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Abstract
Heterogeneity in tumors is recognized as a key contributor to
drug resistance and spread of advanced disease, but deep
characterization of genetic variation within tumors has only
recently been quantifiable with the advancement of next gen-
eration sequencing and single cell technologies. These data
have been essential in developing molecular models of how
tumors develop, evolve, and respond to environmental
changes, such as therapeutic intervention. A deeper under-
standing of tumor evolution has subsequently opened up new
research efforts to develop mathematical models that account
for evolutionary dynamics with the goal of predicting drug
response and resistance in cancer. This study describes
recent advances and limitations of how models of tumor evo-
lution can impact treatment strategies for cancer patients.
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Introduction
Heterogeneity in cancer refers to the many ways that
tumors can vary between and within patients [1].
Within an individual, intertumor heterogeneity de-
scribes the difference between spatially separated

tumors, whereas intratumor heterogeneity is the
variation seen within an individual tumor. Heteroge-
neity is observed at the genetic and phenotypic level,
where genetic heterogeneity captures the diversity of
genetic alterations in tumor cells (e.g., point muta-
tions, indels, structural variants), and phenotypic
heterogeneity refers to how cells from the same ge-
netic background can present different phenotypic
states (e.g., morphology, differentiation, biomarker
expression, the likelihood of therapeutic response).
For the purpose of modeling therapeutic response,

the study authors draw a distinction in that selection
of cells in response to treatment occurs at the
phenotypic level (e.g., rapidly growing cells are killed
by chemotherapeutic agents), where tumor evolution
occurs at the genetic level with clonally expanding
populations passing on somatic alterations (e.g., loss
of TP53 allowing damaged cells to expand). For a
complementary opinion of how phenotypic hetero-
geneity affects drug treatment and response, see
Heiser and Meyer [56]. Here, we will focus on how
mathematical models can account for genetic het-

erogeneity in predicting therapeutic response.

Mathematical modeling has long been used as a way to
capture the essential elements and interactions of a
biological system [2e6]. The goal is to link the
dependent variables or outputs (e.g., growth, invasion,
response to treatment) via mathematical equations to
the inputs of the model (e.g., transcript level, protein
abundance). If properly constructed, the model should
faithfully recapitulate the biological system. In turn, the
model can be used to simulate how perturbations to the

system will affect outputs. Here, we will explore
different mathematical modeling approaches that ac-
count for tumor heterogeneity and how different the-
ories of tumor evolution can be used to design treatment
regimens.
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Measuring genetic heterogeneity
Our ability to capture the resolution needed to charac-

terize genetic tumor heterogeneity has been driven by
advances in next-generation sequencing technology,
which can produce output for tens of billions of nucleo-
tides, and our ability to isolate different genetic elements
to be sequenced (e.g., exome capture, chromatin
immunoprecipitation). Bulk RNA and DNA sequencing,
where a tumor resection/biopsy consists of hundreds to
millions of cells is sequenced in aggregate, has been the
dominant form of sequencing used to date. Bulk
sequencing has been a boon to cancer research and has
been used to characterize the genomic landscape of all

major cancer types [7]; however, bulk sequencing has
limitations. Although there are computational methods
to successfully “deconvolute” different immune and
other stromal cell populations from the sample [8], along
with estimating tumor clonality and ploidy [9e11],
subpopulations of cancer cells are simply missed because
they are at a lower fraction of the tumor than can be
detected. Targeted, deep sequencing methods have
been developed to resolve cells at a 1/10,000 fraction of
the population, but these approaches can only be applied
to a limited number of predefined genomic regions [12].

More recently, technologies have been developed to
generate RNA and DNA sequencing at single-cell reso-
lution [13]. These methods provide the single-cell
measurements that are needed to truly identify rare
subpopulations of cells, but these technologies are very
costly, present new statistical and bioinformatic chal-
lenges [14] and remain almost exclusively used in the
research setting, with limited clinical applications [15].

Although technological advancements in measuring
tumor -omics are valuable, even more fundamental

experimental factors can limit our ability to properly
sample tumors spatially and temporally. A needle biopsy,
for example, will only provide a small cross-section of a
solid tumor, which can miss entire subpopulations of
cells because of sampling bias [14]. Multiregion
sequencing is an approach to sample independent re-
gions of the tumor to increase spatial resolution and
reduce bias. However, multiple biopsies of a tumor (or
multiple tumors) in a person is highly invasive and
impractical for tumors in sensitive regions, such as the
brain. Temporal resolution of genetic heterogeneity can

