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Understanding genetic architecture of plasma lipidome could provide better insights into lipid

metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide

association analyses of 141 lipid species (n= 2,181 individuals), followed by phenome-wide

scans with 25 CVD related phenotypes (n= 511,700 individuals). We identify 35 lipid-

species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new

loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We

identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1).

We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length

triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and

genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find

low genetic correlations between traditional lipids and lipid species. Our results show that

lipidomic profiles capture information beyond traditional lipids and identify genetic variants

modifying lipid levels and risk of CVD.
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Cardiovascular diseases (CVDs) encompass many patholo-
gical conditions of impaired heart function, vascular
structure and circulatory system. CVDs are the leading

cause of mortality and morbidity worldwide1, necessitating the
need for better preventive and predictive strategies. Plasma lipids,
the well-established heritable risk factors for CVDs2, are routinely
monitored to assess CVD risk. Standard lipid profiling measures
traditional lipids (referred to LDL-C, HDL-C, total triglycerides
and total cholesterol), but does not capture the functionally and
chemically diverse molecular components—the lipid species3.
These molecular lipid species may independently and specifically
affect different manifestations of CVD, such as ischaemic heart
disease and stroke. Lipid species including cholesterol esters
(CEs), lysophosphatidylcholines (LPCs), phosphatidylcholines
(PCs), phosphatidylethanolamines (PEs), ceramides (CERs),
sphingomyelins (SMs) and triacylglycerols (TAGs) potentially
improve CVD risk assessment over traditional lipids4–9.

Understanding of the genetic architecture and genetic regulation
of these lipid species could help guide tool development for CVD
risk prediction and treatment. Genetic studies of traditional lipids
have identified over 250 genomic loci and improved our under-
standing of CVD pathophysiology10,11. For the majority of the lipid
loci, however, their effects on detailed lipidome beyond traditional
lipids are unknown. Only a few studies have reported genetic
associations for lipid species either through studies on subsets of the
lipidome12,13 or GWASs on metabolome14–20.

In light of the limited information about the genetics of lipi-
domic profiles and their relationship with CVDs, we carried out a
GWAS of lipidomic profiles of 2181 individuals using ~9.3 mil-
lion genetic markers followed by PheWAS including 25 CVD-
related phenotypes in up to 511,700 individuals (Fig. 1). We
aimed to (1) determine heritability of lipid species and their
genetic correlations; (2) identify genetic variants influencing the
plasma levels of lipid species; (3) test the relationship between
identified lipid–species-associated variants and CVD manifesta-
tions and (4) gain mechanistic insights into established lipid
variants. We find that lipid species are heritable, suggesting a
considerable role of endogenous regulation in lipid metabolism.
We report association of new genomic loci with lipid species and
CVD risk in humans. In addition to enhancing the current
understanding of genetic regulation of circulating lipids, our

study emphasises the need of lipidomic profiling in identifying
additional variants influencing lipid metabolism.

Results
Heritability of lipid species. First, we determined SNP-based
heritability for each of the lipid species and traditional lipids using
genetic relationship matrix for all the study participants. The
demographic characteristics of the study participants are provided
in Supplementary Table 1. SNP-based heritability estimates ranged
from 0.10 to 0.54 (Fig. 2a; Supplementary Table 2), showing con-
siderable variation across lipid classes (Fig. 2b), with similar trends
as reported previously21,22. CERs showed the greatest estimated
heritability (median= 0.39, range= 0.35–0.40), whereas phospha-
tidylinositols (PIs) showed the least heritability (median= 0.19,
range= 0.11–0.31). Sphingolipids had higher heritability than gly-
cerolipids ranging from 0.24 to 0.41 (Fig. 2b), which is similar to a
previous study that reported higher heritability for sphingolipids
ranging from 0.28 to 0.53 estimated based on pedigrees21. Lipids
containing polyunsaturated fatty acids, particularly C20:4, C20:5
and C22:6, had significantly higher heritability compared with other
lipid species (Fig. 2c). For instance, PC (17:0;0–20:4;0) and LPC
(22:6;0) had the highest heritability (> 0.50), whereas PC
(16:0;0–16:1;0) and PI (16:0;0–18:2;0) had the lowest heritability
estimates (< 0.12) (Supplementary Table 2).

Genetic correlations between lipid species. Longer, poly-
unsaturated lipids (those with four or more double bonds) had
stronger genetic correlations with each other than with other lipid
species (Supplementary Fig. 1, Supplementary Data 1). This can
be seen in the hierarchical clustering based on genetic correlations
that segregate TAG subspecies into two clusters based on carbon
content and degree of unsaturation (Fig. 2d). These patterns were
not seen in phenotypic correlations that were estimated based on
the plasma levels of lipid species (Supplementary Fig. 2).

We observed low phenotypic and genetic correlation between
traditional lipids and molecular lipid species, except strong
positive genetic correlations of triglycerides with TAGs and
DAGs (average r= 0.88) (Fig. 3). However, triglycerides had low
genetic correlation with other lipid species (average (abs) r=
0.26). HDL-C and LDL-C levels had low genetic and phenotypic
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Fig. 1 Study design and work flow. The figure illustrates the study design and key findings of the study
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Fig. 2 Heritability of lipidomic profiles and genetic correlations among the lipid species. a Histogram and kernel density curve showing the distribution of
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explained by all the known loci together (green bars). The lipid species are ordered based on the hierarchical clustering showing the correlations between
the lipid species and traditional lipids. TC total cholesterol, TG triglycerides

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11954-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4329 | https://doi.org/10.1038/s41467-019-11954-8 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


correlations with most of the lipid species (Fig. 3; Supplementary
Data 1). Consistently, all of the known lipid variants explained
2–21% of variances in plasma levels of various lipid species, with
the least variance accounting for LPCs (Fig. 3). To rule out the
possibility that lipid-lowering medications resulted in the
observed low genetic correlations between traditional lipids and
lipid species, we also calculated the genetic correlations after
excluding the individuals using lipid lowering medications (N=
172). This re-analysis provided the similar results as the primary
analysis (Supplementary Fig. 3). It is to be noted that this sample
size might not provide sufficient power for heritability estima-
tions in unrelated samples. Our study also included the family
samples which provides higher statistical power in heritability
estimation than unrelated samples.

