By Lemma 2.2 we can take weak Φ-
functions in our definitions, though in the references above these definitions are made for
Φ-functions.

Definition 2.6. Let ϕ ∈ Φw(Ω) and define the semimodular %ϕ(·) for f ∈ L0(Ω) by

%ϕ(·)(f) :=

ˆ
Ω

ϕ(x, |f(x)|) dx.

The generalized Orlicz space, also called a Musielak–Orlicz space, is defined as the set

Lϕ(·)(Ω) = {f ∈ L0(Ω) : lim
λ→0

%ϕ(·)(λf) = 0}

equipped with the (Luxemburg) norm

‖f‖Lϕ(·)(Ω) := inf
{
λ > 0: %ϕ(·)

(f
λ

)
6 1
}
.

If the set is clear from the context we abbreviate ‖f‖Lϕ(·)(Ω) by ‖f‖Lϕ(·) or ‖f‖ϕ(·).

Hölder’s inequality holds in generalized Orlicz spaces, with constant 2, without restric-
tions on the Φ-function [24, Lemma 2.6.3]:ˆ

Ω

|f | |g| dx 6 2‖f‖ϕ(·)‖g‖ϕ∗(·).

Moreover, the following general norm conjugate formula, in a sense the opposite of Hölder’s
inequality, is also true. It was proved in [24, Corollary 2.7.5] for ϕ ∈ Φ(Rn) with c(ϕ) = 1.
However, by Lemma 2.2 it extends to weak Φ-functions.
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Lemma 2.7 (Norm conjugate formula). Let ϕ ∈ Φw(Rn), f, g ∈ L0(Ω) and suppose that
simple functions belong Lϕ

∗(·). Then

c(ϕ)‖f‖ϕ(·) 6 sup
‖g‖ϕ∗(·)61

ˆ
Ω

|f | |g| dx 6 2‖f‖ϕ(·).

Remark 2.8. The norm conjugate formula is not directly related to the dual space (Lϕ(·))∗,
only to the conjugate modular ϕ∗. Consequently, the formula is also useful in situations
where the space is not reflexive.

Remark 2.9. After completing this paper, we found in [29] that it is possible to prove the
norm conjugate formula without the assumption that simple functions belong to Lϕ

∗(·).
This would allow us to remove some of the auxiliary assumptions in our results. Details
are left to the reader.

Rescaling. Suppose that ϕ ∈ Φw(Rn) and ϕp(x, t) := ϕ(x, t1/p) is also a weak Φ-
function. Then it follows directly from the definition of the Luxemburg norm that

‖vp‖ϕp(·) = ‖v‖pϕ(·).

This identity will be referred to as rescaling. The next lemma describes how rescaling
behaves under conjugation.

Lemma 2.10. Let 1 6 p 6 q < ∞, β := 1
p
− 1

q
and ϕ, ψ ∈ Φw(Rn) be such that

ϕ−1(x, t) = tβψ−1(x, t). Define ϕp(x, t) := ϕ(x, t1/p) and ψq(x, t) := ψ(x, t1/q), and
assume they are in Φw(Rn). Then

‖v
p
q ‖ϕ∗p(·) ≈ ‖v‖

p
q

ψ∗q (·)

Proof. Our proof is based on a pointwise estimate; for simplicity of notation, we thus drop
the “x” for the rest of the proof. By Lemma 2.3, ϕ−1

p (t)(ϕ∗p)
−1(t) ≈ t. By definition,

ϕ−1
p (t) = ϕ−1(t)p; hence, we have that (ϕ∗p)

−1(t) ≈ t
(
ϕ−1(t)

)−p. Analogously, ψ−1(t) ≈
(t/(ψ∗q )

−1(t))1/q.
By assumption, ϕ−1(t) = tβψ−1(t). Therefore,

(ϕ∗p)
−1(t) ≈ t

(
ϕ−1(t)

)−p
= t1−pβψ−1(t)−p = t1−pβ−

p
q (ψ∗q )

−1(t)
p
q .

Since 1− pβ − p
q

= 0, we have shown that ϕ∗p(t) ≈ ψ∗q (t
q/p), and so the claim follows by

rescaling. �

3. THE MAXIMAL OPERATOR IN GENERALIZED ORLICZ SPACES

We begin by recalling the definition of the maximal operator. The Hardy–Littlewood
maximal operator is defined for f ∈ L0(Rn) by

Mf(x) := sup
r>0

 
B(x,r)

|f(y)| dy,

where B(x, r) is the ball with center x and radius r, and
ffl

denotes the average integral.
Equivalently, the averages can be taken over all balls (or all cubes) that contain x. For the
general theory of the maximal operator, see [26].
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We now give a family of hypotheses that are closely related to the boundedness of the
maximal operator on generalized Orlicz spaces.

Definition 3.1. Given ϕ ∈ Φw(Rn) and 0 < p <∞, we define the following conditions:
(A0) ϕ−1(x, 1) ≈ 1 uniformly in x ∈ Ω.

(A1) There exists β ∈ (0, 1) such that βϕ−1(x, t) 6 ϕ−1(y, t) for every t ∈
[
1, 1
|x−y|n

]
and every x, y ∈ Ω with |x− y| 6 1.

(A2) Lϕ(·)(Rn) ∩ L∞(Rn) = Lϕ∞(Rn) ∩ L∞(Rn), with ϕ∞(t) := lim sup
|x|→∞

ϕ(x, t) and

ϕ∞ ∈ Φw.
(Inc)p s 7→ s−pϕ(x, s) is increasing for all x ∈ Ω.

(Dec)p s 7→ s−pϕ(x, s) is decreasing for all x ∈ Ω.
(aInc)p s 7→ s−pϕ(x, s) is almost increasing uniformly in x ∈ Ω.

(aDec)p s 7→ s−pϕ(x, s) is almost decreasing uniformly in x ∈ Ω.
We say that ϕ satisfies (aInc) if it satisfies (aInc)p for some p > 1; and (aDec) if it satisfies
(aDec)p for some p <∞.

There are three facts we want to observe about these definitions. First, (aDec) is equiv-
alent to doubling: see [31]. Second, by a change of variables, ϕ ∈ Φw satisfies (aInc)p for
p > 1 if and only if ϕp(x, t) = ϕ(x, t1/p) satisfies (aInc)1: i.e., if and only if ϕp ∈ Φw. The
third is that (A0) yields the inclusion of simple functions in a generalized Orlicz space. We
state this as a lemma; we will use it below to apply Lemma 2.7.

Lemma 3.2. Let ϕ ∈ Φw(Ω) satisfy (A0). Then simple functions belong to Lϕ(·)(Ω).

Proof. Since Lϕ(·)(Ω) is a vector space, it suffices to show that χA ∈ Lϕ(·)(Ω) for every
A ⊂ Ω of finite measure. By (A0) and the properties of ϕ−1, there exists β > 0 such that
ϕ(x, β) 6 1 for every x ∈ Ω. Then

%ϕ(·)(λβχA) . λ

ˆ
A

ϕ(x, β) dx 6 λ |A| → 0

as λ→ 0, so χA ∈ Lϕ(·)(Ω) by the definition of the space. �

The importance of these conditions is that we can use them to give sufficient conditions
for the maximal operator to be bounded on generalized Orlicz spaces. The following result
was proved in [34, Theorem 4.7].

Theorem 3.3. Let ϕ ∈ Φw(Rn) satisfy conditions (A0)–(A2) and (aInc). Then

M : Lϕ(·)(Rn)→ Lϕ(·)(Rn)

is bounded.

Examples. To better understand these conditions, we consider them in several special
cases. In the classical Lebesgue spaces, ϕ(x, t) = tp, (A0)–(A2) hold trivially, and (aInc)
is equivalent to p > 1. This corresponds to the well-known fact that the maximal operator
is not bounded on L1. The fact that we do not need to assume (aDec) corresponds to the
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fact that the maximal operator is bounded on L∞. Similarly, if ϕ(x, t) = Φ(t) for some
Young function Φ, then (aInc) is equivalent to the lower Boyd index of Φ being greater
than 1, which is again necessary for the maximal operator to be bounded on LΦ. (See [7].)