also be a challenge. Serial biopsies of solid tumors during
or after treatment can be highly invasive and cause more
harm to patients, yet knowing how subpopulations of
cancer cells change over time is important for adjusting
treatments to how the tumor evolves. Liquid biopsies
have been proposed as an approach to serially sample
tumor content from a simple blood draw. It has been
reported that over 50% of mutations found in primary
and metastatic tumors can be identified by sequencing
circulating tumor cells [16e18]. These results are
promising and liquid biopsies could potentially be used
www.sciencedirect.com
to identify when different subpopulations arise in the
tumor during treatment, yet it remains unclear what the
relationship is between the growth of subpopulations in
tumors and when these subpopulations can be detected
through circulating tumor cells.
Models of genetic heterogeneity
To develop rationally designed and molecularly targeted
treatment strategies, we must understand when genetic
heterogeneity develops in tumors and how tumors evolve
under the selective pressures of drug treatment. If, for
example, the tumor evolves from a single clone and gains
somatic alterations in a sequential manner through

growth and in response to treatment, then this sets up a
constant arms race between the patient’s cancer and the
oncologist where treatments select for certain genotypes.
If, on the other hand, the actionable somatic alterations
are present from tumor initiation, then it would stand to
reason that the full array of alterations can be identified
and a treatment strategy can be designed to hit the
actionable targets or treatment can be adjusted based on
which subpopulation is more prevalent.

A variety of models that describe the evolution of

tumors and capture the timing of when somatic alter-
ations arise have been presented [19e21]. Here, we will
focus on two prevalent theories of tumor evolution.
First, the selective sweep model, posits that cells arise in
the tumor because they have a selective growth advan-
tage and the subsequent progeny expand to sweep
across the population. These cells will expand until
another genetic alteration arises that provides a new
selective growth advantage. The growth advantage is
specific to the local tumor environment and if that
environment changes, with the treatment of a drug, for
example, a different cell population will then have the

growth advantage [22]. More recently, an alternative
model of tumor evolution has been proposed, where the
mutations central to progression occur very early in
tumor development. This “Big Bang” model of tumor
evolution suggests that tumors are genetically hetero-
geneous from initiation and subsequent genetic alter-
ations are modifications that build on the original
ancestral cancer-driving alterations [23].

The selective sweep model suggests that a bottleneck
event, such as a drug treatment, would select for

existing subclones and potentially induce novel mu-
tations that have a fitness advantage in the presence of
treatment. In the context of precision oncology, and
illustrated in Figure 1A, a tumor biopsy, which will be
biased and sample only a subsection of the tumor, is
collected to generate a molecular diagnostic report. A
treatment is then selected based on the molecular
features of the biopsy. This treatment then selects for
the resistant populations that allows the tumor to
bypass treatment and resume growth. Under this
Current Opinion in Systems Biology 2019, 17:8–14
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Twomodels of tumor evolution under selective treatment pressure. A precision oncology approach where a tumor biopsy (red dashed ovals) is taken
and a molecular diagnostic report is generated to select treatments based on the limited view to the overall disease (large red circle). (a) The selective
sweep model allows for genetic alterations (*) to arise, which present the cells with a growth advantage and these subpopulations sweep through the
population. Under treatment, genetic alterations can arise because of the drug directly, or through selection for a pre-existing subclone. (b) In the Big
Bang model, driving alterations are present when the tumor arises with resistant populations being present at low frequencies until the drug treatment
selects for that pre-existing population.
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model, subsequent treatments would select for
subclones in the population that are resistant to the
treatment. This model suggests that the tumor is

constantly adapting to treatment and new subclones
will arise that provide a growth advantage over other
cells under treatment. Molecular diagnostic reports
must be run to identify the new genetic alterations and
knowing the genetic make-up of the ancestral tumor
will not aide in developing a mathematical model for
treatment.

The Big Bang model offers an alternative view of tumor
evolution. Under this model, tumor driving alterations
and treatment resistance clones arise at or near tumor

initiation, implying that resistant cell subpopulations
are present from the beginning and it is only through
selective treatment pressure that these cells are given
Current Opinion in Systems Biology 2019, 17:8–14
the opportunity to expand. Evidence for this model has
recently found in colorectal cancer [23] and supported
in other cancer types [24e26]. Applying the same

treatment paradigm (Figure 1B), a tumor biopsy is
collected, molecular diagnostic generated, and treat-
ment selected. Under the Big Bang model, although
cells can acquire mutations over time, subpopulations of
cells that will arise after treatment are present from
tumor initiation and treatment only selects for pre-
existing populations. This model suggests that all
potentially therapeutically targetable populations of
tumor cells are present when the tumor is first identi-
fied in the clinic. Therefore, if we know the complete
genetic content of the ancestral tumor, we can design

treatment strategies that will target the appropriate cell
lineages and potentially avoid selecting for treatment
resistance. This study describes a clinical trial in
www.sciencedirect.com
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prostate cancer by Zhang et al. [27] that successfully
applies these concepts in the following section.
Mathematical models of treatment response
that incorporate genetic heterogeneity
A major ambition of cancer systems biology is to develop
mathematical models that can predict long-term treat-
ment response for patients. To faithfully recapitulate
tumor development and response to treatment, these
models must consider genetic heterogeneity and tumor
evolution [28,29]. Here, the study authors focus on the
recent efforts that apply principles of game theory as a
framework to capture genetic heterogeneity and predict

corresponding drug response [30,31].