Lipid species associated variants. Next, we performed the
genome-wide association analyses for 141 lipid species with
~9.3 million genetic markers. We identified 2817 associations
between 518 variants located within 11 genomic loci (1MB
blocks) and 42 lipid species from 10 lipid classes at study-wide
significance (P < 1.5 × 10−9 accounting for 34 principal com-
ponents that explain 90% of the variance in lipidome) (Table 1;
Supplementary Data 2, 3). These included three new loci
(ROCK1, MAF and SYT1) that are not previously reported for
any lipid measure or related metabolite (Fig. 4). Among the new
loci, the strongest association was at an intronic variant
rs151223356 near ROCK1 with short acyl-chain LPC(14:0,0)
(P= 1.9 × 10−10). ROCK1 encodes for a serine/threonine kinase
that plays key role in glucose metabolism23. In line with our

observation of higher heritability for lipids with C20:4, C20:5 or
C22:6 acyl chains, we detected associations for 15 out of 21
lipids with these acyl chains.

We also replicated the previous associations of FADS2, SYNE2,
LIPC, CERS4 and MBOAT7 with the same lipid species13–20. The
previously reported associations at the known loci identified in
previous metabolomics GWASs are provided in Supplementary
Data 4. This information was obtained from the databases-SNiPA
(http://snipa.org) using block annotation and PhenoScanner v2
(http://www.phenoscanner.medschl.cam.ac.uk/), and were manually
curated to include associations from literature search. In addition,
we also identified new locus–lipid species associations at previously
reported lipid loci including new associations of variants at ABCG5/
8 with CE (20:2;0) (P= 3.9 × 10−10), MBOAT7 with PI
(18:0;0–20:3;0) (P= 3.0 × 10−12) and GLTPD2 with SM (34:0;2)
(P= 3.4 × 10−22) (Supplementary Data 2, 3).

Further, we systematically evaluated the associations of variants
previously identified in metabolomics GWAS (126 variants from
46 loci available in our data set out of 132 reported) with 141 lipid
species. Of these known variants, 76 variants from 12 loci showed
association with 98 different lipid species with P < 3.2 × 10−5

(correcting for 46 loci and 34 PCs for lipid species) (Supplemen-
tary Data 5). Of the 134 previously reported variant–lipid species
pair associations that could be examined in our data set, 94 of
such associations were replicated with the same direction of effect
with P < 3.7 × 10−4 (accounting for 134 comparisons) in our
study (Supplementary Data 6).

In addition, 24 further loci were associated with at least one
lipid species at regularly used genome-wide significance level
(1.5 × 10−9>P < 5.0 × 10−8). Among these additional loci, 13 loci

Table 1 Genomic loci associated with molecular lipid species at genome-wide significance

SNP Position Gene Change Ref Alt AF Lipid species Effect SE P

rs201385366 1:897866 KLHL17 Intronic C T 0.019 LPE(22:6;0) −0.87 0.16 3.6 × 10−8

rs187163948 1:14399146 KAZN* Intronic G A 0.011 TAG(53:3;0) 0.95 0.17 3.5 × 10−8

rs76866386♯ 2:44075483 ABCG5/8 Intronic T C 0.077 CE(20:2;0) −0.39 0.06 3.9 × 10−10

rs58029241 2:98701245 VWA3B* Intergenic T A 0.062 TAG(50:1;0) 0.37 0.07 1.9 × 10−8

rs13070110 3:21393248 ZNF385D* Intergenic T C 0.085 Total CER 0.33 0.06 3.9 × 10−9

rs10212439 3:142655053 PAQR9 Intergenic T C 0.602 PI(18:0;0–18:1;0) 0.18 0.03 3.1 × 10−8

rs13151374 4:8122221 ABLIM2* Intronic G A 0.153 TAG(50:1;0) 0.25 0.04 3.7 × 10−8

rs186689484 4:97033701 PDHA2* Intergenic G A 0.051 TAG(52:4;0) −0.40 0.07 4.2 × 10−8

rs543895501 6:74120350 DDX43* Intronic C T 0.013 Total LPC 0.87 0.16 2.9 × 10−8

rs4896307 6:138297840 TNFAIP3* Intergenic C T 0.216 PCO(16:1;0–16:0;0) −0.23 0.04 3.3 × 10−8

rs534693155 7:101081274 COL26A1* Intronic A G 0.010 LPC(16:1;0) 1.24 0.23 3.9 × 10−8

rs10281741 7:157793122 PTPRN2* Intronic G C 0.225 TAG(54:6;0) 0.21 0.04 2.2 × 10−8

rs1478898 8:11395079 BLK * Intronic G A 0.440 PC(16:0;0–16:0;0) 0.17 0.03 2.5 × 10−8

rs11570891 8:19822810 LPL Intronic C T 0.075 TAG(52:3;0) −0.33 0.06 2.9 × 10−8

rs146717710 9:137549865 COL5A1* Intronic C T 0.011 PC(16:0;0–16:1;0) −1.03 0.19 2.8 × 10−8

