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ABSTRACT
We have obtained new solutions and methods for the process of thermal Comptonization. We
modify the solution to the kinetic equation of Sunyaev and Titarchuk to allow its application up
to mildly relativistic electron temperatures and optical depths � 1. The solution can be used for
spectral fitting of X-ray spectra from astrophysical sources. We also have developed an accurate
Monte Carlo method for calculating spectra and timing properties of thermal Comptonization
sources. The accuracy of our kinetic equation solution is verified by comparison with the Monte
Carlo results. We also compare our results with those of other publicly available methods.
Furthermore, based on our Monte Carlo code, we present distributions of the photon emission
times and the evolution of the average photon energy for both up and down scattering.

Key words: accretion, accretion discs – radiation mechanisms: thermal – radiative transfer –
scattering – galaxies: active – X-rays: binaries.

1 IN T RO D U C T I O N

Compton scattering is a major physical process in many different
types of astrophysical sources. In accreting systems, the electrons
often appear thermal at mildly relativistic temperatures, kTe. Then,
they can Compton upscatter some soft seed photons, e.g. blackbody-
like emission of optically thick accretion discs (Shakura & Sunyaev
1973) or thermal synchrotron emission (e.g. Wardziński & Zdziarski
2000) up to the hard X-ray range. The latter becomes inefficient at
kTe � 100 keV. However, even a tiny non-thermal tail beyond the
Maxwellian electron distribution increases the synchrotron emis-
sion significantly, which can be important in many astrophysical
sources (see e.g. Wardziński & Zdziarski 2001; Malzac & Belmont
2009; Poutanen & Vurm 2009; Veledina, Vurm & Poutanen 2011;
Veledina, Poutanen & Vurm 2013).

In particular, thermal Comptonization appears to be responsible
for most of the X-ray emission of hot coronae in accreting X-
ray binaries in the hard spectral state (see e.g. Gierliński et al.
1997; Zdziarski et al. 1998; Wardziński et al. 2002; Zdziarski &
Gierliński 2004; Done, Gierliński & Kubota 2007; Burke, Gilfanov
& Sunyaev 2017 and references therein. Similarly, high-energy
cutoffs indicating the presence of thermal Comptonization are
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commonly observed in unbeamed active galactic nuclei (AGNs;
e.g. Madejski et al. 1995; Gondek et al. 1996; Zdziarski, Poutanen
& Johnson 2000; Zdziarski & Grandi 2001; Malizia et al. 2008;
Lubiński et al. 2010; Ballantyne et al. 2014; Brenneman et al. 2014;
Marinucci et al. 2014; Baloković et al. 2015; Fabian et al. 2015;
Lubiński et al. 2016; Tortosa et al. 2018).

In the limit of large Thomson optical depth, τ � 1,
and non-relativistic electron temperatures, kTe � mec2 (where
mec2 ≈ 511 keV is the electron rest energy), the classical paper
of Sunyaev & Titarchuk (1980; hereafter ST80) provides analytical
solutions for the spectra from thermal Comptonization, based on
applying the kinetic (Fokker–Planck) equation of Kompaneets
(1956, 1957) and treating photon escape as diffusive. Given that
their solution is non-relativistic and based on the diffusion approx-
imation, those spectra become inaccurate for either low optical
depths, τ � 3 (as noted in ST80) or at high temperatures, kTe � 100
keV (or both). Those parameter ranges overlap with those found in
accreting sources (see the references above).

Cooper (1971) proposed to introduce a kinetic equation with
coefficients giving exact relativistic energy exchange and disper-
sion coefficients and guaranteed photon conservation and Wien
equilibrium. However, his solution suffered from some errors.
Then, the Kompaneets equation with some of the coefficients
of Cooper (1971) was applied to Comptonization in the mildly
relativistic and moderately optically thick regimes by Shapiro,
Lightman & Eardley (1976), Lightman & Zdziarski (1987), and
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Zdziarski, Johnson & Magdziarz (1996). The results of Zdziarski
et al. (1996) were implemented into the XSPEC (Arnaud 1996) suite
for spectral fitting by Życki, Done & Smith (1999) as the fitting
routine Nthcomp. The formulation of Zdziarski et al. (1996) also
allowed to parametrize the spectrum in terms of the low-energy,
E � kTe, power-law index of the spectrum, � (where the energy
flux F(E) ∝ E1−�). However, as shown in detail by Niedźwiecki,
Szanecki & Zdziarski (2019), Nthcomp provides quite inaccurate
results already at mildly relativistic temperatures and τ of a few. In
particular, the high-energy cutoffs of Nthcomp are too low.

Different sets of corrections to the solution of ST80 were used
by Titarchuk (1994), Titarchuk & Lyubarskij (1995), and Hua &
Titarchuk (1995). In particular, Hua & Titarchuk (1995) derived
a formula for the spectrum covering both the non-relativistic and
subrelativistic temperature regimes and both low and high optical
depths. Their results were based on comparison with Monte Carlo
results and were implemented by them as the fitting routinecomptt
within XSPEC. However, their solution still shows relatively large
deviations from the exact Monte Carlo results, especially for τ � 2
and kTe � 100 keV, as shown in their figs 3–6.

