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Stand-alone Heartbeat Detection in Multidimensional
Mechanocardiograms
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Abstract—We describe a home health monitoring solution with
cardiac beat-to-beat detection using accelerometer and gyroscope
signal fusion. The proposed method measures both the pre-
cordial translational and rotational motions of the chest using
miniaturized inertial sensors. The algorithm removes motion
artefacts, selects the best axis from multi-axial accelerometric
and gyroscopic signals and detects the location of beats using
two detection principles based on i) the signal envelope and
ii) signal morphology. We consider the beat-to-beat detection
accuracy, estimate the heart rate and compare the detection
performance between the sensor modalities in two study groups:
i) healthy subjects and ii) heart disease patients. The average true
and positive prediction rates of beat detection were 99.9% and
99.6% for the healthy subjects and up to 95.9% and 95.3% for
the heart disease patients, respectively. Although high-accuracy
beat detection was achieved for the heart disease patients,
location matching in these patients was found to be less accurate
compared to that of the healthy subjects. The average root mean
square error (RMSE) between the mechanical and ECG interbeat
intervals was 5.6 ms for the healthy patients; this error increased
approximately ten-fold for the heart disease patients. Similarly,
the RMSE for the averaged heart rate estimation showed about
a ten-fold difference at 1.05 beats per minute (bpm) for the
heart disease patients. The used sensor modalities are found
in many electronic devices, such as smartphones and wearable
technologies and the method provides a step towards ubiquitous
cardiac monitoring.

Keywords—sensor fusion, beat-to-beat detection, wearable
technology, accelerometer, gyroscope, seismocardiography,
mechanocardiography

I. INTRODUCTION

PORTABLE devices for the home monitoring of cardiac
health are expected to witness substantial growth in com-

ing years. The increasing incidence of cardiovascular disease,
the increase in geriatric populations and the demand for
independent living are driving the growth of remote monitoring
device markets [1]. Electrocardiography (ECG) is still the
most widely used diagnostics tool in hospitals and at home.
The measurement equipment for ECG, however, is not readily
available for most patients, so they must acquire it and learn
how to use it. An alternative rhythm management method,
mechanocardiography (MCG), is based on measuring the me-
chanical motion induced by the heart [2]. Today, the sensors
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suited for this purpose – accelerometers and gyroscopes – are
integrated into most smartphones and are available for most
people. Combined with their ease of use, these devices have
potential as a low cost home health monitoring solution.

Current wearable/handheld cardiac monitors can be divided
into three groups. Monitors in the first group, such as ECG
and impedance cardiography (ICG), measure electrical signals
produced by heart’s activity. The second group comprises
methods that measure volumetric blood pressure variations
using optical sensors, such as those in photoplethysmography
(PPG), which are placed on fingertips, toes, earlobes, wrists
and the face [3]. The third group includes mechanical cardiac
monitoring, such as ballistocardiography (BCG), which detects
changes in body recoil forces in response to blood ejection
from the aorta to the vascular tree [4], [5]. Seismocardiography
(SCG), which measures positional movements of the chest
wall due to precordial vibrations [6], [7], also belongs to the
third group. A complementary measurement technique to SCG
has emerged: gyrocardiography (GCG) [8]. With the latest
technological developments, these sensors have reasonable
power consumption and high performance. Gyroscopes have
higher tolerance to noise [9], and the obtained waveforms
remain more monomorphic and stationary than they do in
seismocardiograms.

In Fig. 1 typical waveforms from both accelerometer and
gyroscope signals are presented. It is believed that the pulse
waveform of a seismocardiogram reflects physiological events,
such as mitral valve closure (MC), aortic opening (AO) and
closure (AC), as well as mitral opening (MO) [7], [10],
whereas GCG indicates myocardial deformation parameters
and represents physiological phenomena, such as valvular
opening and closure points and systolic–diastolic tissue ve-
locities [8].