Game theory uses mathematical models to describe the
interactions and strategic responses between rational
decision-making entities [32]. This approach has been
used to model cooperation or competition among cancer
cells [30]. Of course, cancer cells are not making rational
decisions, but respond according to deterministic
cellular mechanisms [31]. Nevertheless, an oncologist
will make rational decisions based on the fullest set of
information about the patient’s cancer and the cells

comprising tumors will respond accordingly. Knowing
how different cells will respond to treatment and
knowing the cellular composition of tumors will allow
the oncologist to make the best treatment decisions. A
key assumption is that genetic alterations arising to
exhibit a complex trait, such as resistance to a treat-
ment, comes at some fitness cost to the cell. Tumor cells
are competing with each other for local resources and a
genetic alteration that leads to treatment resistance is
likely to present a growth disadvantage under
nontreatment, neutral conditions, but an advantage
under the selective pressure of drug treatment. There

are always tradeoffs in carrying different genetic alter-
ations and it is the environment combined with exoge-
nous stimulus that determine which genetic alterations
are more fit. Applying game theory principles to simu-
late population dynamics requires assumptions about
the types of subclonal populations, their interactions,
the microenvironment [33], time and space [34], and
the initial relative quantities of key subpopulations [30].
Careful formulation of these assumptions is essential, as
some are counter-intuitive, such as the observation that
the immune system promotes tumor growth under

certain circumstances [35] and that optimal drug com-
binations do not necessarily hit their corresponding
target subpopulations in the sample directly [34].

The appeal of game theory for cancer treatment lies in
the asymmetry of the game from the perspective of the
oncologist, who has the opportunity to intervene with
treatments that changes the tumor environment. The
oncologist can make treatment decisions based on prior
www.sciencedirect.com
knowledge and the information measured from a pa-
tient’s cancer (Figure 2A). Without knowing the
genomic landscape of the patient’s cancer, the oncolo-
gist is limited to their prior medical training and the
advantage is tilted only slightly in favor of the oncologist.
However, with a more complete picture of the genetic
composition of the tumor, along with an understanding
on how mechanisms of resistance arise, the chances are

increased that the oncologist will choose a strategy that
will more effectively treat the cancer. This information
can be used to build mathematical models, and then run
simulations to evaluate treatment strategies in silico
(Figure 2B) to identify the most effective treatment
strategy given the composition of the tumor
(Figure 2C). In the ideal scenario, the oncologist would
have perfect knowledge of every cell in the tumor and
surrounding stroma, and have a complete understanding
of all mechanisms of treatment response and resistance.
Although this scenario is clearly aspirational, as we

described in the previous section, technological ad-
vances are allowing researchers to measure molecular
features of tumor cells at an even increasingly fine res-
olution [36e38]. Major efforts, such as the Human
Tumor Atlas are generating robust, detailed molecular
measurements across an array of tumor types [39].

As researchers gain functional knowledge of tumor
development and treatment response, the advantage
increasingly shifts to the oncologist. We see examples of
such insights impacting clinical practice today. A recent

and successful clinical application of applying game
theory principles can be found in an adaptive clinical
trial for treatment of metastatic, castration-resistant
prostate cancer. Adaptive or flexible clinical trials allow
for modification of treatments based on patient response
[40]. Zhang et al. [27] designed a treatment schedule
based on a mathematical model of how three proposed
prostate cancer cell subpopulations grow and interact
with each other under androgen stimulation and depri-
vation (i.e., treatment with abiratirone). The authors
were able to simulate different treatment scenarios
using prostate specific antigen (PSA) levels as a proxy

for tumor growth/response. They arrived at a treatment
schedule where a patient was given abiraterone until
PSA levels drop to 50% of the patient’s PSA level before
treatment. The patient was taken off abiraterone until
their PSA levels rose again. The results of this clinical
trial showed that one of the 11 patients in the adaptive
arm of the trial progressed, whereas 14 of 16 patients
progressed using standard of care treatment [27].