Another approach to the problem was followed by Poutanen &
Svensson (1996). They used an iterative scattering method (ISM)
which solves the integral kinetic equation exactly. This can, in
principle, provide accurate solutions for any temperature and optical
depth. Their method was implemented as the fitting routinecompps
(in XSPEC). However, that implementation requires a very large
number of iterations for large optical depths, in particular at low
temperatures. Also, the spectra are not parametrized by �.

Yet another approach is to use the Monte Carlo method. This was
first done by Pozdnyakov, Sobol & Sunyaev (1976, 1977, 1983).
This method was also developed by Górecki & Wilczewski (1984)
and Gierliński (2000). However, the Monte Carlo method is not
suitable for direct spectral fitting of X-ray spectra due to the random
scatter of the model spectra intrinsic to the method. A way to deal
with this problem is to fit a table model generated from a large set
of Monte Carlo spectra, but unless a very large set is used, such a
model covers a limited range of the parameters.

Accurate determination of physical parameters of the X-ray
sources in accreting X-ray binaries and AGNs is of major impor-
tance. In particular, correct measurements of the electron tempera-
ture are crucial for determination of the role of e± pair production
in those sources (e.g. Zdziarski 1985; Stern et al. 1995; Fabian
et al. 2015). Also, correct measurements of the optical depths of
those sources are important for determination of the location and
physics of those sources (see e.g. Middei et al. 2019). Given the
above issues and the problems with the existing methods discussed
above, we have embarked on finding new accurate solutions to the
Comptonization problems.

Specifically, we have developed the code of Górecki &
Wilczewski (1984) and Gierliński (2000), and made its resulting
version, COMPTON,1 publicly available. The current code gives both
the spectra for a variety of geometries and spatial distributions of
seed photons and the distributions of the time spent by a photon in
the source, which represent Green’s function, G, for the problem. We
show the form of G for a number of different source parameters. The
code also calculates the time lags due to Compton scattering, which
we show here. Furthermore, it can take into account absorption
of photons, which, however, is not treated in this paper. For the
sake of simplicity, we present here results of COMPTON only for the
spherical geometry.

1http://users.camk.edu.pl/mitsza/compton/

We have then used our Monte Carlo results to find a set of
corrections to the kinetic equation of ST80, allowing it to be
applied to spherical geometry with τ � 1.6 and kTe � 300 keV.
Our correction factors are based mostly on the comparison with the
Monte Carlo results, and are phenomenological. Also, we include
the unscattered part of the seed photon spectrum in the observed
spectrum. Furthermore, our new public fitting routine, thComp 2

in XSPEC, is provided as a convolution function, and thus it can be
used with any form of seed photons. We test its accuracy for both
the problem of Compton upscattering of soft photons by mildly
relativistic electrons and Compton down scattering of photons at
E � mec2 by cold electrons. We also use our Monte Carlo results
of COMPTON to determine the detailed limits of the applicability of
thComp, and to compare with the results of compps and comptt.

2 K I NETI C EQUATI ONS FOR C OMPTON
SCATTERI NG

To place our results in a context, we review first some of the
previous results on the kinetic equation for Compton scattering. This
integral kinetic equation gives a complete description of interactions
between photons and electrons via Compton scattering. It can be
written in some specific form, for example, using the Fokker–
Planck approximation, and it then becomes a differential equation –
a diffusion equation in frequency. If the equation is applied to spatial
transport, it can also be simplified and written as a diffusion equation
in spatial coordinates (as done by ST80).

Let us first consider only evolution of the radiation spectrum
with frequency in homogeneous medium, i.e. we omit the terms
containing spatial derivatives. Neglecting, for the sake of simplicity,
the stimulated scattering term, the Fokker–Planck equation for this
problem is (e.g. Vurm & Poutanen 2009)

∂n

∂t
= neσTc

∂

∂ε

{
∂

∂ε

[ 〈(ε1 − ε)2〉
2

n

]
− 〈ε1 − ε〉n

}
, (1)

where n is photon density per unit volume and per dimensionless
photon energy is ε ≡ E/mec2, σ T is the Thomson cross-section, ne

is the electron density, ε1 is the photon energy after a scattering,
〈ε1 − ε〉 and 〈(ε1 − ε)2〉 are the average energy shift and the average
square of the energy shift, respectively, and ε1 − ε � ε is assumed.
For Compton scattering by thermal electrons in the Thomson limit
(e.g. Nagirner & Poutanen 1994)

〈ε1 − ε〉 = (4θ − ε)ε, 〈(ε1 − ε)2〉 = 2θε2, (2)

where θ ≡ kTe/mec2 is dimensionless electron temperature. Sub-
stituting these coefficients in equation (1) gives us the equation of
Kompaneets (1956, 1957)

∂n

∂t
= neσTc

∂

∂ε

[
ε4

(
θ

∂

∂ε

n

ε2
+ n

ε2

)]
. (3)

The equation is valid for θ � 1, ε � 1. However, it was noted by
Ross, Weaver & McCray (1978) that this equation fails for θ �
ε. Namely, at θ = 0 equation (3) becomes a first-order differential
equation, which only shifts the photon energy down neglecting the
associated dispersion. If the zero-temperature dispersion term is
included, the equation becomes

∂n

∂t
= neσTc

∂

∂ε

{
ε4

[(
θ + 7

10
ε2

)
∂

∂ε

n

ε2
+ n

ε2

]}
. (4)

2http://users.camk.edu.pl/mitsza/thcomp/, http://github.com/HEASARC/x
spec localmodels/
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5236 A. A. Zdziarski et al.