In the variable Lebesgue spaces, the (aInc) condition is equivalent to p− = ess inf p(x) >
1, which is necessary for the maximal operator to be bounded [24, Theorem 4.7.1]. The
(A1) condition is the local log-Hölder continuity for 1

p
whereas (A2) is the Nekvinda decay

condition N∞. (For definitions, see [17] or [24].) These conditions are close to optimal,
as it is known that one cannot replace log-Hölder continuity by any weaker modulus of
continuity and still guarantee that the maximal operator is bounded. On the other hand,
there exist examples of exponents that do not satisfy these conditions—indeed, which are
not even continuous—but for which the maximal operator is still bounded on Lp(·) [24,
Example 5.1.8].

In the double phase case, the critical issue is the behavior of a around the zero set
{x : a(x) = 0}. Colombo and Mingione [13] found that the critical Hölder exponent
with which a must approach zero is n

p
(q − p), which also gives a sufficient condition for

(A1) to hold [34]. A similar observation holds in the limiting double phase case [5, 6].
Double phase regularity has been studied only in bounded domains; however, one can use
Lemma 3.4 to show that (A2) imposes no additional constraint compared to (A0).

ϕ(x, t) (A0) (A1) (A2) (aInc) (aDec)
tp(x)a(x) a ≈ 1 1

p
∈ C log

loc p ∈ N∞ p− > 1 p+ <∞
tp(x) log(e+ t) – 1

p
∈ C log

loc p ∈ N∞ p− > 1 p+ <∞
tp + a(x)tq a ∈ L∞ a ∈ C

n
p

(q−p) a ∈ L∞ p > 1 q <∞
tp + a(x)tp log(e+ t) a ∈ L∞ a ∈ C log

loc a ∈ L∞ p > 1 p <∞
Finally, we note that the (A0) condition precludes weighted norm inequalities, both in

the classical case, ϕ(x, t) = tpa(x), and in the variable exponent case, ϕ(x, t) = tp(x)a(x).
In either case the (A0) condition requires the weight to be essentially constant. Therefore,
Theorem 3.3 does not capture these very important cases. A “weighted” theory in the
setting of generalized Orlicz spaces remains an open problem.

The maximal operator and conjugate Φ-functions. In our extrapolation theorems, the
hypotheses are not given on the space Lϕ(·) for the original Φ-function ϕ, but rather on
Lϕ
∗(·), or on some rescaling of this space. In the scale of the variable Lebesgue spaces

these conditions are essentially equivalent: see Diening [23] or [24, Theorem 5.7.2] for a
precise statement. It is not known if this is true for generalized Orlicz spaces. However,
using our assumptions we can give sufficient conditions onϕ for the maximal operator to be
bounded on Lϕ∗(·) or on a rescaling of this space. To do so, we need to consider the effect
of conjugation and rescaling on the above conditions. This is done in Propositions 3.5
and 3.6 below. To prove the first, we give some additional characterizations of the (A2)
condition.

Lemma 3.4. Let ϕ ∈ Φw(Rn) and ϕ∞(t) := lim sup
|x|→∞

ϕ(x, t), ϕ∞ ∈ Φw. Then the follow-

ing are equivalent:
(1) ϕ satisfies (A2).
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(2) There exist h ∈ L1 and β > 0 such that for every t ∈ [0, 1],

ϕ(x, βt) 6 ϕ∞(t) + h(x) and ϕ∞(βt) 6 ϕ(x, t) + h(x).

(3) For any s > 0 there exist h ∈ L1 and β > 0 such that for every t ∈ [0, s],

ϕ(x, βt) 6 ϕ∞(t) + h(x) and ϕ∞(βt) 6 ϕ(x, t) + h(x).

Proof. It is clear that (3) implies (2). For the converse, we assume that (2) holds and s > 1.
Let β′ := β

s
and t ∈ [0, s]. Since t

s
∈ [0, 1], by (2) we see that

ϕ(x, β′t) = ϕ(x, β t
s
) 6 ϕ∞( t

s
) + h(x) 6 ϕ∞(t) + h(x).

The same argument works for the other inequality as well; hence, (3) holds. Therefore (2)
and (3) are equivalent.

We now consider (1) and (2). Let

ξ(x, t) := max{ϕ(x, t),∞χ(1,∞)(t)} and ψ(t) := max{ϕ∞(t),∞χ(1,∞)(t)}.

Then Lϕ(·) ∩ L∞ = Lξ(·) and Lϕ∞ ∩ L∞ = Lψ so that (1) becomes Lξ(·) = Lψ. By [24,
Theorem 2.8.1], Lξ(·) = Lψ if and only if there exist β > 0 and h ∈ L1 such that

ξ(x, βt) 6 ψ(t) + h(x) and ψ(βt) 6 ξ(x, t) + h(x).

We may assume without loss of generality that β 6 1. When t ∈ [0, 1], ξ(x, t) = ϕ(x, t),
ξ(x, βt) = ϕ(x, βt), ψ(t) = ϕ∞(t) and ψ(βt) = ϕ∞(βt), whereas for t > 1 the inequali-
ties are trivial since the righthand side is infinite. Thus, (1) and (2) are equivalent. �

To describe the impact of rescaling and conjugation we define two operators on Φ-
functions: given ϕ ∈ Φw and α > 0, let

T∗(ϕ)(x, t) := ϕ∗(x, t) and Tα(ϕ)(x, t) := ϕ
(
x, t

1
α

)
.

We study the behavior of our conditions under these transformations. We first consider
(A0)–(A2).

Proposition 3.5. Conditions (A0), (A1) and (A2) are invariant under T∗ and Tα.

Proof. By Lemma 2.3, ϕ−1(x, t)(ϕ∗)−1(x, t) ≈ t. Furthermore, (Tαϕ)−1(x, t) = ϕ−1(x, t)α.
When t = 1, we see from these that (A0) is invariant. Likewise, we see that (A1) is invari-
ant.

For (A2), we use Lemma 3.4. We find that

Tαϕ(x, βαt) = ϕ
(
x, βt

1
α

)
6 ϕ∞

(
t

1
α

)
+ h(x) = Tαϕ∞(t) + h(x)

and similarly for the other inequality in Lemma 3.4(2). Hence (A2) is invariant under Tα.
By [24, Lemma 2.6.4], the inequality

ϕ(x, βt) 6 ϕ∞(t) + h(x)

is equivalent to
T∗ϕ(x, t

β
) > T∗ϕ∞(t)− h(x),

and similarly for the other inequality. Hence we see by Lemma 3.4(3) that (A2) is invariant
under T∗, as well. �
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We next consider (aDec) and (aInc). The following result is a generalization of [31,
Lemma 2.4].

Proposition 3.6. Let ϕ ∈ Φw. Then ϕ satisfies (aInc)p if and only if T∗(ϕ) = ϕ∗ satis-
fies (aDec)p′ , where 1

p
+ 1

p′
= 1. Further, Tα maps (aInc)p to (aInc)p/α and (aDec)p to

(aDec)p/α.

Proof. We first consider the special case of (Inc) and (Dec). We have that ϕ satisfies (Inc)p
if and only if ϕ(t1/p)

t
is increasing, similarly for ϕ∗ and (Dec)p′ . From the definition of the

conjugate function,

ϕ∗(s
1
p′ )

s
=

1

s
sup
t>0

ts
1
p′ − ϕ(t) = sup

v>0

(
v
− 1
p′ −

ϕ
(
(sv)

1
p
)

sv

)
v,

where we used the change of variables t := (sv)
1
p . From this expression, we see that ϕ∗

satisfies (Dec)p′ and (Inc)p′ if ϕ satisfies (Inc)p and (Dec)p, respectively. Since (ϕ∗)∗ = ϕ
[24, Corollary 2.6.3], we conclude that ϕ satisfies (Inc)p if and only if ϕ∗ satisfies (Dec)p′ .

