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Abstract—We propose an automated way of determining the
optimal number of low-rank components in dimension reduction
of image data. The method is based on the combination of two-
dimensional principal component analysis and an augmentation
estimator proposed recently in the literature. Intuitively, the main
idea is to combine a scree plot with information extracted from
the eigenvectors of a variation matrix. Simulation studies show
that the method provides accurate estimates and a demonstration
with a finger data set showcases its performance in practice.

Index Terms—augmentation, dimension estimation, dimension
reduction, image data, scree plot

I. INTRODUCTION

A classical problem in image processing is that of low-rank

image reconstruction where the original image is decomposed

into a superposition of several low-rank components. The

process has numerous practical applications, the most well-

known of these perhaps being eigenfaces, see [1], in which a

collection of facial pictures is decomposed using a joint set

of low-rank components. Typically, each low-rank component

represents a particular collection of facial features (face, mouth

and eye shapes, etc.) and the original faces are obtained as

weighted combinations of them. This representation allows,

for example, the generation of artificial faces by choosing

the weights of the components randomly, see [2]. Another

common application, not specific to any type of image data,

is image compression where the least relevant low-rank com-

ponents are discarded to achieve a size reduction.

A problem shared by all applications of low-rank image

reconstruction is the need to choose a suitable number of low-

rank components. On one hand, we want to retain a large

enough number to not lose any relevant information whereas,

on the other hand, the number of components should be kept

sufficiently small to avoid including noise and redundancies.

In practice, the optimal cut-off point is not known a priori.

Typical solutions involve either rule of thumb where enough

components are selected to reach a pre-specified amount of

“explained variation” [3, Chapter 6] or more involved statisti-

cal procedures [4], [5]. However, these approaches are either

highly subjective or involve strict distributional assumptions,

which hinders their applicability in the context of image data.
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Fig. 1. A collection of images from the fingers data set.

Motivated by the previous, the objective of the current work

is to propose an automatic tool for determining the optimal

number of components. Contrary to eigenfaces and related

similar methods, we do not vectorize the set of images but in-

stead treat them throughout as matrices, such that each element

represents the grayscale intensity of the corresponding pixel.

A similar approach has previously been successfully applied

in the context of image data [6]–[8] where the corresponding

methods are often categorized as tensor decompositions. One

particular consequence of changing the viewpoint from vectors

to matrices is that the rows and the columns of the images are

compressed separately in the latter. Consequently, we need to

determine optimal cut-off points for the rows and columns

separately. While this leads to more involved procedures, it

also gives more information on the compressibility of the data

when compared to the vector approach, which summarizes the

compression using a single number/dimension. As far as we

know, automated dimension selection in this context has been

developed earlier only by [9] who use Stein’s unbiased risk

estimation (SURE) for the task.

Our running example in this work will be the fingers data set

available freely in https://www.kaggle.com/koryakinp/fingers

and consisting of 128 × 128 grayscale images of hands with

0-5 fingers extended. For simplicity, we restrict ourselves to

the subset of 3000 pictures depicting either 0 or 5 extended

fingers on left hands. A sample of the included images is

shown in Figure 1. A naive, non-automated way to determine

the dimensionalities of the rows and columns in the data is

to run (2D)2PCA [6], a matrix-version of PCA, to produce a

pair of scree plots, one for the rows and one for the columns,

https://www.kaggle.com/koryakinp/fingers
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Fig. 2. The scree plots for the mode 1 PCs (left panel) and mode 2 PCs
(right panel) extracted from the finger data with (2D)2PCA.

and search for “elbows” (points where the curves turn flat).

The two plots are given in Figure 2 and clearly show that

no such cut-offs are visible. Hence, Figure 2 on its own

is not sufficient to solve the problem and, to supplement

it, we propose combining it with the information contained

in the eigenvectors produced by (2D)2PCA. This procedure,

proposed originally in [10] for vector-valued data under the

name of “predictor augmentation”, aims to create a “reverse

scree plot” where the curve stays flat until the optimal cut-

off point is reached and increases afterward. The sum of the

“reverse scree plot” and the scree plot is then minimized at

the optimal dimension, enabling its straightforward detection,

both visually and automatically. A more technical description

of the construction of the curve is given in Section III.