This down-scattering problem was further studied by Illarionov et al.
(1979), who confirmed its correctness in application to Compton
down scattering of photons with ε � 1 by cold electrons.

Kershaw, Prasad & Beason (1986), Prasad, Kershaw & Beason
(1986), Prasad et al. (1988), and Shestakov, Kershaw & Prasad
(1988) derived a fully relativistic kinetic equation, with the coef-
ficients valid at any value of the electron temperature. This was
further developed by Nagirner & Poutanen (1994), who derived
polarization redistribution matrices. However, the form of the
coefficients in those equations is relatively complex.

Iterative relativistic corrections to the Kompaneets equation
(including the induced scattering) were obtained by Challinor
& Lasenby (1998) following the covariant formalism of Itoh,
Kohyama & Nozawa (1998). They presented a formalism allowing
the corrections to be included up to any desired order, and gave the
explicit expressions up to the second order in θ and ε. The expansion
series given by their equation (16) contains, in fact, the (7/10)ε2

term included by Ross et al. (1978), and their results are valid for
both up and down scattering. Their results were extended in further
studies by Brown & Preston (2012), and Nozawa & Kohyama
(2015), who confirmed the correctness of the results of Itoh et al.
(1998) and Challinor & Lasenby (1998). However, their equation
is a fourth-order partial differential equation and the obtained
series is only asymptotic. Thus, its application to the problems
of Comptonization by mildly relativistic thermal plasma and of
Compton down scattering of radiation with ε ∼ 1 by cold plasma is
not practical. On the other hand, the modification of the Kompaneets
equation proposed by Liu et al. (2004) appears incorrect. Then,
Vurm & Poutanen (2009) treated Compton scattering using either
integral or differential form depending on the value of the fractional
photon energy change.

Challinor & Lasenby (1998), Itoh et al. (1998), Brown & Preston
(2012), and Nozawa & Kohyama (2015) also applied their results
to the Sunyaev–Zeldovich effect. Without relativistic corrections,
the Kompaneets equation (including the stimulated scattering term)
only allows us to determine the Compton parameter, y ≡ 4θτ ,
of the medium (hot gas with kTe ∼ 10 keV in a cluster of
galaxies) upscattering the cosmic microwave background radiation
(Zeldovich & Sunyaev 1969). However, with those corrections,
both the temperature and the optical depth of the cluster gas can be
determined.

3 TH E P H E N O M E N O L O G I C A L K I N E T I C
EQUATION

We would like now to consider not only evolution of the spectrum
in frequency but also the effects related to the finite size of the
sources. We simplify the treatment of radiative transfer by using
escape probability approximation. In non-relativistic limit, the
corresponding kinetic equation is given in ST80. We use the same
form, but make some phenomenological modifications to include
both relativistic corrections as well as corrections due to the optical
depth of the system being relatively low. In steady state, our equation
is as follows

ṅ0(ε) + ṅC(ε) + ṅesc(ε) = 0. (5)

Here, n is now the photon spatial density averaged over the volume
of the source, τ = neσ TR is the Thomson optical depth, R is a
characteristic source size, and

ṅC(ε) = c

R
τ

d

dε

{
ω(ε)ε4

[
θξ (θ )

d

dε

n(ε)

ε2
+ n(ε)

ε2

]}
, (6)

ṅesc(ε) = − c

R

n(ε)τ

ū(τ, θ, ε)
, (7)

are the rates of the Comptonization and photon escape, respectively.
The first term, ṅ0, is the rate of the seed photon production. Then,
ω and ξ are relativistic corrections to the photon energy shift, and ū

is the average number of scatterings, see below. We solve the above
second-order ordinary differential equation numerically.

We note that the above equation neglects the stimulated scattering
factor (1 + N ), where N is the photon occupation number in the
phase space. For a blackbody photon field,

N = 1

exp(ε/θ ) − 1
. (8)

In that case, N > 1 for ε < θ ln 2. In accreting sources, the main
blackbody-like photon source is an accretion disc, in which case
the blackbody is usually significantly diluted, reducing N . Fur-
thermore, Compton upscattering by energetic electrons is strongly
dominated by the part of the spectrum containing most of the
energy, which is ε � θ . Therefore, neglecting N is a very good
approximation in most cases of interest.

We then attempt to find the form of the correction factors, ω

and ξ e, and of the average scattering number, ū, by comparing
results of the solution of equations (5)–(7) to those obtained using
the Comptonization Monte Carlo method as implemented in the
code COMPTON (described in Section 1). We choose the spherical
geometry, and assume a uniform electron density and the spatial
density of sources of seed photons ∝ τ ′−1 sin(πτ ′/τ ), where τ ′

is the optical depth measured from the centre. In this case, the
distribution of the photon escape time at τ � 1 is an eigenfunction
of the diffusion equation, and it has a simple form, see equation (9)
in ST80. This case is intermediate between the sources of photons
uniformly distributed over the sphere and concentrated at its centre.