Suppose now that ϕ satisfies (aInc)p. Then ψ(s) := sp inft>s t
−pϕ(t) satisfies (Inc)p and

ϕ ≈ ψ. By the above argument, ψ∗ satisfies (Dec)p′ and by [24, Lemma 2.6.4], ϕ∗ ' ψ∗;
hence, ϕ∗ satisfies (aDec)p′ . Conversely, suppose ϕ∗ satisfies (aDec)p′ . Then we can argue
in the same way with the auxiliary function ψ(s) := sp

′
supt>s t

−p′ϕ∗(t) (since ϕ = (ϕ∗)∗).
It remains to consider Tp. As before, ϕ satisfies (aInc)p if and only if ϕ(t1/p)

t
is almost

increasing. Since Tαϕ(x, t
α
p ) = ϕ(x, t

1
p ), Tαϕ then satisfies (aInc)p/α. The case of (aDec)

is proved analogously. �

4. EXTRAPOLATION IN GENERALIZED ORLICZ SPACES

Weights and classical extrapolation. We give some preliminary definitions and results
about weights and the classical theory of Rubio de Francia extrapolation, as well as more
recent generalizations. For more information and proofs, we refer the reader to [20, 26]
and the references they contain.

By a weight we mean a non-negative, locally integrable functionw such that 0 < w(x) <
∞ almost everywhere. For 1 6 p < ∞, the weighted Lebesgue space Lp(w) consists of
all f ∈ L0 such that

‖f‖Lp(w) =

(ˆ
Rn
|f |pw dx

)1/p

<∞.

For 1 < p <∞, a weight w is in the Muckenhoupt class Ap, denoted w ∈ Ap, if

[w]Ap = sup
Q

( 
Q

w dx

)( 
Q

w1−p′ dx

)p−1

<∞,

where the supremum is taken over all cubes with sides parallel to the coordinate axes.
(Equivalently, we can replace cubes by balls.) When p = 1, we say w ∈ A1 if

[w]A1 = sup
Q

( 
Q

w dx

)
ess sup
x∈Q

1

w(x)
<∞.
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Given 1 < p < q < ∞, A1 ( Ap ( Aq. A simple example of a Muckenhoupt Ap weight
is w(x) = |x|a, −n < a < n(p− 1).

A weight w satisfies the reverse Hölder condition with exponent s > 1, denoted w ∈
RHs, if

[w]RHs = sup
Q

( 
Q

ws dx

)1/s( 
Q

w dx

)−1

<∞.

By Hölder’s inequality, if s > t, then RHs ( RHt. There is a close connection between
the Ap and RHs classes: ⋃

p>1

Ap =
⋃
s>1

RHs =: A∞.

However, it is important to note that while w ∈ Ap for some p if and only if w ∈ RHs for
some s, there is no connection between the size of s and p. This can be seen by considering
the reverse Hölder exponents of the power weights |x|a.

While the theory of Rubio de Francia extrapolation is usually applied to prove norm
inequalities for operators, the properties of the operator itself play no direct role in the
statement or proof of extrapolation. Moreover, we will want to use extrapolation to prove
more general inequalities, such as the Coifman–Fefferman type inequalities relating pairs
of operators; e.g., inequalities of the form

‖Tf‖ϕ(·) . ‖Mf‖ϕ(·),

where T is a singular integral operator andM the Hardy–Littlewood maximal operator. We
also want to be able to use extrapolation to prove weak-type and vector-valued inequalities.
For more on this approach in the classical setting, see [20].

Therefore, rather than consider inequalities relating the norms of Tf and f , we will
consider families of pairs of non-negative measurable functions,

F = {(f, g)},

with (implicitly) additional restrictions on f and g. The pairs (f, g) are called extrapo-
lation pairs. In our extrapolation theorems we will assume that we have weighted norm
inequalities

(4.1) ‖f‖Lp(w) 6 C(n, p, [w]Aq)‖g‖Lp(w)

and use them deduce generalized Orlicz space inequalities

(4.2) ‖f‖ϕ(·) 6 C(n, ϕ)‖g‖ϕ(·).

More precisely, in order to prove (4.2) for a fixed pair (f, g), we need to have that (4.1)
holds for a weight w ∈ Aq that we construct in the course of the proof. The problem is
that in this abstract setting do not know that this will be the case: e.g., we cannot rule out
a priori that ‖f‖Lp(w) =∞ but ‖g‖Lp(w) is finite.

To avoid this problem we adopt the following convention. Given a family F of extrapo-
lation pairs, if we write

‖f‖Lp(w) 6 C(n, p, [w]Aq)‖g‖Lp(w), (f, g) ∈ F ,
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then we mean this inequality holds for a given weight w ∈ Aq for all pairs (f, g) such that
the lefthand side is finite. If we write

‖f‖ϕ(·) 6 C(n, ϕ)‖g‖ϕ(·), (f, g) ∈ F ,

we mean the same thing: this inequality holds for all pairs such that f ∈ Lϕ(·). In the proof
we will use this latter assumption to prove that ‖f‖Lp(w) is finite for a specific weight w.
Note that we do not assume that ‖g‖Lp(w) is finite, though if g ∈ Lϕ(·), then in the course
of the proof we will show that it is. (If ‖g‖Lp(w) = ∞, then there is nothing to prove for
this particular pair.)

To apply extrapolation to prove norm inequalities for an operator T (as in our main
results in the Introduction), we would consider a family of extrapolation pairs of the form
F = {(|Tf |, |f |)}. If T is defined on Lϕ(·), then we can take f ∈ Lϕ(·), but then we need
to check that the above conventions hold for all such pairs. This is the approach we take
to prove Theorems 1.1–1.4: see below. Alternatively, if T is defined on a dense subset,
then we can use approximation arguments to prove norm inequalities. We will discuss this
approach in further detail in Section 6 below.

To put our extrapolation results in context, and because we will need them below in our
proofs, we state two versions of extrapolation. The first is the classical result of Rubio de
Francia. For a proof, see [20, Theorem 3.9, Corollary 3.12].

Theorem 4.3. Given a family of extrapolation pairs F , suppose that for some p0 ∈ [1,∞)
and every w0 ∈ Ap0 ,

‖f‖Lp0 (w0) 6 C(n, p0, [w0]Ap0 )‖g‖Lp0 (w0), (f, g) ∈ F .

Then for every p ∈ (1,∞), and every w ∈ Ap,

‖f‖Lp(w) 6 C(n, p, [w]Ap)‖g‖Lp(w), (f, g) ∈ F .

Moreover, for every p, q ∈ (1,∞), and w ∈ Ap,∥∥∥∥(∑
k

f qk

)1/q∥∥∥∥
Lp(w)

6 C(n, p, q, [w]Ap)

∥∥∥∥(∑
k

gqk

)1/q∥∥∥∥
Lp(w)

, {(fk, gk)}k ⊂ F .

The second result we need is the limited range extrapolation theorem of Auscher and
Martell [3]. (See also [20, Theorem 3.23].)

Theorem 4.4. Given a family of extrapolation pairs F and 1 < q− < q+ < ∞, suppose
that for some p0 ∈ (q−, q+) and every w0 ∈ Ap0/q− ∩RH(q+/p0)′ ,

‖f‖Lp0 (w0) 6 C(n, p0, [w0]Ap0/q− , [w0]RH(q+/p0)
′ )‖g‖Lp0 (w0), (f, g) ∈ F .