The contents of the manuscript are as follows: (2D)2PCA

[6], along with our proposed model, is detailed in Section II.

The proposed augmentation estimator is presented in Sec-

tion III. A simulation study and the finger data example are

presented in Sections IV and V, respectively. Finally, we end

with some discussion in Section VI. Proofs of all technical

results will be given in an extended version of the paper.

II. TWO-DIMENSIONAL PCA

Let X1, . . . ,Xn be our observed set of images, represented

as p1 × p2 matrices. Throughout the paper we assume that

this sample is drawn, independently and identically, from the

model,

X = µ+ U1ZU′
2 + ε, (1)

where µ ∈ R
p1×p2 is the mean image, U1 ∈ R

p1×d1 ,

U2 ∈ R
p2×d2 are unknown matrices with orthonormal columns

and Z is a d1×d2 “core image” with zero mean and dimensions

d1 ≤ p1, d2 ≤ p2. Additionally, we make the technical

assumptions that E‖Z‖2 <∞ and that E(ZZ′) and E(Z′Z) are

positive definite matrices. The additive p1×p2 noise matrix ε

is taken to be independent from the core Z and to have a matrix

spherical distribution [11], implying that E(εε′) = σ2Ip1
for

some σ2 ≥ 0.

Model (1) can be thought of as a form of dimension

reduction for the images where, for each original image Xi,

there exists a low-rank latent core image Zi that contains the

signal/information content of the image. This signal is then

contaminated by the noise εi to produce the observed image.

Thus the “true” row and columns dimensions of the images

are d1 and d2, respectively, and our objective is precisely to

determine their values based on the sample X1, . . . ,Xn alone.

The problem of determining the dimension is closely con-

nected to the estimation of the core images and we next briefly

review how (2D)2PCA [6] can be used to carry out the latter

task. Throughout the following, we assume, without loss of

generality, that the random matrix X is centered in the sense

that E(X) = 0 (this is equivalent to having µ = 0 in (1)).

Similarly, for the sample X1, . . . ,Xn, we assume that the

corresponding mean matrix is zero, X̄ := (1/n)
∑n

i=1
Xi = 0.

Finally, we also assume, for the remainder of this section, that

the dimensions d1 and d2 are known.

The (2D)2PCA solution to Model (1) is now found as

V′
1XV2 where the p1×d1 matrix V1 contains any d1 eigenvec-

tors of E(XX′) corresponding to its d1 largest eigenvalues and

the p2×d2 matrix V2 contains any d2 eigenvectors of E(X′X)
corresponding to its d2 largest eigenvalues. It can be shown

that V1 equals the matrix U1 in (1) up to post-multiplication

by an orthogonal matrix, and similarly for V2 and U2. Hence,

the (2D)2PCA solution V′
1XV2 is equal to the contaminated

core, Z + U′
1εU2, up to orthogonal transformations. This

orthogonal ambiguity is usually tolerated in practice but in

case one wants to get rid of it, additional assumptions on the

multiplicities of the eigenvalues of the matrices E(ZZ′) and

E(Z′Z) can be placed. In practice, the matrices E(XX′) and

E(X′X) are unknown and they have to be replaced with their

sample counterparts, (1/n)
∑n

i=1
XiX

′
i and (1/n)

∑n

i=1
X′

iXi,

respectively.

III. AUGMENTATION ESTIMATOR

A. The main idea

We next detail the proposed strategy of estimating the

dimensions d1 and d2. By the symmetry of Model (1), it is

sufficient to focus on d1 only, as d2 can be estimated by apply-

ing the same procedure to the transposed sample, X′
1, . . . ,X′

n.