We find we achieve good agreement between the Monte Carlo
results and the solutions of equations (5)–(7) for

ξ (θ ) = 1 + θ + 3θ2, (9)

ω(ε) = (1 + 4.6ε + 1.1ε2)−1, (10)

where former was fitted to the average fractional shift due to
upscattering by thermal electrons increasing with temperature in
the mildly relativistic regime and the latter is the fit to the mean
fractional energy shift by cold electrons of Cooper (1971). The
average number of scattering is modified by us with respect to the
non-relativistic, optically thick value (ST80) as follows

ū(τ, θ, ε) = τ [a1(θ ) + a2(θ )τC(ε)g(ε)] , (11)

a1(θ ) = 1.2

1 + θ + 5θ2
, a2(θ ) = 0.25

1 + θ + 3θ2
, (12)

g(ε) =

⎧⎪⎨
⎪⎩

1, ε ≤ 0.1;

(2 − ε)/1.9, 0.1 < ε < 2;

0, ε ≥ 2.

. (13)

Here, g(ε) accounts in an approximate way for the Klein–Nishina
reduction of the scattering efficiency at mildly relativistic photon
energies, and it is defined slightly different from Lightman &
Zdziarski (1987), and τC = neσ CR and σ C are the Compton
optical depth and the total cross-section (for cold electrons; e.g.
Rybicki & Lightman 1979), respectively. In the limit of θ � 1,
τ � 1, the above ū is close to the corresponding solution of
ST80, ū = 3(τ 3 + 2/3)2/π2. Our phenomenological modifications
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(based on the Monte Carlo results) with respect to that result give
a reduction of the average number of scatterings in the mildly
relativistic regime.

We notice that our equations do not contain any zero-temperature
dispersion term, which would be analogous to the (7/10)ε2 term
in equation (4). This could limit their applicability to cases with
low-energy electrons scattering photons with much higher energies.
However, we have found that in spite of that down scattering of broad
continua gives correct results even for very low temperatures, see
Section 4.2. Still, our equations would not give correct results for
down scattering by cold electrons of lines (cf. Illarionov et al. 1979).

Also, in the limit of large τ , the Wien equilibrium in our equations
is established not at θ but at a higher temperature, ξ (θ )θ , which
can be seen by setting ṅC = 0 in equation (6). While the correct
equilibrium is still established at θ � 1, our equations should
therefore not be applied to cases with large τ and relativistic
temperatures. However, such conditions do not seem to occur in
accretion flows in X-ray binaries and AGNs.

When equations (5)–(7) are solved for n(ε), the resulting photon
rate is given by ṅesc, which assumes that all produced photons
undergo Compton scattering. However, since we consider moderate
optical depths, we need to take into account that some photons
escape unscattered. We thus estimate the escape probability for
unscattered photons for our source geometry, and add the corre-
sponding fraction of ṅ0 to ṅesc. We found we can accurately estimate
the escaping fraction by taking the geometric average of those for a
sphere with homogeneous and central distributions of seed photons.
Since Compton scattering conserves the photon number, we can
normalize the total observed spectrum to the number of photons
equal to that of ṅ0.

We also calculate the power-law slope of the part of the spectrum
corresponding to upscattering by the thermal motion dominating
over down scattering. This gives the photon index, � (where
ṅesc(ε) ∝ ε−�) of

� =
√

9

4
+ 1

ūε=0θξ (θ )
− 1

2
, (14)

i.e. ū is calculated using the Thomson optical depth and g(ε) = 1.
This is analogous to equation (17) of ST80.

4 C OM PA R ISON BETWEEN DIFFERENT
M E T H O D S

4.1 Compton upscattering

Here, we compare the results of thComp with those of the fully
accurate Monte Carlo method, COMPTON. We also compare the
above results with those of the ISM of Poutanen & Svensson
(1996), as implemented in the public version of the compps code.
This allows us to determine the ranges of validity of thComp and
compps. For the comparison, we assume the spherical geometry
and a sinusoidal distribution of the seed blackbody photons of ST80,
which geometry is assumed in thComp (see Section 3), and which
we set for COMPTON and compps.

Fig. 1 shows several cases for which thComp provides accu-
rate results. Generally, we find it works well for τ ≥ 1.6 and
kTe � 300 keV. On the other hand, the ISM method implemented
in the compps code relies on computing the contributions to the
spectrum from a limited number of scatterings. Its public version
sets their number as 50 + 4τ 2. The accuracy of the code depends
then on τ , and it may become inaccurate for large τ in some cases.

Also, since the fractional enhancement of the photon energy in a
scattering increases with kTe, the Wien peak is reached quicker at
a higher kTe. When it reached, subsequent scatterings have little
effect on the spectrum. Thus, the value of τ above which compps
becomes inaccurate increases with kTe. E.g. for τ = 3, the compps
code is much more accurate at kTe = 100 keV than at 20 keV,
see Fig. 1. We can see that compps visibly underestimates the
spectrum at the latter kTe even at τ = 2. We note, however, that the
accuracy of compps can be increased by increasing the number of
iterations, and, in the case of low temperatures, by increasing the
grid resolution used in the code.

Then Fig. 2 shows cases where thComp starts to provide inaccu-
rate results. At τ = 2 and kTe = 300 keV, the peak of the spectrum is
slightly underestimated, but the disagreement becomes pronounced
at kTe = 500 keV. Then, thComp significantly underestimates the
spectrum for τ = 1.

Fig. 3 shows the limits of applicability of thComp in the E–
τ space, using the criterion of fractional accuracy averaged over
the E = (0.1–5)kTe range. The shown lower limits, corresponding
to the 90 per cent average accuracy, demonstrate that thComp is
applicable at τ � 1.6 up to kTe � 300 keV. At τ = 2, the accuracy is
achieved up to kTe ≈ 450 keV. On the other hand, the upper limit are
due to equation (6) having the Wien stationary solution at kTeξ (kTe)
rather than at kTe, as discussed in Section 3. However, very hard
spectra showing pronounced Wien peaks have not been observed
from accreting X-ray sources.