rs140645847 10:118863255 SHTN1* Intronic G T 0.101 LPE(20:4;0) −0.32 0.06 3.3 × 10−8

rs28456♯ 11:61589481 FADS2 Intronic A G 0.405 CE(20:4;0) −0.59 0.03 1.1 × 10−77

rs964184 11:116648917 APOA5 Intergenic G C 0.855 TAG(52:3;0) −0.258 0.045 9.5 × 10−9

rs10790495 11:122198706 MIR100HG* Intronic A G 0.590 TAG(56:4;0) −0.20 0.04 2.1 × 10−8

rs117388573♯ 12:78980665 SYT1* Intergenic A G 0.020 LPC(14:0;0) −0.77 0.13 9.8 × 10−10

rs512948 13:52374489 DHRS12* Intronic T C 0.225 LPE(18:2;0) −0.22 0.04 1.4 × 10−8

rs8008070♯ 14:64233720 SYNE2 Intronic A T 0.133 SM(32:1;2) 0.48 0.05 2.9 × 10−26

rs3902951 14:69789755 GALNT16 Intronic T G 0.361 PEO(18:1;0–18:2;0) 0.19 0.03 1.9 × 10−8

rs35861938 15:45637343 GATM* Intergenic T C 0.398 PCO(18:2;0–18:1;0) 0.18 0.03 2.7 × 10−8

rs261290♯ 15:58678720 LIPC Intronic T C 0.617 PE(18:0;0–20:4;0) −0.37 0.03 4.0 × 10−31

rs35221977♯ 16:79563576 MAF* Intronic G C 0.054 LPC(16:0;0) −0.46 0.08 1.3 × 10−9

rs79202680♯ 17:4692640 GLTPD2 Intronic G T 0.032 SM(34:0;2) −0.85 0.09 3.4 × 10−22

rs143203352 17:77293933 RBFOX3* Intronic T C 0.024 PC(16:0;0–18:1;0) 0.60 0.11 3.2 × 10−8

rs151223356♯ 18:18627427 ROCK1* Intronic A C 0.013 LPC(14:0;0) 0.97 0.15 1.9 × 10−10

rs7246617♯ 19:8272163 CERS4 Intergenic G A 0.402 SM(38:2;2) 0.25 0.03 2.5 × 10−15

rs2455069 19:51728641 CD33* Missense A G 0.383 TAG(52:5;0) −0.19 0.03 9.3 × 10−9

rs8736♯ 19:54677189 MBOAT7 UTR C T 0.388 PI(18:0;0–20:4;0) −0.38 0.03 9.8 × 10−28

rs4374298 19:55738746 TMEM86B* Synonymous G A 0.166 PEO(16:1;0–20:4;0) −0.25 0.04 2.3 × 10−8

rs364585♯ 20:12962718 SPTLC3 Intergenic A G 0.670 Total CER −0.20 0.03 9.1 × 10−10

rs186680008 22:39754367 SYNGR1* Intronic A C 0.015 CE(20:3;0) −0.81 0.15 2.6 × 10−8

Ref reference allele, Alt alternate allele, AF alternate allele frequency, SE standard error, UTR untranslated region
The strongest association between SNP and lipid species in the genome-wide significant loci (P < 5.0 × 10−8) are presented. The P-values were calculated from the meta-analyses using the inverse
variance weighted method for fixed effects. The study-wide significant associations are marked by hash symbol. The SNPs are annotated to the nearest gene if identified in this study (marked by asterisk
symbol) or to previously known gene if in linkage disequilibrium with the known loci for any lipid measure. The effect sizes presented are change in standard deviation of the lipid species per alternate
allele. Chromosomal positions are based on hg19 reference sequence
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were located in genomic regions not previously reported for any
lipid measure or related metabolite, and 8 loci were located near
known loci for lipids but were independent of any previously
reported variant (Table 1; Supplementary Data 3). The regional
association plots for all 35 loci with P < 5.0 × 10−8 are presented
in Supplementary Data 7, and the genotype–phenotype relation-
ships for the lead variants in these 35 loci are provided in
Supplementary Fig. 4.

Relationship between identified variants and risk of CVD. As
many of the lipid species have previously been shown to predict
CVD risk, we determined if the variants associated with lipid
species affect individuals’ susceptibility to CVD-related phenotypes
in FinnGen and UK Biobank cohorts. We identified 25 CVD-
related phenotypes from the clinical outcomes derived from health
registry data in the FinnGen and UK Biobanks (Supplementary
Table 3). The follow-up PheWAS analyses included lead var-
iants from all of the 35 independent loci that showed associa-
tions with P < 5.0 × 10−8 (Table 1). Overall, 10 of the 35
lipid–species variants (APOA5, ABCG5/8, BLK, LPL, FADS2,
COL5A1, GALNT16, GLTPD2, MBOAT7 and SPTLC3) were
associated with at least one of the CVD outcomes (FDR < 5%)

(Fig. 5; Supplementary Data 8). These included novel associa-
tions of variants at COL5A1 with cerebrovascular disease (P=
4.6 × 10−4), GALNT16 with angina (P= 9.3 × 10−4), MBOAT7
with venous thromboembolism (P= 1.3 × 10−3), GLTPD2 with
atherosclerosis (P= 5.3 × 10−4) and SPTLC3 with intracerebral
haemorrhage (P= 1.0 × 10−3) (Fig. 5). FADS1-2-3 is a well-
known lipid modifying locus; however, like many other known
lipid loci, its effects on CVD risk has been unclear. We found an
association of FADS2 rs28456-G with peripheral artery disease
(P= 2.2 × 10−4) and aterial embolism and thrombosis (P= 2.5 ×
10−4). BLK (rs1478898-A) was also found to be associated with
decreased risk of obesity (OR= 0.97, P= 5.6×10−8) and type 2
diabetes (OR= 0.96, P= 4.5 × 10−5).