A naive way of choosing the dimension would be to plot

the eigenvalues of E(XX′) as a scree plot and search for an

“elbow”. As this is often difficult to locate (see Figure 2), our

proposed augmentation estimator supplements the scree plot

with information extracted from the eigenvectors of E(XX′).
More precisely, the augmentation estimator concatenates the

observed X with additional artificial normally distributed rows

that mimic the first and second-moment behavior of the error

ε in Model (1) to produce the augmented observation X∗.

Then the augmented (artificially added) part of the first d1
eigenvectors of E{X∗(X∗)} turns out to be negligible when

compared to the augmented parts of the latter eigenvectors,

allowing us to distinguish between the eigenvectors belonging

to the first d1, significant, eigenvalues, and the remaining

ones. This idea is formalized in the following paragraphs. For



more details on the procedure in general, see [10] where the

augmentation estimator was first proposed (in the context of

vector-valued data).

In Model (1), we have E(XX′) = U1E(ZZ′)U′
1 + E(εε′)

where E(εε′) = σ2Ip1
for some σ2 ≥ 0. Consequently,

the rank of E(XX′) − σ2Ip1
is precisely the dimension d1

we aim to estimate. Let now, for r > 0, XS ∈ R
r×p2

be a random matrix with independent N (0, σ2/p2)-elements,

implying that E(XS) = 0 and E(XSX′
S) = σ2Ir. The

augmented observation is then defined as the (p1 + r) × p2
matrix X∗ = (X′,X′

S)
′ and satisfies,

E{X∗(X∗)′} =

(

U1E(ZZ′)U′
1 0

0 0

)

+ σ2Ip1+r.

If we now define M∗ := E{X∗(X∗)′} − σ2Ip1+r, then it is

evident that M∗ and M0 = U1E(ZZ′)U′
1 are of the same rank

and also have the same positive eigenvalues.

Denote next the eigenvalues of E(ZZ′) by λ1 ≥ λ2 ≥
· · · ≥ λd1

> 0 and let the (p1 + r)-dimensional vector

β∗
i = (β′

i,β
′
i,S)

′, i = 1, . . . , p1+r, be any eigenvector of M∗

corresponding to its ith eigenvalue. We call the r-dimensional

subvector βi,S the augmented part (subvector) of the ith eigen-

vector. Then, for i ≤ d1, M∗β∗
i = (U1E(ZZ′)U′

1β
′
i, 0′)′ =

λi(β
′
i,β

′
i,S)

′, implying that βi,S = 0 for i = 1, . . . d1.

Observe also that the same does not hold for the later

eigenvectors. This specific structure of the augmentation parts

will below be used to formulate the augmentation estimator.

However, prior to that, we first discuss the estimation of the

unknown noise variance σ2 that plays a crucial part in the

above construction.

B. Estimation of noise variance

In the vector setting, [10] used the median of the eigenvalues

of the sample covariance matrix as an estimate for σ2, under

the assumption that at least half of the components are noise. A

similar approach can be applied in our setting: Let σ̂2
1 ≥ · · · ≥

σ̂2
p1

be the eigenvalues of (1/n)
∑n

i=1
XiX

′
i and, analogously,

denote the eigenvalues of E(XX′) by σ2
1 ≥ · · · ≥ σ2

p1
. Then

(σ2
1 , . . . , σ

2
p1
) = (λ1 + σ2, . . . , λd1

+ σ2, σ2, . . . , σ2) which,

together with the fact that σ̂2
i serve as estimators of σ2

i , implies

that we can estimate σ2 as the median σ̂2 := med{σ̂2
1 , . . . , σ̂

2
p}

as long as the assumption d1 < p1/2 is fulfilled. However,

since our overall objective is to estimate both d1 and d2, under

this approach one would have to assume both d1 < p1/2 and

d2 < p2/2, which can be seen as somewhat strict, restricting

the core image to be at most one-fourth of the original image

in size (in terms of the number of pixels). We next weaken this

assumption by using simultaneously information from both the

rows and the columns of the noise matrix ε.