Smartphone mechanocardiography (sMCG) is a key applica-
tion for the developed method as it is fully ECG-independent
and requires neither a training phase nor any prior knowledge
about the morphology of heart beats in GCG/SCG signals.
Remote heart rate monitoring using smartphones and mHealth
apps can soon be harnessed for rhythm management and
cardiovascular disease monitoring [2]. However, MCG signals
tend to have interpersonal variations due to individual differ-
ences, e.g. in sensor placement, body mass index (BMI), age,
sex, somatic and health conditions, resulting in vastly diverse
beat morphologies. Moreover, MCG signals are susceptible to
motion artefacts that can easily overshadow the rhythm signal
and, thus, the quality of the recording [10], [11]. For these
reasons, beat-to-beat detection from mechanical motion signals
with accurate timing and amplitude information is still one of
the main challenges in the analysis of these signals. Currently
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Fig. 1. Typical mechanocardiograms. SCG records accelerations of the chest
wall, and GCG measures the angular velocity of micro-rotations of the chest.

available methods include wavelet transform [12], Hilbert
transform [13], classification and clustering [14]–[17], merging
of estimators [18], ensemble averaging [19], hidden Markov
models [20], template-matching [21], regression modelling and
unsupervised learning [22], pitch-tracking [23] and envelope
detection and deterministic windowing [24].

In this study, a sensor modality and algorithm fusion of
automatic and stand-alone (ECG-independent) heart beat de-
tection is considered for enhanced heart beat detection. The
investigation was carried out with healthy patients and those

with heart disease. The algorithm selects the best signal,
removes the motion artefacts, detects the beats based on the
signal envelope and morphological characteristics, and finally
merges the detected beat locations using both accelerometer
and gyroscope signals.

This paper is organized as follows: Section II describes data
acquisition. Section III provides the details of the developed
algorithm, and Section IV presents the results and discussion
of the presented work, followed by the concluding SectionV.

II. DATA ACQUISITION AND COLLECTION PROTOCOL

Seismocardiographic data were obtained by a triple-axis
capacitive digital accelerometer (Freescale Semiconductor,
MMA8451Q, Austin, TX, USA), while gyrocardiographic data
were acquired with a three-axis angular rate (gyroscope) sensor
(Maxim Integrated, MAX21000, San Jose, CA, USA). This
joint embedded sensor array was configured to function as
a six-degrees-of-freedom inertial measurement unit (IMU) in
order to measure the cardiogenic motions of the upper chest.
A two-lead electrocardiogram signal (ADS1293 from Texas
Instruments) was used as a reference signal. All measurements
were stored on a memory card and processed later using
custom-made software. All GCG, SCG and ECG data were
recorded simultaneously with a sampling frequency (Fs) of
800 Hz. All data were recorded with sensors attached to
the sternum using double-sided tape. The subjects were lying
either in the supine position or on their left or right side. The
axes of rotations/translations were defined as follows: the x-
axis points were oriented laterally from left to right (sinister–
dexter), the y-axis points were directed from head to foot
(superior–inferior) and the z-axis points were oriented from
back to chest (dorsoventral). All the data acquisitions were
performed and then processed for up to 10 min per subject. All
signal post-processing and algorithm development was done in
Matlab.

The study subjects for this study were divided into two
groups:
Dataset I (DS I): The healthy group consisted of 29 volunteers
(all male). The demographics of these subjects were as follows
(min-max, mean, standard deviation): age (23–41, 29, 5 years),
height (170–190, 179, 5 cm), weight (60–98, 76, 11 kg) and
BMI (18–30, 24, 3.00 kg/m2). The dataset consists of about
260 min of recordings in total.
Dataset II (DS II): The experimental group consisted of 12
patients with coronary artery disease (CAD; 10 males and
2 females) with the following demographic information: age
(44–69, 57, 7 years), height (177–200, 164, 9 cm), weight
(69–116, 69, 15 kg) and BMI (22.4–32.5, 28.75, 3.40 kg/m2).
The study was conducted in accordance with the Declaration
of Helsinki. The study protocol was approved by the Ethical
Committee of the Hospital District of South-Western Finland.
The dataset consists in total of about 120 min of recordings.