Several studies have suggested a role for sphingolipids,
including CERs and SMs, in the pathogenesis of CVDs. CER
(d18:1/24:0) and CER (d18:1/24:1) have been reported to be
associated with the increased risk of CVD events9. We found that
the CER (d18:1/24:1) decreasing variant SPTLC3 rs364585-G was
associated with decreased risk of intracerebral haemorrhage,
while CER (d18:1/24:0) increasing variant ZNF385D rs13070110-
C was nominally associated with increased risk of intracerebral
haemorrhage. Furthermore, consistent with the observation
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that elevated plasma SMs levels are atherogenic24, we identified
association of GLTPD2 rs79202680-T (associated with reduced
levels of SMs) with reduced risk of atherosclerosis.

Mechanistic insights into lipid variants. Next, we determined if
the detailed lipidomic profiles could provide new mechanistic
insights into the role of known lipid variants in lipid biology. We
present two examples of well-established lipid variants here. First
is the fatty acid desaturase (FADS) gene cluster that has been
consistently reported to be associated with omega-3 and omega-6
fatty acids levels with inverse effects on different PUFAs. Its
mechanism, however, has not been fully deciphered. Here, we
found that the FADS2 rs28456-G was associated with increased
levels of lipids with a C20:3 acyl chain and decreased levels of
lipids with C20:4, C20:5 and C22:6 acyl chains (Supplementary
Fig. 5). The rs28456-G is also an eQTL that increases FADS2
expression while reduces the expression of FADS1 [GTEx v7].
These data together explain the inverse relationship of FADS2
variants with lipids containing different polyunsatureated fatty
acids (PUFAs) (Fig. 6).

Another example is lipoprotein lipase (LPL). LPL codes for
lipoprotein lipase that is the master lipolytic factor of TAGs in
TAG-enriched chylomicrons and VLDL particles. We found that
LPL rs11570891-T was associated with reduced levels of medium
length TAGs (C50–C56), with strongest associations with TAG
(52:3;0). This suggested that LPL enzyme might have different
efficiency in hydrolysis of TAGs of different length. We explored
this possibility by evaluating (1) the effect of LPL rs11570891-T
on LPL enzymatic activity and (2) the relationship between LPL

activity and plasma levels of TAGs of different length, using post-
heparin LPL measured in the EUFAM cohort. We found that LPL
rs11570891-T (an eQTL increasing LPL expression) was asso-
ciated with increased LPL activity, which in turn was associated
with TAG species with stronger effect on medium length TAGs
than other TAGs (Fig. 6). Consistent with a previous report by
Rhee et al.16, variant rs964184-C at APOA5, which codes for the
activator that stimulates LPL-mediated lipolysis of TAG-rich
lipoproteins and their remnants, also showed association with
medium length TAGs (Fig. 6). These results provide first clues to
the probable variable role of LPL and APOA5 in the hydrolysis of
different TAG species.

Similarly, the association patterns of some of the newly
mapped loci suggested their underlying functions. For example,
SYNGR1 rs186680008-C showed strongest associations with
decreased levels of lipid species with C20:3 acyl chain from
different lipid classes, including CEs, PCs and PCOs (Supple-
mentary Fig. 5), suggesting its role in PUFA metabolism
(Fig. 6). PTPRN2 rs10281741-G and MIR100HG rs10790495-G
showed associations with reduced levels of long polyunsatu-
rated TAG species, suggesting their role in negative regulation
of either elongation and desaturation of fatty acids or
incorporation of long-chain unsaturated fatty acids during
TAG biosynthesis.

Lipidomics provide higher statistical power. As intermediate
phenotypes are known to provide more statistical power, we
assessed whether the lipid species could help to detect genetic
associations with greater power than traditional lipids using
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variants previously identified for traditional lipids (number of
variants= 557; Supplementary Data 9). We found that molecular
lipid species have much stronger associations than traditional
lipids with the same sample size, except for well-known APOE
and CETP (Fig. 7; Supplementary Data 10). The associations were
several orders of magnitudes stronger for the variants in or near
genes involved in lipid metabolism, such as FADS1-2-3, LIPC,
ABCG5/8, SGPP1 and SPTLC3. This shows that the lipidomics
provides higher chances to identify lipid-modulating variants,
particularly the ones with direct role in lipid metabolism, with
much smaller sample size than traditional lipids.