Observe that as ε follows a matrix spherical distribution, so

does ε′, implying that E(ε′ε) = (σ′)2Ip2
, for some (σ′)2 > 0.

More precisely, for any i = 1, . . . , p1 and j = 1, . . . , p2,

p2
∑

k=1

E(ε2ik) = σ2,

p1
∑

k=1

E(ε2kj) = (σ′)2. (2)

known

last

med

mean

0.22 0.26 0.30

σ̂1

2

Fig. 3. Boxplot of σ2

1
estimates in Model 3; r = 10, s = 50.

By summing the first expression of (2) over i = 1, . . . , p1
and the second one over j = 1, . . . , p2, one obtains p1σ

2 =
p2(σ

′)2, implying that

σ2 =
p2
p1

(σ′)2. (3)

We next use the identity (3) to obtain a pooled es-

timator for the variance σ2. For the ordered eigenval-

ues σ2
1 , . . . , σ

2
p1

and (σ′
1)

2, . . . , (σ′
p2
)2 of the matrices

E(XX′) and E(X′X), respectively, we define the set S :=
{σ2

1 , . . . , σ
2
p1
, p2

p1

(σ′
1)

2, . . . , p2

p1

(σ′
p2
)2}. We also define its sam-

ple counterpart Ŝ := {σ̂2
1 , . . . , σ̂

2
p1
, p2

p1

(σ̂′
1)

2, . . . , p2

p1

(σ̂′
p2
)2},

where σ̂2
1 , . . . , σ̂

2
p1

and (σ̂′
1)

2, . . . , (σ̂′
p2
)2 are the eigenvalues

of the matrices (1/n)
∑n

i=1
XiX

′
i and (1/n)

∑n

i=1
X′

iXi, re-

spectively.

Remark 1. To clarify the scaling constant p2/p1, consider a

scenario where the entries of ε are uncorrelated and have zero

mean and variance δ2 > 0. Then, E(εε′) =
∑p2

i=1
δ2Ip1

=
p2δ

2
Ip1

. Similarly, E(ε′ε) = p1δ
2
Ip2

, showing that the noise

variance accumulates with the number of columns.

The median of the set Ŝ is now a natural estimator of σ2

under the assumption that

d1 + d2 <
p1 + p2

2
. (4)

Obviously, also other quantiles of the set Ŝ can be used to

estimate σ2 (assuming that suitable analogs for (4) hold); see

the following lemma. For example, in the simulation study, we

will use min{Ŝ} which requires minimal assumptions but, as a

downside, has a strong downward bias, meaning that for finite

sample sizes it mostly underestimates the true noise variance.

Lemma 1. Let σ̂2
q be the qth quantile of Ŝ and σ̄2

q be mean

of those elements of Ŝ that are smaller than or equal to σ̂2
q .

i) If d1+d2 < (1−q)(p1+p2), then σ̂2
q and σ̄2

q are consistent

estimators of σ2. Especially, under (4), med{Ŝ} and σ̄2
0.5

are consistent estimators of σ2.

ii) If d1 + d2 < p1 + p2, then min{Ŝ} is a consistent

estimator of σ2.

Given that all estimates of the noise variance are consistent

they might behave quite differently as illustrated in Figure 3.

The effect of under- and overestimation of the noise variance

for our procedure is discussed in the following remark.