Then for every p ∈ (q−, q+) and every w ∈ Ap/q− ∩RH(q+/p)′ ,

‖f‖Lp(w) 6 C(n, p, [w]Ap/q− , [w]RH(q+/p)
′ )‖g‖Lp(w), (f, g) ∈ F .
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Diagonal and off-diagonal extrapolation. We now prove Theorems 1.1 and 1.3. First
note that Theorem 1.1 is actually a special case of Theorem 1.3 when p = q, so it will
suffice to prove the latter. In turn, Theorem 1.3 is a consequence of the following more
general result expressed in terms of extrapolation pairs.

Theorem 4.5. Given a family of extrapolation pairs F , suppose that for some p, q, 1 6
p 6 q <∞ and all w ∈ A1,

(4.6) ‖f‖Lq(w) 6 C(n, p, q, [w]A1)‖g‖Lp(wp/q), (f, g) ∈ F .

Let ϕ ∈ Φw(Rn) satisfy (aInc)p (i.e., ϕp ∈ Φw). Define β := 1
p
− 1

q
, ψ−1(x, t) :=

t−βϕ−1(x, t) and ψq(x, t) := ψ(x, t1/q). If simple functions belong to Lψ
∗
q (·) and the

Hardy–Littlewood maximal operator is bounded on Lψ
∗
q (·), then

(4.7) ‖f‖Lψ(·) 6 C‖g‖Lϕ(·) , (f, g) ∈ F .

Before proving Theorem 4.5 we first state and prove three corollaries. In the first two,
we use the results of Section 3 to immediately get sufficient conditions on ϕ, ψ for the
conclusions of Theorem 4.5 to hold.

Corollary 4.8. Let p, q, β and F be as in Theorem 4.5 and suppose (4.6) holds. Let
ψ ∈ Φw(Rn) and define ϕ−1(x, t) := tβψ−1(x, t). If ψ satisfies assumptions (A0)–(A2)
and there exist q+ > q such that ψ satisfies (aInc)q and (aDec)q+ , then (4.7) holds.

Proof. Since ψ satisfies (aInc)q,
ϕq(x,t)

t
is almost increasing and so ψq ∈ Φw. Since ψ

satisfies (A0)–(A2) and (aDec)q+ , and since ψ∗q = T∗Tq(ψ), ψ∗q satisfies (A0)–(A2) and
(aInc)(q+/q)′ by Propositions 3.6 and 3.5. Hence, by Theorem 3.3, the maximal operator is
bounded on Lψ

∗
q (·). Finally, since ψ∗q satisfies (A0), by Lemma 3.2, simple functions are

contained in Lψ
∗
q (·). Therefore, we can apply Theorem 4.5 to get the desired result. �

Alternatively, we can state the assumptions in terms of ϕ.

Corollary 4.9. Let p, q, β and F be as in Theorem 4.5 and suppose (4.6) holds. Let
ϕ ∈ Φw(Rn) and define ψ−1(x, t) := t−βϕ−1(x, t). If ϕ satisfies (A0)–(A2), (aInc)p and
(aDec)p+ for some p+ > p, then (4.7) holds.

Proof. It follows from the definition of ψ that it also satisfies (A0)–(A2). Furthermore,
ϕ satisfies (aInc)p and (aDec)p+ if and only if ϕ−1 satisfies (aDec)1/p and (aInc)1/p+ , re-
spectively. Thus, ψ satisfies (aInc)q and (aDec)q+ . Hence, the result follows from Corol-
lary 4.9. �

By using the full strength of Rubio de Francia extrapolation, we can also prove the
following result that holds for a large class Φ-functions.

Corollary 4.10. Given a family of extrapolation pairsF , suppose that for some p ∈ [1,∞)
and all w ∈ Ap,

(4.11) ‖f‖Lp(w) 6 C(n, p, [w]Ap)‖g‖Lp(w), (f, g) ∈ F .
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Suppose ϕ is a weak Φ-function that satisfies assumptions (A0)–(A2) and (aDec). If p > 1,
then we also assume (aInc). Then

(4.12) ‖f‖Lϕ(·) 6 C‖g‖Lϕ(·) , (f, g) ∈ F .

Moreover, we have that for any q, 1 < q <∞,

(4.13)
∥∥∥∥(∑

k

f qk

)1/q∥∥∥∥
Lϕ(·)
6 C(n, q, ϕ)

∥∥∥∥(∑
k

gqk

)1/q∥∥∥∥
Lϕ(·)

, {(fk, gk)}k ⊂ F .

Proof. If p > 1, then ϕ satisfies (aInc)p− for some p− > 1 by assumption. By Theorem 4.3,
we have that (4.11) holds also for some p 6 p−. (If p = 1, then this is automatically true
without using Theorem 4.3.) Since A1 ⊂ Ap we satisfy the hypotheses of Corollary 4.8,
and so we get (4.12). To prove (4.13) we repeat this argument, starting from the weighted
vector-valued inequality in Theorem 4.3. �

Remark 4.14. An off-diagonal version of Corollary 4.10 holds, using the off-diagonal ex-
trapolation theorem [20, Theorem 3.23]. Details are left to the interested reader.

Proof of Theorem 4.5. We begin the proof by using the Rubio de Francia iteration algo-
rithm. Let m := ‖M‖

Lψ
∗
q (·)→Lψ

∗
q (·) and defineR : L0(Rn)→ [0,∞] by

Rh(x) :=
∞∑
k=0

Mkh(x)

2kmk
,

where for k > 1, Mk denotes k iterations of the maximal operator, and M0h = |h|. Then
the following properties hold:

(A) |h| 6 Rh,
(B) ‖Rh‖

Lψ
∗
q (·) 6 2‖h‖

Lψ
∗
q (·) ,

(C) Rh ∈ A1 and [Rh]A1 6 2m.
Property (A) holds sinceRh >M0h = |h|; (B) holds since∥∥∥Mkh

2kmk

∥∥∥
Lψ
∗
q (·)

=
‖Mkh‖

Lψ
∗
q (·)

2kmk
6
m‖Mk−1h‖

Lψ
∗
q (·)

2kmk
6 · · · 6

‖h‖
Lψ
∗
q (·)

2k
;

and (C) holds since M(Rh) 6 2mRh by the sublinearity of the maximal operator.

Fix (f, g) ∈ F and defineH := {h : ‖h‖ϕ∗q(·) 6 1}. By rescaling, Lemma 2.7 and (A),

‖f‖qψ(·) =
∥∥f q∥∥

ψq(·)
. sup

h∈H

ˆ
Rn
f qh dx 6 sup

h∈H

ˆ
Rn
f qRh dx.

To apply our hypothesis, by our convention on families of extrapolation pairs we need
to show that the righthand term is finite. But this follows at once by Hölder’s inequality
and (B): for all h ∈ H,

(4.15)
ˆ
Rn
f qRh dx 6 2‖f q‖ψq(·)‖Rh‖ψ∗q (·) 6 4‖f‖qψ(·)‖h‖ψ∗q (·) <∞;
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the last inequality holds since, again by our convention, f ∈ Lψ(·). Given this and (C) we
can apply our hypothesis (4.6) to get that

‖f‖ψ(·) 6 sup
h∈H

( ˆ
Rn
f qRh dx

) 1
q

6 C sup
h∈H

(ˆ
Rn
gp(Rh)

p
q dx

) 1
p

.

Letϕp(x, t) := ϕ(x, t1/p); then for any h ∈ H, by Hölder’s inequality, rescaling, Lemma 2.10,
and property (B),

(4.16)
ˆ
gp(Rh)

p
q , dx 6 2

∥∥ gp∥∥
ϕp(·)

∥∥(Rh)
p
q

∥∥
ϕ∗p(·) . ‖g‖

p
ϕ(·)‖Rh‖

p
q

ψ∗q (·) . ‖g‖
p
ϕ(·).