Discussion
We present findings from a large-scale study that integrate
lipidome, genome and phenome revealing detailed description
of genetic regulation of lipidome and its associations with CVD
risk. In addition to enhancing the current understanding of
genetic determinants of circulating lipids, our study highlights
the potential of lipidomics in gene mapping for lipids and
CVDs over traditional lipids. The study generates a publicly
available knowledgebase of genetic associations of molecular
lipid species and their relationships with thousands of clinical
outcomes.
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Fig. 6 Patterns in associations and proposed mechanisms for the effect of identified variants on lipid metabolism and clinical outcomes. a Associations of
LPL rs11570891-T and LPL activity with TAGs. Change (beta and standard errors) in plasma levels of TAGs per increase in standard deviation of LPL activity
with their corresponding P-values, as calculated using linear regression model, are plotted in lower panel. The upper panel shows change (beta and
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analysis. b Association of LPL variant rs11570891 with LPL activity. The effect size (beta in standardised units and standard error in parenthesis) and P-value
were calculated using linear mixed model. Boxplot depicts the interquartile range (IQR) defined by the bounds of the box, median (middle line) and
whiskers extending to the largest/smallest values no further than 1.5 times the IQR. c Based on the patterns of the association of lipid species-associated
loci with different lipid species, we propose that: (1) LPL rs11570891-T and APOA5 rs964184-C might result in more efficient hydrolysis of medium length
TAGs which might results in reduced CVD risk, (2) FADS2 rs28456-G may have observed effect on PUFA metabolism through its inverse effect on FADS2
and FADS1 expressions, (3) SYNGR1 rs18680008-C might have a role in the negative regulation of either desaturation of linoleic acid (C18:2,n-6) or
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Despite the expected influence of dietary intake on the circu-
latory lipids, plasma levels of lipid species are found to be heri-
table, suggesting considerable role of endogenous regulation in
lipid metabolism. Importantly, genetic mechanisms do not seem
to regulate all lipid species in a lipid class in the same way, as also
observed in recent mice lipidomics studies25,26. Longer and more
unsaturated lipid species from different lipid classes clearly dis-
play stronger genetic correlations. These observations are con-
sistent with a previous study based on family pedigrees21. Our
finding is important in the light of the proposed role of lipids
containing PUFAs in CVDs, diabetes and other disorders27–29.
Identification of genetic factors regulating these particular lipids
is important for understanding the subtleties of lipid metabolism
and devising preventive strategies including dietary interventions.
Our study provides multiple leads in this direction by identifying
11 genomic loci (KLHL17, APOA5, CD33, SHTN1, FADS2, LIPC,
MBOAT7, MIR100HG, PTPRN2, PDHA2 and TMEM86B) asso-
ciated with long, polyunsaturated lipids at genome-wide sig-
nificance. Of these, FADS2, APOA5, LPL and MBOAT7 variants
were also associated with risk of CVDs (Fig. 5).

Further, we mapped genetic variants for lipid species from
several lipid classes, including CERs, CEs, TAGs, SMs and PCs,
that are shown to predict CVD risk4–9. Our PheWAS analyses

also suggested relationship between many of the mapped genetic
variants and CVD outcomes. This knowledge can directly fuel
studies on CVD prediction or drug target discovery. For instance,
CERs and CEs have also been reported to associate with increased
risk of CVD events5–9. Our study revealed three loci associated
with CEs, including FADS2 and two novel loci-ABCG5/8 and
SYNGR1, and two loci for CERs (SPTLC3 and ZNF385D). CER
species, particularly CER (d18:1/24:0) and CER (d18:1/24:1) are
recently reported to be associated with the increased risk of
CVD9. We identified two variants near SPTLC3 and ZNF385D
that modulate the plasma levels of CER (d18:1/24:1) and CER
(d18:1/24:0), respectively, and risk for intracerebral haemorrhage.
This information could also guide future studies to establish the
causal relationship between lipid species and CVD.

The detailed lipidomic profile also provided clues towards
understanding the mechanisms of effects of well-established lipid
loci like FADS2 and LPL on lipid metabolism and CVD risks. We
show how the inverse effects of FADS2 rs28456-G on the
expression of two desaturases (FADS2 and FADS1) could explain
its opposite effects on lipids with different PUFAs. The delta-6
desaturation by FADS2 generates gamma-linolenic acid and
stearidonic acid that by elongation yield dihomo-gamma-
linolenic acid and eicosatetraenoic acid (Fig. 6)30. Further,
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delta-5 desaturation of dihomo-gamma-linolenic acid by FADS1
generates arachidonic acid and eicosapentaenoic acid. Thus, as
depicted in Fig. 6, the inverse effects of FADS2 rs28456-G on
FADS2 and FADS1 expressions explain its opposite effects on
different PUFAs. The association of FADS2 rs28456-G with the
reduced levels of lipids containing arachidonic acid may also
explain its assocition with reduced risk of atherosclerotic CVD
outcomes—peripheral artery disesae (PAD) and aterial embolism
and thrombosis.

LPL and APOA5 are the key players in TAG hydrolysis. Our
integrated approach suggested that their activity could be differ-
ent for different TAG species with higher efficiency for medium
length TAGs (C50–C56). We show that an LPL variant increases
the LPL activity resulting in decreased levels of medium length
TAGs. The association of the LPL variant with reduced suscept-
ibility to CVD and type 2 diabetes could be mediated through the
decrease in medium length TAGs (Fig. 5). This is consistent with
a previous report that showed a similar pattern of association of
levels of TAG species with type 2 diabetes31.

Similarly, the patterns of assocations of newly mapped loci also
suggested their involvement in the regulation of lipid metabolism.
For example, rs10281741-G near PTPRN2 and rs10790495-G
near MIR100HG showed distinct association patterns with TAGs,
with strongest association with long polyunsaturated TAGs.
PTPRN2 codes for protein tyrosine phosphatase receptor N2 with
a possible role in pancreatic insulin secretion and development of
diabetes mellitus32, while MIR100HG rs10790495 is an eQTL for
the heat-shock protein HSPA8 that has a role in cell prolifera-
tion33. However, it is not known if PTPRN2 and MIR100HG or
HSPA8 have any role in lipid metabolism.

Finally, we show that lipidomic profiles capture information
beyond traditional lipids and provide an opportunity to identify
additional genetic variants influencing lipid metabolism and
disease risk. Previously, Petersen et al. showed that lipoprotein
subfractions correlate with traditional lipids and strengthen
genetic associations at known lipid loci and that these loci explain
more of the variance of lipoprotein subfractions than of serum
lipids34. Similarly, our study demonstrates that molecular lipid
species have stronger statistical power compared with traditional
lipids at known lipid loci using the same sample size. However, in
contrast to Petersen et al., we found that many of the lipid species,
including LPCs and PCs that have previously been associated
with incident coronary heart disease risk4–6, have low phenotypic
and genotypic correlations with traditional lipids. We also show
that the known lipid variants for traditional lipids explain less of
the variance of lipid species than traditional lipids. Altogether, as
expected these results suggest that lipidomic profiles could pro-
vide novel information that could not be captured by traditional
lipids and lipoprotein measurements.