Remark 2. Assume that the augmented subvector XS has

independent N (0, σ2
S/p2)-elements. Then

M
∗ = E{X∗(X∗)′} − σ2

SIp1+r

=

(

U1(E(ZZ
′) + (σ2 − σ2

S)Ip1
)U′

1 0

0 0

)

,

and first p1 non-zero eigenvalues of M
∗ are λi+(σ2−σ2

S), i =
1, . . . , p1, where λi = 0 for i > d1. In practice, as discussed

in Section III-C, we replace λi+(σ2−σ2
S) with max{0, λi+

(σ2 − σ2
S)}, i = 1, . . . , p1, to compensate for overestimation

of σ2 and to avoid negative eigenvalues. Let now σ2
S = σ2+δ,

where 0 ≤ δ < λd1
, where δ > 0 corresponds to amount of

overestimation of σ2. Then, max{0, λi+(σ2−σ2
S)} = λi−δ,

i = 1, . . . , d1, and max{0, λi + (σ2 − σ2
S)} = 0, for i > d1,

implying that the rank of M
∗ is d1 and that the nontrivial

eigenvalues have been shifted by −δ.

Hence, the following method is robust towards slight overes-

timation of the noise variance, where such behavior is related

to thresholding eigenvalues of M̂
∗

below by 0. The “allowed”

amount of overestimation depends on the smallest non-trivial

eigenvalue of E(ZZ′) and no such tolerance is allowed for

underestimation of σ2. Though Remark 2 explains behaviour

of the method at the population level, approximation to the

same phenomenon surely holds in the sample case.

C. Augmentation estimator

We are now equipped to define the augmentation estimator.

Let X1,S , . . . ,Xn,S be a sample of i.i.d. r× p2 matrices with

elements drawn from the standard normal distribution N (0, 1).
Define the augmented observations as the (p1+r)×p2 matrices

X∗
i := (X′

i, σ̂X′
i,S)

′, i = 1, . . . , n, where σ̂2 is one of the

estimates of the noise variance σ2 defined earlier. A sample

estimate M̂
∗

of the matrix M∗ is then obtained as

M̂
∗
=

1

n

n
∑

i=1

X∗
i X∗

i
′ − σ̂2Ip1+r,

whose first p1 eigenvectors we denote in the following by

β̂
∗
1, . . . , β̂

∗
p1

. Mimicking [10], we define the normalized scree

plot curve,

Φn : {0, 1, . . . , p1} → R, Φn(k) = λ̂k+1/

(

k+1
∑

i=1

λ̂i + 1

)

,

where (λ̂1, . . . , λ̂p1
) := (σ̂2

1 − σ̂2, . . . , σ̂2
p1
− σ̂2) are the

eigenvalues of the matrix (1/n)
∑n

i=1
XiX

′
i − σ̂2Ip1

and

we define λ̂p1+1 := 0. However, as the values σ̂2
i − σ̂2

are not necessarily non-negative (unlike their population

counterparts), we suggest instead using λ̂i = max{σ̂2
i −σ̂

2, 0},
i = 1, . . . , p1, but with caution as very negative values of

σ̂2
i − σ̂2 can indicate that the noise variance σ2 is not properly

estimated, which can happen, e.g., if assumption (4) does not

hold. The normalization adjustment in the eigenvalue function

Φn is done, as in the bootstrap ladle estimator [12], to ensure

robustness with respect to scaling of the data, whereas the

constant 1 in the denominator is used for stabilization in

the extreme case of noise only, that is, when d1 = 0 [10].

The constant 1 also enhances the decreasing pattern of the

eigenvalue function, especially in settings with small sample

sizes where the (d1+1)st eigenvalue might not be very small.

In order to stabilize the final estimate, we conduct the

augmentation procedure independently s times and compute

the eigenvectors of M̂
∗

for each replicate. For j = 1, . . . , s,

we denote by β̂
j

k,S the augmentation subvector of the kth

eigenvector of the matrix M̂
∗

in the jth replicate. The full

eigenvector information is captured by the function,

fn : {0, 1, . . . , p1} → R, fn(k) =
1

s

s
∑

j=1

‖β̂j
k,S‖

2,

where β̂j
0,S := 0 . We then finally combine the eigenvalue

information in Φn and the eigenvector information in fn to

form the function gn : {0, 1, . . . , p1} → R,

gn(k) =

k
∑

i=0

{fn(k) + Φn(k)} , (5)