We stress that in our search for an efficient relativistic/low τ

kinetic equation, we have tested a large number of different cases.
In particular, we have tested placing the correction coefficient ξ in
front of the square brackets in equation (6), which would solve the
problem of the stationary solution, ṅC ≡ 0, of that equation being
different from Wien at Te. However, this has led to underestimates
of the high-energy cutoff at mildly relativistic temperatures and
moderate optical depths. As the result of our extensive search, we
have found that the set of equations given in Section 3 provides
the best overall results, including those for down scattering, see
Section 4.2 below.

We then show an example of the effect of the spatial distribution
of the seed photons on the emitted spectra, see Fig. 4. We see
that changing that distribution from central to uniform leads to
relatively minor changes of the X-ray slope. The changing spectra
can be approximately reproduced by changing the optical depth in a
given seed-photon distribution. This follows from the spectral form
at a given temperature being governed by the distribution of the
number of scatterings, and, approximately, by their average number
(see Hua & Titarchuk 1995). For example, the spectrum at τ = 3
for the central distribution can be approximately reproduced by the
case with the sinusoidal distribution at τ = 3.4. Given that the actual
geometry of astrophysical sources is not well determined, the actual
value of τ is dependent on the geometry, while the values of kTe and
� can be determined for a given spectrum relatively uniquely. We
also show the spectrum for the fast ISM method, turned on by setting
geom=0 in compps (green long-dashed curve). We see that it is
softer than all three actual spectra. However, it still reproduces an
actual Comptonization spectrum, albeit for a lower τ . In the present
case, it corresponds to a Comptonization spectrum with τ ≈ 2.5.

We also compare our Monte Carlo results in the spherical
geometry with those of the compttmodel (Titarchuk 1994; Hua &
Titarchuk 1995; Titarchuk & Lyubarskij 1995). Fig. 5 shows that the
spectra from comptt for kTe from 20 to 150 keV are significantly
softer than the actual spectra for either distribution of the soft seed
photons, though they are generally closer to the case of the uniform
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5238 A. A. Zdziarski et al.

Figure 1. Comparison of thermal Comptonization spectra calculated using the Monte Carlo method, COMPTON (blue points), the solution of our kinetic
equation, thComp (red solid curves), and the ISM, compps (black dashed curves), for τ ≥ 2 and kTe ≤ 150 keV. The source is a homogeneous electron
sphere with sources of blackbody seed photons (shown by magenta dotted curves) with a sinusoidal spatial distribution ∝ τ ′−1 sin(πτ ′/τ ) (ST80). The values
of kTe, τ , kTbb, and the resulting � are as given on the plots. In the shown range, there is a good agreement between thComp and the Monte Carlo results. The
public version of the compps code is also highly accurate, except for the cases with kTe = 20 keV, where it somewhat underestimates the actual spectrum.
The photon number is normalized to unity.
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Figure 1 – continued

MNRAS 492, 5234–5246 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/4/5234/5708947 by Turun Yliopiston Kirjasto user on 03 April 2020



5240 A. A. Zdziarski et al.

Figure 2. Comparison of thermal Comptonization spectra calculated using the Monte Carlo method, COMPTON (blue points), the solution of our kinetic
equation, thComp (red solid curves), and the ISM, compps (black dashed curves), for τ ≤ 2. The assumptions are the same as in Fig. 1. We find that thComp
becomes inaccurate at τ = 2 for high values of kTe � 300 keV, and for τ < 2 at any kTe. The ISM results are highly accurate in those regimes.
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Compton scattering 5241

Figure 3. The ranges of τ (kTe) where the accuracy of thComp is better
than 90 per cent for the case of blackbody seed photons at kTbb = 0.1 keV
distributed sinusoidally in a spherical cloud with a uniform electron density.
The accuracy is measured by the ratio of the thComp spectra to those from
COMPTON averaged over the range of E = (0.1–5)kTe. The lower limits (filled
symbols) show τ below at which the plasma becomes too optically thin for
the kinetic equation (5)–(7) to work, and the upper limits (open symbols)
are due to the stationary solution of equation (6) being a Wien spectrum at
kTeξ (θ ) rather than at kTe, see Section 3.

Figure 4. An example of the effect of the spatial distribution of the seed
photons on the thermal Comptonization spectra in spherical geometry. Their
energy distribution is given by a blackbody at kTbb = 0.1 keV, shown by the
magenta dots. The points are from the Monte Carlo method, COMPTON, and
the dashed curves are from the ISM method, compps. The shown cases are
the central spatial distribution (the hardest spectrum, black), uniform (the
softest spectrum, red), and according to the sinusoidal law of ST80 (middle,
blue). The Monte Carlo points form almost continuous curves in all cases,
and the middle and lowest dashed curves almost completely overlap with
them. Only for the central seed photons, compps slightly underestimates
the Monte Carlo spectrum. Then, the green long-dashed line shows the
spectrum assuming the fast ISM method for spherical geometry (geom=0
in compps), which is softer than any of the actual spectra.