III. BEAT DETECTION ALGORITHM

A. Overview of the Algorithm
Mechanical motion signals suffer from movement artefacts

that overshadow the cardiac beats. For this reason, the algo-
rithm employs automatic artefact removal. The resulting signal,
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however, still suffers from morphology variation, which hin-
ders the ability to detect beats accurately. Envelope-based beat
detection has been found to produce reliable detection in seis-
mocardiograms, but such schemes fail for certain signals [13],
[25]. To further enhance the detection in these methods, we
combine gyroscope readings with a seismocardiogram from
the IMU and detect the beats using simple envelope detection
as well as another promising method, clustering, which has
been shown to find beat locations accurately [14], [15].

Fig. 2 shows the main steps of the algorithm. After se-
lecting the best axes from both accelerometer and gyroscope
signals, the signals are pre-processed with a band-pass filter.
From these data streams, we subsequently remove the motion
artefacts. The artefact-free parts of the signals are used for
beat detection. Both selected accelerometer and gyroscope
signals are differentiated before applying the beat detection
algorithms to make the first systolic peak more prominent. The
beat detection method includes using two beat detection sub-
algorithms, namely wavelet enhancement and clustering, for

Fig. 2. Overview of the multidimensional beat-to-beat detection algorithm.
The abbreviations raw, f and af refer to raw, filtered and artefact-free signals,
respectively.
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Fig. 3. A) Illustration of automatically removed artefacts (red) from an
accelerometer (z-axis). B) The corresponding epoch spectra. The removed
epochs (red) have clearly deviating spectra. All curves are in arbitrary units.

both accelerometer and gyroscope signals. This results in four
peak candidate streams, each having their own independent
candidates that are combined in the final step. This provides
the final estimate on the beat positions. The steps outlined
above are discussed in detail in the following sections.

B. Details of the Algorithm
First, we select the best axis from both the three-axis

accelerometer and the three-axis gyroscope. The selection
process is based on finding the axis that has the highest peak-
to-peak amplitude divided by the absolute median deviation.
The signal peak-to-peak amplitude is obtained by finding all
local maximums and minimums that are separated by at least
1 s. A median is computed for both maximum and minimum
streams, and the absolute difference of the medians is taken.
The outcome is considered to be the signal peak-to-peak
amplitude computed for each signal. The high frequency noise
is obtained for the same signals by filtering them with a
third-order Butterworth high-pass filter with a 50 Hz cut-off
that effectively removes most of the signal information. The
median absolute deviation is computed from this. The defined
peak-to-peak amplitude is divided by the noise. This gives an
estimate of the signal quality that is used to select the best
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Fig. 4. Typical high-quality signal examples of A) a healthy subject and B) a coronary artery disease patient. The R-peaks in the ECG are indicated by red
circles. In both accelerometer z-axis (ACCz) and gyroscope y-axis (GYROy) signals, the peaks found via clustering are indicated by blue circles in the original
signal (blue,) and the peaks found in the signal envelope are indicated by green circles in the convoluted signal (green). All signals are in arbitrary units.

axis for further processing [26]. This selection is performed
independently for both accelerometer and gyroscope signals
with three axes. The selected signals remain unprocessed after
this process.

Second, the selected original signals are filtered with a
third-order Butterworth IIR filter with 0.5 and 20 Hz cut-off
frequencies that remove bias, trend and high frequency noise.
However, a varying degree of noise remains because the sensor
is prone to pick up a significant amount of in-band noise.

Third, motion artefacts are removed from the selected sig-
nals by dividing each signal into 10-s epochs. A single-sided
FFT is computed for each epoch, and the resulting spectra
are smoothed with a moving average filter of 10 samples. The
amplitudes within the pass-band frequency range are integrated
for each epoch spectrum. Epochs with a value more than
125% of the median are removed. After each segment removal,
the median value is updated, yielding a removal threshold
that is always comparable and independent of the original
signal quality. An example signal is shown in Fig. 3 with
clear motion artefacts. In this demonstration a 6-s epochs are
used. As shown, three deviating epochs were found from the
accelerometer signal. Artefact removal from a gyroscope signal
is not shown, but the same procedure is applied.

Heartbeats are detected independently from both accelerom-
eter and gyroscope signals, and for both signal types, two
distinct beat detection principles are used. This yields a total
of four candidate peak streams. These streams are combined,
resulting in the final estimate of the beat locations.