The work by Zhang et al. [27] represents an alternative
approach to treating certain cancers as a chronic disease,

rather than with the objective of eliminating the en-
tirety of a patient’s cancer. Prostate cancer is a multi-
focal disease and the heterogeneity it displays might
Current Opinion in Systems Biology 2019, 17:8–14
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Overview into population dynamics driven modeling. Modeling several subpopulations and their dynamics allows one to simulate effects arising from
genotypic variation across different treatment scenarios, including different drug targets, dosage, and scheduling. (a) In this example, there are three cell
populations that vary in their response to two drugs (DX and DY). The clinical aim is to suppress the growth of population PC, while maintaining PA and PB.
(b) Dynamic models can be used to simulate the impact on the different cell populations in response to potential intervention strategies. (c) Based on
measurements of tumor heterogeneity and subpopulation composition from a patient’s tumor, the most effective treatment strategy can be identified. In
this example, an adaptive treatment strategy, where the drugs are adjusted based on how the subpopulations change over time would accomplish the
objective to suppress PC and maintain PA and PB.
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preclude it from being completely eliminated. PSA
levels are also an easily measured biomarker of disease
progression, so prostate cancer is a particularly appealing

cancer for this approach. Similarly, cancers that have
advanced to a point where rational therapeutic efforts to
cure the disease will likely not be successful are also
potential candidates for this approach. Although spec-
ulative, it is likely that for more heterogenous cancers
with many more subpopulations to model and target, the
shift to treating it as a chronic disease could be the
better approach. A major caveat to Zhang et al. [27] is
that PSA levels are a proxy for the three-cell-type model.
The model itself cannot be directly tested because it
would require frequent, invasive sampling of a patient

tumors, which would cause unnecessary harm to the
patient. Despite these caveats, the results presented by
Zhang et al. [27] demonstrate that alternative treat-
ment strategies can be based on mathematical models
with great success.
Future challenges
The underlying premise of precision oncology is that
molecular profiling of one’s cancer holds the key to
designing the most effective treatment. The data
generated from bulk, multiregional, single cell and deep,
targeted sequencing suggest that subpopulations of
cancer driving and treatment resistance cells are in fact
present from the early stages of cancer development
[14,23e26]. These findings are encouraging from the
perspective that if we are able to characterize the
Current Opinion in Systems Biology 2019, 17:8–14
genetic content of a tumor, then we will have the
necessary information to design highly effective treat-
ment strategies. However, current clinical practice, for

example, in sampling the tumors, has not yet fully
reached this point. Here, the study authors discuss some
of the major challenges in adopting such approaches to
practical cancer treatment.

Although there are tremendous success stories [41e43],
current molecular diagnostics reveal actionable targets
in a limited number of patients [44,45], and even then,
the cancer often develops resistance to treatment.
Current molecular diagnostic tests simply do not have
the resolution to properly sample genetic heterogeneity

from a tumor biopsy [46]. In addition, a biopsy is an
incomplete snapshot of an evolving tumor, thus the
ancestral state, spatial distribution of heterogeneity, and
trajectory of tumor development is unknown. Each of
these points presents major challenges for technologies
aimed at measuring genetic heterogeneity.

Major international, collaborative efforts (e.g., TCGA,
ICGC) have generated petabytes of bulk sequencing
data across tens of thousands of tumors. A technical
challenge that can be addressed today is the harmoni-

zation of existing, large-scale -omics data sets and
associating these data sets with clinical outcomes from
patient medical records. A great deal of knowledge can
be gained from studying multiple independent patient
cohorts [47e49], yet most cancer types do not have a
www.sciencedirect.com
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comprehensive and harmonized set of data to derive
novel insights and test new hypotheses. There is a
treasure trove of cancer -omic data already generated
and a concerted effort to harmonize these data sets
would provide some of the data necessary to develop
more robust mathematical models of tumor evolution
and treatment response and we can begin to address
some fundamental questions. For example, it remains an

open question whether bulk sequencing is sufficient to
infer ancestral states, subclonal selection, and evolu-
tionary dynamics in the context of treatment [50e52].

Other challenges will require the generation of new
data. Deep -omic profiling of even a few patients can
reveal a great deal about genetic heterogeneity and
tumor development. Because of undersampling of
intratumoral heterogeneity [53], sampling multiple
tumor foci and also serially sampling tumors during
treatment are needed before, during, and after treat-

ment. Although a challenge to collect, these data will be
critical for not only testing mathematical models, but
also being able to adjust the model based on a patient’s
response to treatment [4]. There are fascinating possi-
bilities in applying mathematical modeling to immuno-
therapies, considering the interactions with tumor,
stromal, and immune cells [54,55]; samples are now
being collected and the associated data being generated
to address this challenge.

Finally, we must get to the point where clinical trials will

be open to incorporating mathematical models to aide in
treatment decisions. The work by Zhang et al. [27] is an
excellent demonstration of what can be gained by
incorporating treatment strategies developed from
mathematical models into clinical trials. Future work
should continue on this trajectory with the goal of
improving patient survival and quality of life. As our
knowledge improves, so will the models of treatment
resistance, and subsequently how we treat patients. The
studies presented here represent the start of novel ap-
proaches to treat cancer and we foresee mathematical
modeling playing major roles in future clinical

applications.
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