Figure 5. Comparison of some example spectra from the comptt model
(blue solid curves) with the corresponding Monte Carlo spectra in the
spherical geometry with the central (upper black dots) and uniform (lower
red dots) distributions of seed photons. We see that the comptt spectra
are in all three cases significantly softer than the actual spectra for either
distribution of seed photons.
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distribution. We have found that the compttmodel is less accurate
than thComp in its range of validity, i.e. for τ � 1.6. The relative
inaccuracy of comptt is also illustrated in figs 3–6 of Hua &
Titarchuk (1995) (as we noticed in Section 1).

4.2 Compton down scattering

We then consider the applicability of our kinetic equation results to
cases where the characteristic photon energies are much higher than
the electron temperature, kTe, and the optical depth is high. We com-
parethComp and COMPTON only, since the ISM method is not appli-
cable in this regime. Fig. 6 shows some examples of Comptonization
of hard e-folded power-law seed spectra with � = 1.7 (note that �

in this Section denotes the index of the e-folded power law) and
the e-folding energy of 0.1–1 MeV passing through relatively cold,
optically thick, electrons. We see an overall excellent agreement be-
tween the results of our kinetic equation and the Monte Carlo code.

As it is well known, down scattering of power-law spectra results
in the appearance of a down-scattering break, at which the fractional
energy loss per scattering, �E/E ≈ E/mec2, times the average
number of scattering, ū ∼ τ 2, see equations (11) and (12), is of the
order of unity. In our examples, this break is around 10 keV, which
is much lower than the high-energy cutoffs present in the incident
spectra. As proposed by Zdziarski, Misra & Gierliński (2010), this
effect is likely to explain the low values of the high-energy breaks
in the hard state of Cyg X-3. Zdziarski et al. (2010) used the Monte
Carlo method to calculate model spectra. With our present results,
spectra showing such effect can be directly fitted by our thComp
model as implemented in a convolution version in XSPEC.

As mentioned in Section 3, the equations used do not contain any
zero-temperature dispersion term, analogous to that of Ross et al.
(1978). Still, they give correct results for down scattering of broad
continua. We have repeated the calculations shown in Fig. 6 for kTe

as low as 50 eV, and found they still reproduce relatively accurately
the Monte Carlo results.

Fig. 7 then shows some examples with higher values of the
electron temperature, kTe = 3–30 keV, and lower optical depths,
τ = 3–5. We still see excellent agreement between the solution of
the kinetic equation and Monte Carlo results. We show here only a
fraction of the cases we have studied. We find an excellent overall
agreement, except at τ < 2.

Fig. 8 then shows the effect of down scattering in an optically
thick cold plasma of a primary spectrum from thermal Comptoniza-
tion by hot plasma with kTe = 50 keV, τ = 3, rather than an e-
folded power law. We see that our method using the kinetic equation
(thComp) gives an overall good agreement with the Monte Carlo
results.

In Figs (6)–(8), we see that thComp slightly underestimates
the Monte Carlo spectra at photon energies E � mec2. This is
a deficiency of the model, which we have found difficult to
remove. Namely, modifications to the coefficients (10) and (13) that
improved that agreement resulted in worsening of the agreement at
lower energies, also in the upscattering cases.

5 TH E E F F E C T O F C O M P TO N SC AT T E R I N G
ON T IMIN G PRO PERTIES

Timing properties of thermal Comptonization have been considered,
e.g. by Lightman, Lamb & Rybicki (1981), Kylafis & Klimis (1987),
Kazanas, Hua & Titarchuk (1997), Nowak et al. (1999), Maccarone,
Coppi & Poutanen (2000), Poutanen (2001), Zdziarski et al. (2010),
Papadakis et al. (2016), Chainakun (2019), Chainakun et al. (2019),

Figure 6. Thermal Comptonization of hard e-folded power-law seed spectra
with � = 1.7 and the minimum energy of 0.1 keV (shown by magenta
dotted curves) by cold electrons, kTe = 0.5 keV, with τ = 10. We compare
the Monte Carlo method, COMPTON (blue points), with the solution of our
kinetic equation, thComp (red solid curves). The assumptions are the same
as in Fig. 1. We find that thComp is highly accurate except for some minor
discrepancies in the high-energy tails at energies above a few hundred keV.
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Figure 7. Thermal Comptonization of hard e-folded power-law seed spectra
with � = 1.7 and Ef = 100 keV (shown by magenta dotted curves) by warm
electrons, kTe = 3–30 keV. We compare the Monte Carlo method, COMPTON

(blue points), with the solution of our kinetic equation, thComp (red solid
curves). The assumptions are the same as in Fig. 1. We find that thComp is
highly accurate except for some discrepancies in the high-energy tails.

Figure 8. Down scattering in a cold plasma with kTe = 0.5 keV, τ = 10,
of an initial hard spectrum from thermal Comptonization with kTe, hot =
50 keV, τ hot = 3, kTbb = 0.1 keV (modelled by compps; magenta dotted
curve). The final Comptonized spectrum is modelled by thComp (red solid
curve) and COMPTON (blue points). We find that thComp gives an overall
good approximation, though there are some discrepancies in the high-energy
tail.

and Zhang, Dovčiak & Bursa (2019). Compton scattering can
affect timing properties of accreting sources for either up or down
scattering.