If we combine the last two inequalities we get that ‖f‖ψ(·) . ‖g‖ϕ(·), as desired. �

Proof of Theorem 1.3. We will derive this result as a consequence of the proof of Theo-
rem 4.5. Define the family of extrapolation pairs

F = {(|Tg|, |g|) : g ∈ Lϕ(·)}.
(Recall that we assume that T is defined on Lϕ(·) and Tg is measurable.) By inequal-
ity (4.16) we have that g ∈ Lp((Rh)

p
q ) for every h ∈ H; therefore, by assumption

Tg ∈ Lq(Rh). This gives us inequality (4.15) (with f = |Tg|) without the a priori
assumption that Tg ∈ Lψ(·). Therefore, the proof goes through and we get the desired
conclusion. �

Remark 4.17. It is also possible to derive Theorem 4.5 from a similar result for Banach
function spaces that was proved in [20, Theorem 4.6]. To do so, we must first prove that
our hypotheses imply that Lϕ(·) is a Banach function space. We sketch the proof of this
fact. By our assumption that the maximal operator is bounded on Lϕ

∗
p(·), we have that

Lϕ
∗
p(·) ↪→ L1

loc. This inclusion is equivalent to χE being contained in the associate space
(Lϕ

∗
p(·))′ for every measurable set E, |E| < ∞ [24, Remark 2.7.10]. By our assumption

that simple functions are contained in Lϕ
∗
p(·), (Lϕ

∗
p(·))′ = Lϕp(·) ([24, Remark 2.7.4], since

(ϕ∗)∗ = ϕ). Thus, we have that χE ∈ Lϕp(·), and so by rescaling, χE ∈ Lϕ(·). On the
other hand, by Lemma 2.10 (replacing p, q with 1, p), the fact that χE ∈ Lϕ

∗
p(·) implies

that χE ∈ Lϕ
∗(·). Thus simple functions are contained in Lϕ(·) ∩ Lϕ∗(·). Therefore, by [24,

Corollary 2.7.9], Lϕ(·) is a Banach function space.
The remainder of the hypotheses of [20, Theorem 4.6] can be checked similarly. How-

ever, if we take this approach, the proof of Theorem 1.3 is more complicated. Therefore, it
seemed more straightforward to give a direct proof of Theorem 4.5.

Limited range extrapolation. We now turn to Theorem 1.4. As before, this theorem will
be a consequence of the following result stated in terms of extrapolation pairs. The details
of the proof of Theorem 1.4 are essentially the same as the proof of Theorem 1.3 above,
and so are omitted.

Theorem 4.18. Given a family of extrapolation pairs F and 1 < q− < q+ < ∞, suppose
that for some p ∈ (q−, q+) and every w ∈ Ap/q− ∩RH(q+/p)′ ,

(4.19) ‖f‖Lp(w) 6 C(n, p, [w]Ap/q− , [w]RH(q+/p)
′ )‖g‖Lp(w), (f, g) ∈ F .
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Let ϕ ∈ Φw(Rn) satisfy (aInc)p and (aDec)q+ . If simple functions belong to Lϕ
∗
p(·), and the

Hardy–Littlewood maximal operator is bounded on Lψ(·), where ψ(x, t) := ϕ∗p(x, t
1/α),

α := (q+/p)
′, and ϕp(x, t) = ϕ(x, t1/p), then

(4.20) ‖f‖Lϕ(·) 6 C‖g‖Lϕ(·) , (f, g) ∈ F .
Again by using the results in Section 3 we can give sufficient conditions on the Φ-

function ϕ for Theorem 4.18 to hold.

Corollary 4.21. Let p, q−, q+ and F be as in Theorem 4.18 and suppose (4.19) holds. Let
ϕ ∈ Φw(Rn) satisfy assumptions (A0)–(A2), (aInc)p− , and (aDec)p+ for some q− < p− 6
p+ < q+. Then (4.20) holds.

Remark 4.22. To compare the hypotheses of Corollary 4.21 to those of Corollary 4.10,
note that the latter can be restated as ϕ satisfies (aInc)p− and (aDec)p+ for some 1 6 p− 6
p+ <∞.

Proof. By Theorem 4.4 we may assume that (4.19) holds for some p ∈ (q−, p−). Since
p < p−, it follows that ϕ satisfies (aInc)p. Since ϕ satisfies (A0)–(A2) and (aDec)p+ , by
Propositions 3.5 and 3.6, ψ = TαT∗Tp(ϕ) satisfies (A0)–(A2) and (aInc)(p+/p)′/α. Note that
this makes sense because

(p+/p)
′

α
=

(p+/p)
′

(q+/p)′
> 1.

Hence, by Theorem 3.3, the maximal operator is bounded on Lψ(·). Finally, ϕ∗p = T∗Tp(ϕ)

satisfies (A0), and so by Lemma 3.2, simple functions are contained in Lϕ
∗
p(·). Therefore,

we can use Theorem 4.18 to get the desired conclusion. �

Proof of Theorem 4.18. First note that ϕp ∈ Φw(Rn) since ϕ satisfies (aInc)p. Moreover,
the calculations in the proof of Corollary 4.21 show that ψ ∈ Φw(Rn) since ϕ satisfies
(aDec)q+ .

As in the proof of Theorem 4.5, we now define an iteration algorithm. Let m :=
‖M‖Lψ(·)→Lψ(·) and with the same notation as before let

Rh(x) :=
∞∑
k=0

Mkh(x)

2kmk
.

Assume that h > 0 and define H := R(hα)1/α. Then we have that
(A) h 6 H ,
(B) ‖H‖ϕ∗p(·) 6 2‖h‖ϕ∗p(·),
(C) H ∈ A1 ∩RH(q+/p)′ ⊂ Ap/q− ∩RH(q+/p)′ .

These properties are proved in much the same way as the analogous properties for Rh
in the proof of Theorem 4.5. As before, we have hα 6 R(hα), so Property (A) holds.
Similarly, we have ‖Rh‖ψ(·) 6 2‖h‖ψ(·), and so by rescaling

‖H‖ϕ∗p(·) = ‖R(hα)1/α‖ϕ∗p(·) = ‖R(hα)‖1/α
ψ(·) 6 21/α‖hα‖1/α

ψ(·) 6 2‖h‖ϕ∗p(·).

Finally, we have R(hα) ∈ A1 and [R(hα)]A1 6 2m, and so Hα ∈ A1. Thus, by the
rescaling properties of A1 weights (see [21, Theorems 2.2, 2.3]) we have that H ∈ A1 ∩
RH(q+/p)′ ⊂ Ap/q− ∩RH(q+/p)′ .
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We can now estimate as follows. Let H := {h : ‖h‖ϕ∗p(·) 6 1}. Then by rescaling,
Lemma 2.7 and (A),

‖f‖pϕ(·) = ‖fp‖ϕp(·) . sup
h∈H

ˆ
Rn
fph dx 6 sup

h∈H

ˆ
Rn
fpH dx.

As before, to apply our hypothesis, we check to see if our convention about extrapolation
pairs holds. By Hölder’s inequality and (B) we have that for any h ∈ H,ˆ

Rn
fpH dx 6 2‖fp‖ϕp(·)‖H‖ϕ∗p(·) 6 4‖f‖pϕ(·)‖h‖ϕ∗p(·) <∞;

the last inequality holds since we assume that ‖f‖ϕ(·) < ∞. Therefore, by (C) we can
apply our hypothesis (4.19) to get

sup
h∈H

ˆ
Rn
fpH dx . sup

h∈H

ˆ
Rn
gpH dx.

By Hölder’s inequality, rescaling and (B) we have that for all h ∈ H,ˆ
Rn
gpH dx 6 2‖gp‖ϕp(·)‖H‖ϕ∗p(·) 6 4‖g‖ϕ(·)‖h‖ϕ∗p(·) 6 4‖g‖ϕ(·).