and take our estimate d̂1 of the dimension d1 to be the

minimizer of gn. This choice is intuitively clear as, assuming

that d1 > 0, for any k < d1 the eigenvalue part Φn(k)
of (5) is large while the eigenvector part fn(k) is small. For

k > d1, the opposite happens and the eigenvalue part is small

while the eigenvector part is large. Whereas, at the correct

dimension k = d1 both parts are small, implying that the

sum curve gn is (at the population level) minimized precisely

at k = d1. Furthermore, in the extreme noise case where

d1 = 0, the eigenvalue part in (5) is always negligible, while

the eigenvector part is always large, except in the case k = 0,

in which case it vanishes, again causing the minimum to occur

at k = 0.

IV. SIMULATION STUDY

The following simulations and data analysis were conducted

using R [13] together with the packages ICtest [14], Mix-

Matrix [15] and tensorBSS [16]. Following [11], we denote

by Np1,p2
(µ,Σ1,Σ2) the matrix variate normal distribution

with dimensions p1 and p2, p1 × p2 location µ and row and

column shape matrices Σ1 and Σ2, respectively. Similarly

Tp1,p2
(µ,Σ1,Σ2, df) denotes the matrix variate t-distribution

with degrees of freedom df .

The four models considered in the simulation study are:

1) X = U1ZtU
′
2 + εt, 2) X = U1ZtU

′
2 + εN ,

3) X = U1ZNU′
2 + εt, 4) X = U1ZNU′

2 + εN , (6)

where Zt ∼ T3,5(0,Σ1,Σ2, 5), εt ∼
1√
20
T5,15(0, I5, I15, 5),

ZN ∼ N3,5(0,
1√
3
Σ1,

1√
3
Σ2), εN ∼

1√
20∗3
N5,15(0, I5, I15).

The column shape matrix Σ1 is of the form V ′
1D1V 1, where

V 1 is a random orthogonal matrix and D1 = diag(10, 10, 3),
and, similarly, Σ2 = V ′

2D2V 2, where V 2 is a random

orthogonal matrix and D2 = 1√
64∗3

diag(1, 2, 3, 5, 5). The
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Fig. 4. Frequencies of estimated latent dimensions in Model 3 based on 1000 repetitions. The true latent dimensions are d1 = 3, d2 = 5 and are always
marked as grey. Note that for ladle (method boot) the estimates are the same for all s.

mixing matrices U1 ∈ R
5×3 and U2 ∈ R

15×5 are taken to

be the first 3 and 5 columns of randomly generated orthog-

onal matrices in R
5×5 and R

15×15, respectively. Thus in all

four models, E(ZZ ′) ≈ diag(0.46, 0.46, 0.14), E(Z ′Z) ≈
diag(0.33, 0.33, 0.20, 0.13, 0.07), E(εε′) = (1/4)I5 and

E(ε′ε) = (1/12) I15.

Then, for each of the four models, 1000 data sets of size

n = 1000 were created and the dimensions d1 and d2 were

estimated using all possible combinations of s ∈ {1, 10, 50}
and r ∈ {1, 5, 10}. To estimate σ2, the following three

approaches were used (i) mean rule: the mean of the 50%

smallest values of Ŝ, (ii) median rule: the median of Ŝ and (iii)

last rule: the minimum of Ŝ. To evaluate the cost of estimating

σ2, we also used (iv) the true value, i.e. treat it as known. As an

alternative strategy to exploit the information in the variation

of the eigenvectors, we also derived a matrix version of the

so-called ladle estimator that was suggested for vector data

in [12]. The method is based on bootstrapping and we refer

to it in the following as the boot rule and the corresponding

dimension estimates are based on m = 200 bootstrap esti-

mates. Initially, we intended to use the SURE estimates of

[9] as a competing method. However, due to its very high

computational complexity (note that SURE has to go through

all possible combinations of the dimensions d1 and d2), we

calculated SURE estimates only for 200 independent samples

from Model 3. To illustrate the computational complexity,

a small timing comparison for 10 repetitions from Model 3

was performed on an i7-8565U processor with 1.80GHz and

16GB RAM. Table I contains the median computation time in

seconds when the median rule was used to estimate σ2 in the

augmentation estimator. In this small scale example, SURE is

already 50 times slower when compared to the bootstrap-based

ladle with 200 bootstrap repetitions, which in turn is slower

than any of the considered augmentation-based estimators.