Compton scattering in an optically thick and relatively cold
plasma cloud surrounding the central X-ray source appears to
be the only viable explanation of the lack of X-ray variability at
frequencies �1 Hz in the X-ray binary Cyg X-3 (e.g. Axelsson,
Larsson & Hjalmarsdotter 2009), as proposed by Zdziarski et al.
(2010). In that case, the required size of the scattering cold plasma
is rather large, with a radius of ∼109 cm ≈ 104Rg, where Rg ≡
GM/c2, and M is the compact object mass.

On the other hand, X-ray sources in most of accreting black hole
binaries and AGNs appear to have sizes of ∼101–103Rg (e.g. Done
et al. 2007; De Marco et al. 2013, 2015; Bernardini et al. 2016;
Chartas et al. 2016; Dziełak et al. 2019; Mahmoud, Done & De
Marco 2019). This rules out the observed long hard X-ray lags
(e.g. in Cyg X-1, Miyamoto & Kitamoto 1989; Kotov, Churazov
& Gilfanov 2001) to be due to time lag between subsequent
scatterings in a hot plasma. Furthermore, the lags decrease with
the increasing Fourier frequency and the autocorrelation function
becomes narrower with the increasing photon energy, which both
rule out Compton scattering in a large corona (Nowak et al.
1999; Maccarone et al. 2000). Still, Compton scattering can be
detectable in timing properties on short (in units of Rg/c) time-
scales, in particular in AGNs (e.g. Chainakun et al. 2019). Expected
characteristic time-scales are, for example, 20Rg/c ≈ 1 ms at 10 M�
and 2Rg/c ≈ 103 s at 108 M�.

We point out that a variable flux of seed photons irradiating
a hot plasma cloud will affect its cooling rate. This will change
the plasma temperature, the slope of the X-ray spectrum, and
consequently, the time lags and correlations between light curves
at different energies (see e.g. a discussion in Poutanen 2001). In
addition, the heating rate can vary as well. Here, we neglect these

MNRAS 492, 5234–5246 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/4/5234/5708947 by Turun Yliopiston Kirjasto user on 03 April 2020



5244 A. A. Zdziarski et al.

effects, and study only static Compton clouds. This requires that
the variability amplitude of the input seed photons is small enough
not to significantly affect the slope of the X-ray spectrum. On the
other hand, in the case of a cold plasma down-scattering X-rays
the plasma temperature has only a slight effect on this process, and
the effect of the response of the plasma to irradiation is usually not
important.

If the intrinsic variability of the seed photon flux is S(t), the light
curve observed after Compton scattering, F(t), is a convolution

F (t) =
∫ ∞

t0

S(t − t ′)G(t ′)dt ′, (15)

where G(t) is the Green’s (response) function for the problem, i.e.
the distribution of the time delays of the emission due to Compton
scattering. The Fourier transform of F(t), F , is then the product of
the individual transforms, i.e.

F (f ) = S(f )G(f ), (16)

G(f ) =
∫ ∞

−∞
G(t)e−2πif tdt, S(f ) =

∫ ∞

−∞
S(t)e−2πif tdt, (17)

where f is the frequency. The power spectrum at f is given by
|F (f )|2. If the original signal is sinusoidal, its amplitude is reduced
by |G(f )|. In general, damping due to scattering of an intrinsic
variability can be calculated either using the convolution of the
light curves, equation (15), or by integrating the power spectrum.
The intrinsic power spectrum at f is damped by |G(f )|2.

We then show an example of the timing properties for Compton
upscattering of soft photons by hot plasma, with the parameters
for which the spectra are shown in Fig. 4. Fig. 9(a) shows the
distributions of the photon arrival times, dN/dt ≡ G(t), for the cases
of central and uniform distributions of the seed photons, measured
from the centre of the sphere at a plane tangent to the sphere (which
is equivalent to that measured by a remote observer, apart from a
constant time shift). Time is measured in units of the light traveltime
across the source radius, R/c. For a known size of the source, R, the
plotted time can be easily converted into the physical time. We see
that the shapes of the two distributions are very similar apart from
a difference at times comparable to the light traveltime across the
source. As noted by Zdziarski et al. (2010), there is a difference
between the distributions of the photon arrival times at the sphere
boundary and at a remote observer, with the arrival times measured
by the latter shifted up by �t = (R/c)(1 − cos α), where α is the
angle at which a photon leaves the sphere with respect to the radial
direction. This effect is taken into account in the code, and it is
responsible for the wiggle seen close to R/c in Fig. 9(a) for the case
of the central seed photons. We see that the response function is
very asymmetric, and it has an extended exponential tail. Thus, its
shape is far from the Gaussian, whose form has sometimes been
assumed.

Fig. 9(b) shows dN/dt for selected photon energy ranges. We see
shifts to longer delays with the increasing energy range, expected
for upscattering. This increase then results in time lags between the
energy bands. Thus, Compton upscattering can naturally produce
the asymmetric shape of the responses, with responses in higher
energy bands dominating at later times (cf. Chainakun et al. 2019).
Fig. 9(c) shows the corresponding evolution of the average photon
energy, 〈E〉, and its standard deviation, σ E, for the case of central
seed photons. The average energy increases after each scattering
until it saturates close to the average energy of the Wien peak at
several tens of R/c. The standard deviation of the photon energy is
initially greater than the average, and it becomes relatively low in