If we combine these estimates we get ‖f‖ϕ(·) . ‖g‖ϕ. �

5. COMPLEX INTERPOLATION

In this section we prove a complex interpolation theorem in the scale of generalized
Orlicz spaces. Note that real interpolation has, for the most part, not been especially useful
even in the variable exponent setting, since the primary and secondary parameter (i.e. p and
θ in (A,B)p,θ) do not co-vary (but see [1] for an exception). Therefore, it is natural to first
consider complex interpolation in the more general setting of generalized Orlicz spaces.

Previously, Musielak [44, Theorem 14.16] proved complex interpolation results, but his
proofs were longer and more complicated; a simpler proof was given in [25]. However, in
both cases the results only apply to N -functions which are proper. Here we eliminate the
first restriction.1

We recall the definition of the norm in the interpolation space [Lϕ0(·), Lϕ1(·)][θ]. Let
S := {z ∈ C : 0 < Re z < 1}, so that S = {z ∈ C : 0 6 Re z 6 1}, where Re z is the
real part of z. Let G be the space of functions on S with values in Lϕ0(·) +Lϕ1(·) which are
analytic on S and bounded and continuous on S such that F (it) and F (1 + it) tend to zero
as |t| → ∞. (Recall that i denotes the imaginary unit. Also, F is analytic with values in a
Banach space means that d

dz̄
F = 0 in the Banach space.) For F ∈ G we set

‖F‖G := sup
t∈R

max
{∥∥F (it)

∥∥
ϕ0(·),

∥∥F (1 + it)
∥∥
ϕ1(·)

}
.

Then we define the norm of [Lϕ0(·), Lϕ1(·)][θ] by

‖f‖[θ] := inf
{
‖F‖G : F ∈ G and f = F (θ)

}
.

1Using the results of [29], it is possible to eliminate also the latter restriction.
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For ϕ0, ϕ1 ∈ Φw(Rn) and θ ∈ (0, 1) we define the θ-intermediate function ϕθ by

ϕ−1
θ (x, ·) =

(
ϕ−1

0 (x, ·)
)1−θ(

ϕ−1
1 (x, ·)

)θ
.

Then ϕθ is also a weak Φ-function.

Theorem 5.1 (Complex interpolation). Let ϕ0, ϕ1 ∈ Φw(Ω) satisfy (A0). Then[
Lϕ0(·)(Ω), Lϕ1(·)(Ω)

]
[θ]

= Lϕθ(·)(Ω)

for all 0 < θ < 1.

Proof. We proceed along the lines of [8]. By Lemma 2.2 we may assume without loss
of generality that ϕ0, ϕ1 ∈ Φs(Ω). We extend ϕj : Ω × [0,∞) → [0,∞], j = 1, 2, to
ϕj : Ω× C→ [0,∞] via ϕj(x, t) = ϕj(x, |t|). For z ∈ C with 0 6 Re z 6 1 define ϕz by

ϕ−1
z (x, t) =

(
ϕ−1

0 (x, t)
)1−z(

ϕ−1
1 (x, t)

)z
.

Then ϕ−1
z is holomorphic in z on S and continuous on S.

For g ∈ Lϕθ(·) with ‖g‖ϕθ 6 1 define

fε(z;x) := exp(−ε+ εz2 − εθ2)ϕ−1
z

(
x, ϕθ(x, g(x))

)
sgn g(x).

Then f(θ) = exp(−ε)g when ϕθ(x, g(x)) ∈ (0,∞) and

|fε(1 + it, x)| = exp(−εt2 − εθ2)
∣∣ϕ−1

1+it

(
x, ϕθ(x, g)

)∣∣ 6 ϕ−1
1

(
x, ϕθ(x, g)

)
,

|fε(it, x)| = exp(−ε− εt2 − εθ2)
∣∣ϕ−1

it

(
x, ϕθ(x, g)

)∣∣ 6 ϕ−1
0

(
x, ϕθ(x, g)

)
.

Since ϕ1(ϕ−1
1 (t)) 6 t and

´
ϕθ(x, g(x)) dx 6 1 we conclude that %ϕ1(·)(fε(1 + it, ·)) 6 1,

similarly for ϕ0. Thus ‖fε‖G = supt∈R max
{
‖fε(it, ·)‖ϕ0(·), ‖fε(1+ it, ·)‖ϕ1(·)

}
6 1. This

and f(θ) = exp(−ε)g imply that ‖ exp(−ε)g‖[θ] 6 1. Letting ε→ 0, we find by a scaling
argument that ‖g‖[θ] 6 ‖g‖ϕθ(·).

We now prove the opposite inequality. Since ϕ0 and ϕ1 satisfy (A0), so does ϕz. By
Lemma 2.3, ϕ∗z := (ϕz)

∗ also satisfies (A0). Be Lemma 2.2, we may assume that ϕ∗z ∈
Φs(Rn). By Lemma 2.7,

(5.2) ‖g‖ϕθ(·) . sup
‖b‖ϕ∗

θ
(·)61

ˆ
Rn
|g| |b| dx.

For ‖g‖[θ] 6 1 and b as above put

hε(z;x) := exp(−ε+ εz2 − εθ2)ψz
(
x, ϕ∗θ

(
x, b(x)

))
sgn g(x),

where ψz is the right-inverse of ϕ∗z. Since ϕ∗z ∈ Φs(Rn), the right-inverse agrees with the
left-inverse, except possibly at the origin:

ψz(x, t) =

{
(ϕ∗z)

−1(x, t) if t > 0,

tz(x) if t = 0.

Here tz(x) := sup{t > 0 : ϕ∗z(x, t) = 0}. Sinceϕ∗z ∈ Φs(Ω), it follows thatϕ∗z(x, ψz(t)) =
t when t > 0. But since ϕ∗z is left-continuous, also ϕ∗z(x, ψz(0)) = ϕ∗z(x, tz(x)) = 0, so
that ϕ∗z(x, ψz(t)) = t for all t.
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Writing Fε(z) :=
´
Rn |fε| |hε| dx we find by Young’s inequality that

Fε(it) 6
ˆ

Ω

ψit
(
x, ϕ∗θ(x, b(x))

)
ϕ−1
it

(
x, ϕθ

(
x, g(x)

))
dx

6
ˆ

Ω

ϕ∗it
[
x, ψit

(
x, ϕ∗θ(x, b(x))

)]
+ ϕit

[
ϕ−1
it

(
x, ϕθ

(
x, g(x)

))]
dx

=

ˆ
Ω

ϕ∗θ(x, b(x)) + ϕθ(x, g(x)) dx

6 2.

Analogously, Fε(1 + it) 6 2, so the three-line theorem implies that Fε(z) 6 2 for all
z ∈ S.

When z = θ, ψθ is the right inverse of ϕ∗θ. Then by the definition, ψθ(x, ϕ∗θ(x, t)) > t.
Thus, we obtain that

Fε(θ) = exp(−2ε)

ˆ
Ω

|g(x)|ψz
(
x, ϕ∗θ

(
x, b(x)

))
dx > exp(−2ε)

ˆ
Ω

|g(x)| b(x) dx.

Taking the supremum over b and letting ε→ 0, we get from this and (5.2) that ‖g‖ϕθ(·) 6 c;
hence, ‖g‖ϕθ(·) . ‖g‖[θ]. �

Remark 5.3. Section 7.1 of [24] contains a proof of the complex interpolation theorem
without the N-function assumption (for variable exponent Lebesgue spaces). However,
that proof contains an error since it is based on the inequality ϕ−1(ϕ(t)) > t, which is in
general false. This problem is overcome above by the use of the right-inverse.

The following result is proved using Theorem 5.1 by means of the Riesz–Thorin In-
terpolation Theorem and the Hahn–Banach Theorem: cf. [24, Corollary 7.1.4] and [25,
Corollary A.5].