Our study had some potential limitations. Though our study
represents one of the largest genetic screen of lipidomic variation,
larger cohorts are needed to achieve its full understanding. Blood
samples for the EUFAM cohort were drawn after an overnight
fast whereas the FINRISK cohort samples had varied fasting
duration. This, however, does not seem to have substantial effect
on the results and their interpretation as shown in Supplementary
Data 11 and Supplementary Fig. 6. Moreover, a recent study by
Rämö et al. also demonstrated similar lipidomic profiles for
dyslipidemias from the EUFAM and FINRISK cohorts35. The UK
Biobank cohort is reported to have a “healthy volunteer” effect36,
which may affect the PheWAS results, however, given the large
sample size, this is unlikely to have a substantial effect on genetic
association analyses. Furthermore, lipidomic profiles were mea-
sured in whole plasma, which does not provide information at the
level of individual lipoprotein subclasses and limits our ability to
gain detailed mechanistic insights. We also excluded poorly

detected lipid species to ensure high data quality that narrowed
the spectrum of lipidomic profiles. Further advances in lipidomics
platforms might help to capture more comprehensive and com-
plete lipidomic profiles, including the position of fatty acyl chains
in the glycerol backbone of TAGs and glycerophospholipids and
detection of sphingosine-1-P species and several other species,
that would allow to overcome these limitations.

In conclusion, our study demonstrates that lipidomics enables
deeper insights into the genetic regulation of lipid metabolism
than clinically used lipid measures, which in turn might help
guide future biomarker and drug target discovery and disease
prevention.

Methods
Subjects and clinical measurements. The study included participants from the
following cohorts: EUFAM, FINRISK, FinnGen and UK Biobank. The EUFAM
(The European Multicenter Study on Familial Dyslipidemias in Patients with
Premature Coronary Heart Disease) study cohort is comprised of the Finnish
familial combined hyperlipidemia families37. The families in EUFAM study were
identified via probands admitted to Finnish university hospitals with a diagnosis of
premature coronary heart disease. The probands had premature coronary heart
disease and high levels of the total cholesterol, triglycerides, or both (≥ 90th Finnish
age-specific and sex-specific population percentile), or low HDL-C levels (≤ 10th
percentile). Invitation was extended to all the family members and spouses of the
probands if at least one first-degree relative of the proband had high levels of the
total cholesterol, triglycerides, or both. Venous blood samples were obtained from
all participants after overnight fasting. Triglycerides and total cholesterol were
measured by enzymatic methods using an automated Cobas Mira analyser
(Hoffman-La Roche, Basel, Switzerland)37,38. HDL-C was quantified by phos-
photungstic acid/magnesium chloride precipitation procedures, and LDL-C was
calculated using the Friedewald formula39.

The Finnish National FINRISK study is a population-based survey conducted
every 5 years since 1972, and thus far samples have been collected in 1992, 1997,
2002, 2007 and 201240. Collections from the 1992, 1997, 2002, 2007 and
2012 surveys are stored in the National Institute for Health and Welfare /THL)
Biobank. Lipidomic profiling was performed for 1142 participants that were
randomly selected from the FINRISK 2012 survey (Supplementary Table 1). The
participants were advised to fast for at least 4 h before the examination and to avoid
heavy meals earlier during the day. Venous blood samples were obtained from all
the participants and sera were separated. HDL-C, triglycerides and total cholesterol
were measured with enzymatic methods (Abbott laboratories, Abbott Park, IL,
USA) with Abbott Architect c8000 clinical chemistry analyser40.

The FinnGen data release 2 is composed of 102,739 Finnish participants. The
phenotypes were derived from ICD codes in Finnish national hospital registries
and cause-of-death registry as a part of FinnGen project. The quality of the CVD
diagnoses in these registers has been validated in previous studies41–45. The UK
Biobank data is comprised of >500,000 participants based in UK and aged 40–69
years, annotated for over 2000 phenotypes46. The PheWAS analyses in this study
included 408,961 samples from white British participants.

Ethics statement. The study was conducted in accordance with the principles of
the Helsinki declaration. Written informed consent was obtained from all the study
participants. The study protocols were approved by the ethics committees of the
participating centres (The Hospital District of Helsinki and Uusimaa Coordinating
Ethics committees, approval No. 184/13/03/00/12). For the Finnish Institute of
Health and Welfare (THL) driven FinnGen preparatory project (here called
FinnGen), all patients and control subjects had provided informed consent for
biobank research, based on the Finnish Biobank Act. Alternatively, older cohorts
were based on study specific consents and later transferred to the THL Biobank
after approval by Valvira, the National Supervisory Authority for Welfare and
Health. Recruitment protocols followed the biobank protocols approved by Valvira.
The Ethical Review Board of the Hospital District of Helsinki and Uusimaa
approved the FinnGen study protocol Nr HUS/990/2017. The FinnGen pre-
paratory project is approved by THL, approval numbers THL/2031/6.02.00/2017,
amendments THL/341/6.02.00/2018, THL/2222/6.02.00/2018 and THL/283/
6.02.00/2019. All DNA samples and data in this study were pseudonymized.