Figure 9. Timing properties of upscattering (modelled by COMPTON) in a
hot plasma with kTe = 50 keV, τ = 3, of an initial blackbody spectrum with
kTbb = 0.1 keV. The spectra for this case are shown in Fig. 4. Only scattered
photons are now taken into account. (a) The distributions of the arrival times
to a distant observer (Green’s functions) for the cases of the seed photons
emitted centrally in a sphere (black solid curve) and uniformly distributed
(red dashed curve). (b) The distributions of the arrival times for central seed
photons divided by the energy range, with the red dots, green short dashes,
blue long dashes, and cyan dot-dashed curve corresponding to the ranges
<2, 2–10, 10–50, and >50 keV, respectively. The solid black curve gives
the sum. (c) The evolution of the average photon energy (black solid curve)
and its standard deviation (black dashed curve) for the case of the central
seed photons. The evolution for the uniform seed photons is similar (except
that it starts at t = 0). Time is measured in units of the light traveltime across
the source radius, R/c. The optical depth covered by a photon during that
time equals τ t/(R/c).
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Figure 10. Timing properties of down scattering (modelled by COMPTON)
in a cold plasma with kTe = 0.5 keV, τ = 10, of an initial hard spectrum from
thermal Comptonization with kTe, hot = 50 keV, τ hot = 3, kTbb = 0.1 keV
(modelled by compps) distributed sinusoidally in the sphere. The spectra
for this case are shown in Fig. 8. Only scattered photons are now taken into
account. (a) The distributions of the arrival times for central seed photons
divided by the energy range, with the red dots, green short dashes, blue
long dashes, and cyan dot-dashed curve corresponding to the ranges <2,
2–10, 10–50, and >50 keV, respectively. The solid black curve gives the
sum. (b) The evolution of the average photon energy (blue solid curve) and
its standard deviation (red dashed curve). Time is measured in units of the
light traveltime across the source radius, R/c. The optical depth covered by
a photon during that time equals τ t/(R/c).

the Wien peak. The analogous curves for the uniform seed photon
case are similar.

Then, we show an example of the timing properties for Compton
down scattering of an initial hard spectrum by a cold plasma.
Fig. 10(a) shows the distributions of the photon arrival times. It
also shows dN/dt for selected photon energy ranges. We see shifts to
longer average delays with the decreasing energy range, as expected
for down scattering. Fig. 10(b) shows the corresponding evolution
of the average photon energy and its standard deviation, with both
〈E〉 and σ E decreasing now. The seed photon distribution is from
thermal Comptonization by a hot plasma, as shown in Fig. 8.

Zdziarski et al. (2010) calculated the damping effect of down
scattering in the case of Cyg X-3 using the entire range of the

photon energies, while the Green’s functions depend on that range.
However, as shown in Fig. 10(a), this dependence is mild for photon
energies �10 keV, which range dominates power spectra currently
measured in cosmic sources, and in Cyg X-3 in particular. Thus,
their results remain valid.

6 C O N C L U S I O N S

We have studied modifications to the kinetic equation solution of
ST80, which was given for non-relativistic thermal Comptoniza-
tion in a spherical source with a large Thomson optical depth.
Our goal was to achieve a high accuracy of the solution in the
mildly relativistic regime and τ � 1. Our modifications to the
kinetic equation are phenomenological, and based on comparison
with Monte Carlo results. Our modified kinetic equation, and the
corresponding code, thComp, are described in Section 3. We also
have developed a Monte Carlo code for thermal Comptonization,
COMPTON, capable of treating various geometries and electron
distributions and yielding both spectral and timing properties of
the scattering cloud. For the sake of simplicity, we have considered
only the spherical source geometry.

We have then compared the results of our kinetic equation with
the Monte Carlo results as well as with the results of the iterative
scattering method of Poutanen & Svensson (1996) as implemented
in the code compps. We have found (Section 4.1) almost perfect
agreement between the Monte Carlo results and those of compps
for Compton upscattering of soft blackbody photons, with some
small differences due to the effect of the finite number of iteration
in the latter. Then, our kinetic equation solution, thComp, agrees
very well with both COMPTON and compps for kTe � 300 keV and
τ � 1.6. The detailed parameter range in which thComp gives
accurate results is shown in Fig. 3.

We have also compared COMPTON to the solution of Titarchuk
(1994), Titarchuk & Lyubarskij (1995), and Hua & Titarchuk
(1995), as given in the XSPEC code comptt. In all of the tested
cases, comptt yields substantially softer spectra than those from
either COMPTON or compps in the case of uniform distribution
of seed photons in a sphere, see Fig. 5. Using either central or
sinusoidal seed-photon distribution worsens the agreement.

The code thComp is provided as a convolution function, and
can be applied to any input seed-photon distribution (which is
also the case for COMPTON). We thus have tested Compton down
scattering by cold plasma of hard photon distributions extending up
to E ∼ mec2 (Section 4.2). We have found that thComp works well
in this case as well.

Finally, we have studied timing properties of Comptonization
using COMPTON (Section 5). We present some example distributions
of the photon arrival times (representing the Green’s function for
the problem) and the evolution of the average photon energy for
both up and down scattering. While the Green’s function at a given
time lag is averaged over the photon energies, the average photon
energy strongly changes with the lag. This effect should be taken
into account in comparing with data.
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A., Markowitz A., 2019, MNRAS, 485, 3845
Fabian A. C., Lohfink A., Kara E., Parker M. L., Vasudevan R., Reynolds

C. S., 2015, MNRAS, 451, 4375
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