Corollary 5.4. Let ϕ0, ϕ1 ∈ Φw(Rn) satisfy (A0) and let T be a sublinear operator that is
bounded from Lϕj(·)(Ω) to Lϕj(·)(Ω) for j = 0, 1. Then for 0 < θ < 1, T is also bounded
from Lϕθ(·)(Ω) to Lϕθ(·)(Ω).

The next result is proved using Calderón’s interpolation theorem: cf. [24, Corollary 7.1.6].

Corollary 5.5. Let ϕ0, ϕ1 ∈ Φw(Rn) satisfy (A0), let X be a Banach space and let T be
a linear operator that is bounded from X to Lϕ0(·)(Ω) and compact from X to Lϕ1(·)(Ω).
Then for 0 < θ < 1, T is also compact from X to Lϕθ(·)(Ω).

6. APPLICATIONS OF EXTRAPOLATION AND INTERPOLATION

In this section we give some representative applications of extrapolation to prove norm
inequalities in generalized Orlicz spaces. The key to such inequalities is the existence of
weighted norm inequalities and there is a vast literature on this subject. For additional
examples in the context of variable Lebesgue spaces that can be easily extended to gener-
alized Orlicz spaces, see [18, 19, 20, 22].

As we noted in Section 4, to apply extrapolation to prove norm inequalities we either
need that the operator is a priori defined on Lϕ(·) or we need to use density and approxima-
tion arguments. In this case our conditions from Section 3 are very useful. For instance, if
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ϕ ∈ Φw(Ω) satisfies (A0) and (aDec), then L∞c (Ω) and C∞c (Ω) are both dense in Lϕ(·)(Ω).
(See [31, Theorems 4.3, 4.5].)

To apply extrapolation via density and approximation, we consider a common special
case. Suppose T is a linear operator that is defined on a dense subset X ⊂ Lϕ(·), and
suppose further that X ⊂ Lp(w) for all p > 1 and w ∈ A1. (This is the case if X =
L∞c , C

∞
c .) If T satisfies weighted norm inequalities on Lp(w), then we can take as our

extrapolation pairs the family

F = {(min(|Tf |, k)χB(0,k), |f |) : f ∈ X}.
Arguing as Remark 4.17, we have that simple functions, and so L∞c , are contained in
Lϕ(·); hence, min(|Tf |, k)χB(0,k) ∈ Lϕ(·) and so F satisfies the convention for families of
extrapolation pairs. Thus, we can apply Theorem 4.5 (when p = q) to prove that for all
f ∈ X , ‖Tf‖ϕ(·) 6 C‖f‖ϕ(·). Since T is linear, given an arbitrary f ∈ Lϕ(·), if we take
any sequence {fj} ⊂ X converging to f , {Tfj} is Cauchy and we can define Tf as the
limit. This extends the norm inequality to all of Lϕ(·).

If T is not linear, then this argument does not work. However, suppose T has the property
that |Tf(x)| 6 T (|f |)(x) and if f is non-negative, and {fj} is any non-negative sequence
that increases pointwise to f , then

Tf(x) 6 lim inf
k→∞

Tfj(x).

(This is the case, for instance, if T is the maximal operator.) Given this, the above argument
can essentially be repeated, since given non-negative f ∈ Lϕ, fj = min(f, k)χB(0,k) ∈
Lϕ(·) ∩ L∞c .

In the following examples we will state our hypotheses in terms of the assumptions
used in Corollaries 4.10 and 4.21. The necessary families of extrapolation pairs can be
constructed using the above arguments; we leave the details to the interested reader. (In
the case of variable exponent spaces, several examples are worked out in detail in [18,
Chapter 5].) Obviously, weaker assumptions can be used; again, we leave the precise
statements to the interested reader.

The maximal operator. Though we assume the boundedness of the maximal operator
in order to apply extrapolation, one important consequence is that we get vector-valued
inequalities for the maximal operator. For 1 < p, q <∞, w ∈ Ap, and sequence {fk}k ⊂
L0, ∥∥∥∥(∑

k

(Mfk)
q

)1/q∥∥∥∥
Lp(w)

6 C

∥∥∥∥(∑
k

f qk

)1/q∥∥∥∥
Lp(w)

.

See [2]. Therefore, we have the following result.

Corollary 6.1. Suppose that ϕ ∈ Φw satisfies (A0)–(A2), (aInc) and (aDec). Then for
1 < q <∞, ∥∥∥∥(∑

k

(Mfk)
q

)1/q∥∥∥∥
Lϕ(·)
6 C

∥∥∥∥(∑
k

|fk|q
)1/q∥∥∥∥

Lϕ(·)
.
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Calderón–Zygmund singular integrals. Let ∆ be the diagonal in Rn×Rn: that is, ∆ :=
{(x, x) : x ∈ Rn}. A bounded linear operator T : L2 → L2, is a Calderón–Zygmund
singular integral operator if there exists a kernel K : Rn × Rn \ ∆ → R such that for all
f ∈ C∞c and x 6∈ supp(f),

Tf(x) =

ˆ
Rn
K(x, y)f(y) dy,

and, moreover, for some ε > 0 the kernel satisfies

|K(x, y)| 6 C

|x− y|n
,

|K(x, y)−K(x, y + h)|+ |K(x, y)−K(x+ h, y)| 6 C
|h|ε

|x− y|n+ε
, 2|h| 6 |x− y|.

Calderón–Zygmund operators satisfy weighted norm inequalities: for 1 < p < ∞ and
w ∈ Ap,

‖Tf‖Lp(w) 6 C‖f‖Lp(w).

See [26]. Therefore, we get the following result.

Corollary 6.2. Suppose that ϕ ∈ Φw satisfies (A0)–(A2), (aInc) and (aDec). Then

‖Tf‖Lϕ(·) 6 C‖f‖Lϕ(·) .

Moreover, for 1 < q <∞,∥∥∥∥(∑
k

|Tfk|q
)1/q∥∥∥∥

Lϕ(·)
6 C

∥∥∥∥(∑
k

|fk|q
)1/q∥∥∥∥

Lϕ(·)
.

We can also extend the Coifman–Fefferman inequality [11] relating singular integrals
and the Hardy–Littlewood maximal function. Given w ∈ A∞ and 0 < p <∞,

‖Tf‖Lp(w) 6 C‖Mf‖Lp(w).

By extrapolation we can extend this to generalized Orlicz spaces.

Corollary 6.3. Suppose that ϕ ∈ Φw satisfies (A0)–(A2) and (aDec). Then

‖Tf‖Lϕ(·) 6 C‖Mf‖Lϕ(·) .

Remark 6.4. One feature of the Coifman–Fefferman inequality is that it holds for 0 < p <
1, The analogous condition in the generalized Orlicz spaces would be for it to hold for a
“quasi Φ-function”: that is, a function ϕ such that for some r > 1, ϕr(x, t) = ϕ(x, tr) is a
Φ-function. Our proof of extrapolation can be generalized to this context; details are left to
the interested reader. For such a result in the context of variable Lebesgue spaces, see [19].
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Commutators of singular integrals. Given a Calderón-Zygmund singular integral T and
a function b ∈ BMO, the space of functions of bounded mean oscillation, we define the
commutator [b, T ] to be the operator

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x) =

ˆ
Rn

(
b(x)− b(y)

)
K(x, y)f(y) dy.

Commutators were introduced by Coifman, Rochberg and Weiss [12] who proved that they
are bounded on Lp, 1 < p < ∞, if and only if b ∈ BMO. Weighted norm inequalities
were proved by Pérez [49]: if b ∈ BMO and w ∈ Ap, then

‖[b, T ]f‖Lp(w) 6 C‖f‖Lp(w).

Therefore, we get the following result.

Corollary 6.5. Suppose that ϕ ∈ Φw satisfies (A0)–(A2), (aInc) and (aDec). Then

‖[b, T ]f‖Lϕ(·) 6 C‖f‖Lϕ(·) .