Lipidomic profiling. Mass spectrometry-based lipid analysis of 2181 participants
was performed in three batches-353 and 686 EUFAM participants in two batches
and 1142 FINRISK participants in third batch at Lipotype GmbH (Dresden,
Germany). Samples were analysed by direct infusion in a QExactive mass spec-
trometer (Thermo Scientific) equipped with a TriVersa NanoMate ion source
(Advion Biosciences)47. The data were analysed using in-house developed lipid
identification software based on LipidXplorer48,49. Post processing and normal-
isation of data were performed using an in-house developed data management
system. Only lipids with signal-to-noise ratio >5 and amounts at least fivefold
higher than in the corresponding blank samples were considered for further
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analyses. Reproducibility of the assay was assessed by the inclusion of reference
plasma samples (eight reference samples for EUFAM and three reference samples
for FINRISK) per 96-well plate. Median coefficient of variation was <10% across all
batches. The data were corrected for batch and drift effects. Lipid species detected
in <80% of the samples in any of the batches and samples (N= 64) with low lipid
contents were excluded. Among the lipid species which passed quality control, a
total of 141 lipid species from 13 lipid classes (Supplementary Table 2) were
detected consistently in all three batches and were included in all analysis. The total
amounts of lipid classes were calculated by summing up the absolute concentra-
tions of all lipid species belonging to each lipid class. The measured concentrations
of the lipid species and calculated class total were transformed to normal dis-
tribution by rank-based inverse normal transformation.

It is to be noted that Lipotype platform used in the study detected many
additional lipid species (N= 83) that were not captured previously by other
platforms. The list of the lipid species detected by different platforms and overlaps
across the platforms are provided in the Supplementary Data 12 and
Supplementary Fig. 7.

Genotyping and imputation. Genotyping for both EUFAM and FINRISK cohorts
was performed using the HumanCoreExome BeadChip (Illumina Inc., San Diego,
CA, USA). The genotype calls were generated together with other available data
sets using zCall at the Institute for Molecular Medicine Finland (FIMM). Genotype
data underwent stringent quality control (QC) before imputation that included
exclusion of samples with low call rate (<95%), sex discrepancies, excess hetero-
zygosity and non-European ancestry. Variants with low call rate (<95%) and
deviation from Hardy–Weinberg Equilibrium (HWE P < 1 × 10−6) were excluded.
Imputation was performed using IMPUTE250, which used two population-specific
reference panels of 2690 high-coverage whole-genome and 5093 high-coverage
whole-exome sequence data. Variants with imputation info score <0.70 were fil-
tered out. After QC on lipidomic profiles and imputed variants, all subsequent
analyses included 2045 individuals and ~9.3 million variants with MAF >0.005 that
were available in both cohorts.

FinnGen samples were genotyped with Illumina and Affymetrix arrays
(Thermo Fisher Scientific, Santa Clara, CA, USA). Genotype calls were made with
GenCall and zCall algorithms for Illumina and AxiomGT1 algorithm for
Affymetrix chip genotyping data. Genotyping data produced with previous chip
platforms were lifted over to build version 38 (GRCh38/hg38) following the
protocol described here: dx.doi.org/10.17504/protocols.io.nqtddwn. Samples with
sex discrepancies, high genotype missingness (> 5%), excess heterozygosity
(+-4SD) and non-Finnish ancestry were removed. Variants with high missingness
(> 2%), deviation from HWE (P < 1e-6) and low minor allele count (MAC < 3)
were removed. Pre-phasing of genotyped data was performed with Eagle 2.3.5
(https://data.broadinstitute.org/alkesgroup/Eagle/) with the default parameters,
except the number of conditioning haplotypes was set to 20,000. Imputation was
carried out by using the population-specific SISu v3 imputation reference panel
with Beagle 4.1 (version 08Jun17.d8b, https://faculty.washington.edu/browning/
beagle/b4_1.html) as described in the following protocol: [dx.doi.org/10.17504/
protocols.io.nmndc5e]. SISu v3 imputation reference panel was developed using
the high-coverage (25–30x) whole-genome sequencing data generated at the Broad
Institute of MIT and Harvard and at the McDonnell Genome Institute at
Washington University; and jointly processed at the Broad Institute. Variant callset
was produced with GATK HaplotypeCaller algorithm by following GATK best-
practices for variant calling. Genotype-, sample- and variant-wise QC was applied
in an iterative manner by using the Hail framework v0.1 [https://github.com/hail-
is/hail]. The resulting high-quality WGS data for 3775 individuals were phased
with Eagle 2.3.5 as described above. Post-imputation quality control involved
excluding variants with INFO score < 0.7.

Genotyping for the majority of the UK Biobank participants was done using the
Affymetrix UK Biobank Axiom Array, while a subset of participants was genotyped
using the Affymetrix UK BiLEVE Axiom Array. Details about the quality control
and imputation of UK Biobank cohort are described by Bycroft et al.51.

Heritability estimates and genetic correlations. For heritability and genetic
correlation estimation, rank-based inverse-transformed measures of lipid species,
computed separately for the EUFAM and FINRISK cohorts, were combined to
increase statistical power. The residuals of inverse-transformed measures after
regressing for age, sex, first ten principal components (PCs) of genetic population
structure, lipid medication, hormone replacement therapy, thyroid condition and
type 2 diabetes were used as phenotypes. SNP-based heritability estimates were
calculated using the variance component analysis using a genetic relationship
matrix (GRM) as implemented in biMM52. Only the good quality variants with
missingness <10% and MAF >0.005 were used to generate the GRM. The GRM was
generated using GCTA by setting the off-diagonal elements that are <0.05 to 0 as
proposed by Zaitlen et al.53. This allows to estimate SNP-based heritability in
family data without removing closely related individuals. The heritability estimates
of lipid species in different groups were compared using Wilcoxon rank-sum test.