However, we have to point out that in all cases where we

computed the SURE estimate (the 10 timing comparisons and

a batch of 200 additional test runs), it returned the correct

dimensions for the core matrix.

Due to space constraints, only the results for Model 3

are presented. However, the performance was in all four

models quite similar, and the estimation appears to be, as

expected, most difficult when the noise follows the spherical

t-distribution. We first look at the performance of different

noise estimators. Their estimates are summarized in boxplots

in Figure 3 and show, as expected, that the “last” rule always

underestimated the true value while the median rule tended

to overestimate it. Figure 4 gives then the estimated row

and column dimensions for Model 3 and shows that the row

dimension is easier to estimate, which is due to the smallest

eigenvalue of E(ZZ′) being much larger than the smallest

eigenvalue of E(Z′Z). This is especially true for the median-

based estimator of the noise variance, due to its tendency to

overestimate the noise variance. As discussed in Remark 2,

the larger the smallest signal eigenvalue of E(ZZ′) [E(Z′Z)]
is the more we are allowed to overestimate noise variance.

In general, all methods, except bootstrap ladle, seemed to

overestimate rather than underestimate the latent dimensions.

This is favorable when compared to the alternative, as no



Algorithm 1: Augmentation estimator for d1.

Input: X1, . . .Xn ∈ R
p1×p2 centered realizations of a

zero-mean matrix from Model (1);

1 Set the row dimension r > 0;

2 Set the number of augmented replicates s > 0;

3 Calculate M̂1 = 1

n

∑n

i=1
XiX

′
i;

4 Calculate M̂2 = 1

n

∑n

i=1
X′

iXi;

5 Calculate the estimate of the noise variance based on

{σ̂2
1 , . . . , σ̂

2
p,

p2

p1

(σ̂′
1)

2, . . . , p2

p1

(σ̂′
p2
)2)}, the pooled set

of scaled eigenvalues of M̂1 and M̂2. E.g.

σ̂2 = med(σ̂2
1 , . . . , σ̂

2
p,

p2

p1

(σ̂′
1)

2, . . . , p2

p1

(σ̂′
p2
)2).

6 Compute λ̂i = max{σ̂2
i − σ̂2, 0};

7 for i← 1 to n, j ← 1 to s do

8 Generate an r× p2 matrix X
j
i,S , with entries drawn

i.i.d. from N (0, 1) and define the augmented ith

observation as X
j∗
i = (X′

i, σ̂X
j
i,S

′
)
′
;

9 for j ← 1 to s do

10 Compute the eigendecomposition of the jth

replicated matrix

M̂
j∗

=
1

n

n
∑

i=1

X
j∗
i X

j∗
i

′
− σ̂2Ip1+r.

11 Let β̂
j

k,S be the augmentation subvector of M̂
j∗

belonging to the k-th eigenvalue;

12 The objective function is

gn(k) =
∑k

i=0
{fn(k) + Φn(k)} , where β̂

j

0,S = 0

and λ̂p1+1 = 0;

13 Return d̂1 = argmin{gn(k) : k = 0, . . . , p1};

TABLE I
MEDIAN COMPUTATION TIME (SECONDS) OF 10 REPETITIONS FOR

R
5×15-MATRICES.