Remark 6.6. It was recently shown in [15] that in the variable exponent case, given an
exponent p(·) such that the maximal operator is bounded on Lp(·) and a singular integral
T with sufficiently smooth kernel K, if the commutator [b, T ] is bounded on Lp(·), then
b ∈ BMO. The same argument extends to the setting of generalized Orlicz spaces.

The Riesz potential and fractional maximal operators. Given 0 < α < n, we define
the Riesz potential (also referred to as the fractional integral operator) to be the positive
integral operator

Iαf(x) =

ˆ
Rn

f(y)

|x− y|n−α
dy.

The associated fractional maximal operator is defined by

Mαf(x) = sup
r>0
|B(x, r)|

α
n

 
B(x,r)

|f(y)| dy.

These operators satisfy the following weighted norm inequalities: for w ∈ A1 and p, q
such that 1 < p < n/α and 1

p
− 1

q
= α

n
,

‖Iα‖Lq(w) 6 C‖f‖Lp(wp/q),

and
‖Mα‖Lq(w) 6 C‖f‖Lp(wp/q).

(These inequalities are usually stated in terms of the Apq condition of Muckenhoupt and
Wheeden, but this special case is sufficient for our purposes. See [18] for further details.)

Moreover, for w ∈ A∞ and 0 < p <∞we have the Coifman–Fefferman type inequality

‖Iα‖Lp(w) 6 C‖Mαf‖Lp(w).

Therefore, by extrapolation we get the following results.



24 DAVID CRUZ-URIBE, OFS AND PETER HÄSTÖ

Corollary 6.7. Given 0 < α < n, suppose ϕ, ψ ∈ Φw are such that ϕ−1(x, t) =
t
α
nψ−1(x, t), ψ satisfies (A0)–(A2), and there exist n

n−α < p− < p+ < ∞ such that ψ
satisfies (aInc)p− and (aDec)p+ . Then

‖Iαf‖ψ(·) 6 C‖f‖ϕ(·).

‖Mαf‖ψ(·) 6 C‖f‖ϕ(·).

Corollary 6.8. Suppose that ϕ ∈ Φw satisfies (A0)–(A2), (aInc) and (aDec) and 0 < α <
n. Then

‖Iαf‖ϕ(·) 6 C‖Mαf‖ϕ(·).

Remark 6.9. Given b ∈ BMO, it is also possible to define commutators [b, Iα]. These
operators were introduced by Chanillo [9] and weighted inequalities analogous to those
for Iα were proved in [16]. We can therefore prove estimates on generalized Orlicz spaces
for [b, Iα]. Details are left to the interested reader.

The spherical maximal operator. The spherical maximal operator is defined for f ∈ L0

by

Mf(x) = sup
t>0

∣∣∣∣ˆ
Sn−1

f(x− ty) dσ(y)

∣∣∣∣ ,
where Sn−1 is the unit sphere in Rn and σ is the surface measure. Stein [52] proved that
for n > 3, the spherical maximal operator is bounded on Lp for p > n

n−1
. Weighted norm

inequalities hold for p in the same range, but with strong conditions on the weight. It
follows from a result of Cowling, et al. [14] that

‖Mf‖Lp(w) 6 C‖f‖Lp(w)

provided w ∈ Ap/q− ∩RH(q+/p)′ , where

q− =
p

(n− 1)(1− δ)
, q+ = (n− 1)q−, max(0, 1− p/n) 6 δ 6

n− 2

n− 1
.

See [22, Corollary 3.12] for details. By taking δ close to n−2
n−1

and arguing as in the previous
reference, we get the following result.

Corollary 6.10. Given n > 3, suppose ϕ ∈ Φw satisfies (A0)–(A2) and for n
n−1

< p− <
p+ = (n− 1)p−, ϕ satisfies (aInc)p− and (aDec)p+ . Then

‖Mf‖Lϕ(·) 6 C‖f‖Lϕ(·) .

Remark 6.11. Even though weighted norm inequalities hold for all p > n
n−1

, the restriction
that p+ = (n− 1)p− is close to optimal. See [22] and the references it contains.
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The Sobolev embedding theorem. Given ϕ ∈ Φw(Rn) and an open set Ω ∈ Rn, we de-
fine the generalized Orlicz-Sobolev space W 1,ϕ(·)(Ω) to be the set of all f ∈ W 1,1

loc (Ω) such
that f, |∇f | ∈ Lϕ(·)(Ω). This is a Banach space with norm ‖f‖W 1,ϕ(·)(Ω) = ‖f‖ϕ+‖∇f‖ϕ.
We define W 1,ϕ(·)

0 (Ω) to be the closure of C∞c (Ω) in W 1,ϕ(·)(Ω). For more information on
these spaces, see [31].

We can use extrapolation to prove the Sobolev embedding theorem and then combine
this with interpolation to prove a version of the Rellich–Kondratchov theorem. We begin
with the following weighted norm inequality: for all f ∈ C∞c (Ω), w ∈ A1, and p ∈ [1, n),

‖f‖Lp∗ (w) 6 C‖∇f‖Lp(wp/p
∗

),

where p∗ = np
n−p is the Sobolev exponent of p. See [20, Lemma 4.31] or [18, Lemma 6.32].

We use extrapolation (Corollary 4.9) and the above inequality to prove the Sobolev em-
bedding theorem. This improves [30, Corollary 6.9] by removing the extraneous assump-
tions that ϕ is an N-function and satisfies (aInc).

Corollary 6.12 (Sobolev embedding). Let ϕ ∈ Φw(Rn) satisfy (A0)–(A2) and (aDec)p+
for some p+ < n. Define ψ−1(x, t) := t−

1
nϕ−1(x, t). Then

W
1,ϕ(·)
0 (Rn) ↪→ Lψ(·)(Rn).

To prove our main compact embedding theorem, we first give a preliminary result.

Theorem 6.13. Let ϕ ∈ Φw(Rn) satisfy (A0)–(A2) and (aDec). Then

W
1,ϕ(·)
0 (Ω) ↪→↪→ Lϕ(·)(Ω).

Theorem 6.13 is proved in essentially the same way as in the case of variable Lebesgue
spaces: see [24, Theorem 8.4.2] for details. The proof requires the following lemma, which
can be proved in two ways, both analogous to the proofs in variable Lebesgue spaces. First,
it can be proved directly, arguing as in [24, Lemma 8.4.1] (based on Young’s convolution
inequality, [24, Lemma 4.6.3]). Alternatively, it can be proved via extrapolation and a
density argument as in [18, Theorem 5.11].

Lemma 6.14. Let ϕ ∈ Φw(Rn) satisfy (A0)–(A2) and let Ψ be a standard mollifier. Then

‖Ψε ∗ u− u‖ϕ(·) . ε‖u‖ϕ(·)

for every u ∈ W 1,ϕ(·)(Rn). Here Ψε(t) := ε−nΨ( t
ε
).

If we now use Corollary 5.5 to interpolate between the inequalities in Corollary 6.12 and
Theorem 6.13, we get the Rellich–Kondrachov Theorem for generalized Orlicz-Sobolev
spaces. The analogous result for variable Sobolev spaces was proved in [24, Corollary 8.4.4].

Theorem 6.15 (Compact Sobolev embedding). Let ϕ ∈ Φw(Rn) satisfy (A0)–(A2) and
(aDec)p+ for p+ < n. Define ψ−1(x, t) := t−αϕ−1(x, t), with α ∈ [0, 1

n
). Then

W
1,ϕ(·)
0 (Ω) ↪→↪→ Lψ(·)(Ω).
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Remark 6.16. In Theorems 6.13 and 6.15 we have assumed that ϕ ∈ Φw(Rn) even though
the results hold in domain Ω. Alternatively, we could assume ϕ ∈ Φw(Ω) if Ω is bounded
and quasiconvex or if we replace assumption (A1) by (A1)Ω. See [31] for more details
including the definition of the last condition.
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