The genetic correlation between each pair of lipid species and between each
lipid species and traditional lipids was determined using the generated GRM with
bivariate linear mixed model as implemented in biMM. The correlations based on
the plasma levels (termed as phenotypic correlations) between all the pairs of the

lipid species and traditional lipids were calculated using Pearson’s correlation
coefficient. The heatmaps and hierarchical clustering based on genetic and
phenotypic correlations were generated using heatmap.2 in R. As lipid-lowering
medications could affect the plasma levels of lipid species, all analyses were
adjusted for the usage of lipid-lowering medications, and separate analyses were
also performed after excluding individuals using lipid-lowering medications (N=
172).

Lipidomics GWAS. We performed univariate association tests for 141 individual
lipid species, 12 total lipid classes and 4 traditional lipid measures (HDL-C, LDL-C,
total cholesterol and triglycerides), in all batches to control for possible batch
effects and combined the summary statistics by meta-analysis. The association
analyses for the EUFAM cohort were performed using linear mixed models,
including the above-mentioned covariates as fixed effects and kinship matrix as
random effect as implemented in MMM54. The kinship matrices for the GWAS
analyses were computed separately for each chromosome to include the variants
from the other chromosomes using directly genotyped variants with MAF >0.01
and missingness <2%. The FINRISK cohort was analysed with linear regression
model adjusting for age, sex, first ten PCs, lipid medication and diabetes using
SNPTEST v2.555. Meta-analyses were performed using the inverse variance
weighted method for fixed effects adjusted for genomic inflation factor in
METAL56. In addition, analyses adjusting for the traditional lipids (in addition to
above-mentioned covariates) were also performed for the identified variants to
determine the independent effect on lipid species.

Test statistics were adjusted for λ values if >1.0 before meta-analyses. Genomic
inflation factor (λ) ranged from 0.98 to 1.19 across the batches whereas the final λ
values for meta-analysis ranged from 0.998 to 1.045 (Supplementary Data 13). The
P-values obtained from the meta-analysis were considered to determine the
SNP–lipid species associations. To account for multiple tests, the study-wide P-
value threshold was set at <1.5 × 10−9 after correcting for 34 principal components
(PCs) that explain over 90% of the variance in lipidomic profiles. Only the
associations consistent in effect direction in all three batches were considered
significant. Variants were designated as new if not located within 1Mb of any
previously reported variants for lipids (any of the traditional lipids and molecular
lipid species); and as independent signal in known locus if located within 1 Mb but
r2 < 0.20 with the previous lead variants and confirmed by conditional analysis.
Variants with the strongest association in the identified lipid species loci was
identified as the lead variants, and were annotated to the nearest gene for the
new loci.

PheWAS. We identified 25 CVD-related outcomes from the derived phenotypes in
the FinnGen and UK Biobanks (Supplementary Table 3). Associations between the
35 lead variants from the identified loci and 25 selected CVD phenotypes in
FinnGen cohort were obtained from the ongoing analyses as a part of the FinnGen
project. The associations were tested using saddle point approximation method
adjusting for age, sex and first 10 PCs as implemented in SPAtest R package57.
Associations between selected binary phenotypes and 35 lead variants in UK
Biobank were obtained from Zhou et al. that were tested using logistic mixed model
in SAIGE with a saddle point approximation and adjusting for first four principal
components, age and sex (https://www.leelabsg.org/resources)58. Data for four
phenotypes were not available from Zhou et al. and hence were obtained from
http://www.nealelab.is/uk-biobank/. Associations of quantitative traits were tested
using linear regression models with the same covariates as mentioned above, both
for Finnish and UK Biobank cohorts. Meta-analyses of both cohorts were per-
formed using the inverse variance weighted method for fixed effects model in
METAL. The P-values obtained from the meta-analyses of the two cohorts are
reported for PheWAS associations. All the PheWAS associations with false dis-
covery rate (FDR) <5% evaluated using the Benjamini–Hochberg method and
consistent direction of effects were considered significant.

Variance explained. To determine the variance explained by the known loci for
traditional lipids, we included all the lead variants with MAF >0.005 in 250
genomic loci that have previously been associated with one or more of the four
traditional lipids. Of the 636 reported variants, 557 variants with MAF >0.005
(including six proxies) were available in our QC passed imputed genotype data
(Supplementary Data 10). A genetic relationship matrix (GRM) based on these 557
variants was generated using GCTA that was used to determine the variance in
plasma levels of all lipid species explained by the known variants using variance
component analysis in biMM.

LPL activity. The post-heparin lipoprotein lipase (LPL) after 15 min of heparin
load was measured for 630 individuals in the EUFAM cohort using the ELISA
method developed by Antikainen et al.59. The measured values were transformed
using rank-based inverse normal transformation. Associations between the LPL
activity and plasma levels of TAGs were determined using linear regression model
adjusted for age, sex, lipid medication, hormone replacement therapy, thyroid
condition and type 2 diabetes. Association between the LPL variant rs11570891 and
LPL activity was tested using linear mixed model adjusted for age, sex, first ten PCs
of genetic population structure, lipid medication, hormone replacement therapy,
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thyroid condition and type 2 diabetes as fixed effect and kinship matrix as random
effect as implemented in MMM.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The full lipidomics GWAS summary level data are available on the web-based database
[https://mqtl.fimm.fi]. Similarly, the PheWAS summary data can be obtained through
[https://www.leelabsg.org/resources] and [http://www.nealelab.is/uk-biobank/]. The data
presented in the figures and other summary level data are contained within the
Supplementary Files and Supplementary Data. Other data are available through the
Institute for Molecular Medicine Finland Data Access Committee on reasonable request
after appropriate ethical approval.
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