Method r s Time

Augmentation

1 1 0.09
1 10 0.14
10 1 0.44
10 50 4.79

Boot 6.05
SURE 300.20

important signal information is lost. Moreover, using only

the last element of Ŝ to estimate σ2 is clearly the worst

strategy whereas median seems to be the best, which is again

in accordance with Remark 2 and the fact that tail eigenvalues

tend to underestimate the noise level.

The fact that the median-based augmentation outperforms

even the augmentation strategy where the true value of σ2

is used can again be explained by Remark 2. Namely, the

median eigenvalue still belongs to the noise eigenvalues while,

as shown in Figure 3, it is mostly larger than the true σ2.

This again stands along with the recommendation that if

Assumption (4) holds, we propose that one uses σ̂2
0.5 as the

estimator of the variance. The same is true for the analogues of

Assumption 4 and σ̂2
0.5, as discussed in Lemma 1. The fact that

the median-based estimator outperforms the one in which the

true noise variance is used should not come as a huge surprise,

since the sample size considered in the simulation study is

only moderately large implying that the median eigenvalue can

still be significantly larger than the true noise variance. With

the increase of sample size, differences between the latent

dimension estimates obtained using various noise variance

estimators will shrink.

Focusing next on the choice of the tuning parameters s
and r, we can make, based on the simulation results, the

following recommendations. The number of replications s
should be as large as possible to reduce variation in the final

estimate since the number of replications can be interpreted

in the same way as the number of independent re-samples

in bootstrapping procedures. The number of rows r of the

augmentation sub-matrix seems to have a bigger impact on

the final estimate than s. Since ‖β̂k,S‖
2 =

∑r

i=1
β̂
2

k,S,i, larger

values of r give more emphasis to the non-negligible norm

of the augmented subvector, implying that it is better to use

larger values of r. This behavior is illustrated in Figure 5

and supported by the simulation study. Observe that scale in

Figure 5 increase with r. However, choices of s and r are a

trade-off between the computational cost and precision of the

obtained estimate. E.g., in the vector case, [12] propose to use

r ≈ p1/5. To conclude, based on simulations, the augmented

estimator performs superbly, especially when considering its

computational simplicity.
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Fig. 5. Value of the function fn for one data set generated from Model 3
with a sample size of n = 1000. The noise variance is assumed to be known.
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Fig. 6. Logarithmized objective function for the augmented ladle estimator
using r = 26 augmented components. The objective function is essentially a
combination of the augmented norms curve and the scaled eigenvalues curve.

V. EXAMPLE

For the 3000 128 × 128 finger images, we decided to use

r = p1/5 ≈ 26 as recommended in [10] and s = 100 and

estimate σ2 using the median rule. Figure 6 visualizes the

different parts of the augmented estimator on a logarithmic

scale. The figure clearly shows that the eigenvalues alone

and the information from the eigenvectors alone are not very

helpful in choosing the dimensions for each mode. However,

combing the two criteria gives a clear minimum at (40,46)

which can be easily picked in an automated way. To evaluate

if these dimensions are reasonable, we randomly select a

hand showing no fingers and a hand showing all fingers

and reconstruct the images based on different numbers of

latent components. The reconstructed images together with the

original images are presented in Figure 7. These figures reveal

that using fewer components than our optimal ones yields

blurry images while larger numbers do not yield a significant

improvement, indicating that (40,46) would be a good core

dimension for the compression.

VI. DISCUSSION

Estimating the number of latent components in matrix-

valued PCA in an automated and computationally efficient way

has not been possible so far. We extended the augmentation-

based estimator from [10] to this setting and demonstrated

its excellent performance for both simulated and real data.

In future work, we will derive the theoretical properties of

the augmented estimator and extend it to the general tensorial

Fig. 7. Dimension reduction for two specific images. From left to right,
the images have been reconstructed using (5,5), (25,25), (40,46) and (60,60)
components. The rightmost hands correspond to the original images.

PCA case (known, for example, as tPCA [17]) to also cover,

e.g., color images and video data.
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