1) Envelope-Based Detection: A robust and straightforward
method of peak detection is to use narrow-band filtering, which
preserves information on the complex frequency of beats but

omits the morphological details [25]. For this, we employ
the following consecutive steps: i) sample-wise squaring to
enhance peak amplitudes and ii) convolving the signal with a
Gaussian-shaped template window of 800 ms. The resulting
signal is much simpler in structure and resembles a signal
envelope, as shown in Fig. 4. From the resulting principal
signal, the candidate peaks are detected using automatic mul-
tiscale peak detection (AMPD) [27]. This algorithm constructs
a scale-dependent matrix with local maximums that are used
for peak detection. The details of the algorithm have already
been presented [27]. Lastly, a search-back refinement process
is used. For each peak candidate, there is a forward window,
wf , from which the maximum amplitude is selected:

wfi = (ti + 0.4s, ti + 1.6s). (1)

This limits the detection between heart rates ranging from
37.5 to 150 bpm. An example of envelope-based detection is
illustrated in Fig. 4.

2) Clustering-Based Detection: Unsupervised k-means clus-
tering was used as a second beat detection method. First, all lo-
cal maxima and minima are computed from the pre-processed
signal. Second, the amplitudes of consecutive maxima and
minima are considered to be features for the k-means clustering
process. For each local maxima, feature vectors, fa and fg , are
created for accelerometer and gyroscope signals, respectively,
as follows:

fa = (maxi,mini,maxi+1,mini+1), (2)

fg = (maxi,mini,maxi+1). (3)
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The last minima in gyroscope signals are excluded due
to their simpler waveform morphology. The measure used is
squared Euclidean distance. The correct cluster is identified by
finding the cluster with highest average peak amplitude.

Similarly, as described in the preceding section on the
envelope approach, a search-back routine is initiated. The first
peak candidate within the window (Eq. 1) is selected. An
example of clustering-based detection is illustrated in Fig. 4.

3) Merging the Location Streams of of Beats: After selecting
the best channel for both accelerometer and gyroscope signals
and using the two-beat detection methods outlined above,
we have four beat location streams. We merge these four
beat candidate streams into one stream, which is the final
estimate of the beat locations. The merging process follows
the guidelines presented by Brüser et al. [14]. Briefly, the peak
candidates found in each stream will pair to no more than
one other candidate in each of the three other streams. Each
candidate will pick the candidate closest to its own location,
and if no pairing candidate is found within a 0.33-s window,
no pairing takes place.

Then, each candidate in all four streams is assigned a
quality variable by taking the absolute difference between
each peak amplitude and the median amplitude of that stream.
This results in each peak candidate having a quality metric
associated with it. Each beat in a stream is normalized to
have a maximum quality of one. The candidates that find
each other from different streams have a matching location,
and their quality indicators are summed together. Therefore,
the quality of indicators with cross-pairing will be greatly
amplified compared to those that do not. If a certain beat
location is able to pair between all four streams, the maximum
final quality of that beat will be four.

Finally, each detected beat is designated as either a true peak
or a false one by comparing the final quality to a predetermined
threshold. The threshold is manually chosen to be one, found
experimentally using the DS I, and the same threshold is used
in DS II. The candidates that are unable to pair with any other
stream are removed. The inclusion of candidates that find only
one cross-pair is determined to a large extent by the quality.
The remaining candidates are mostly true peaks. The threshold
can be adjusted for beat finding sensitivity, i.e. a trade-off
between false positives and negatives. The final location is
found by using the merged beat location as a fiducial point
and by finding the maximum peak around a small window.
The performance metrics are detailed in the Appendix.

C. Heart Rate Estimation

The algorithm’s ability to estimate heart rate was evaluated.
First, an additional refinement step [15] was carried out since
each false peak significantly changes the estimated heart rate.
Every beat interval was compared to the median of the previous
eight beat intervals, m, and the interval ∆Pij was accepted if

∆Pij < 1.6×m ∧∆Pij > m/1.6, (4)

and it was disregarded otherwise. Next, the signal was aver-
aged with a 10-beat moving average filter before computing the

TABLE I. BEAT-TO-BEAT DETECTION PERFORMANCE METRICS FOR
DS I (HEALTHY SUBJECTS) USING THE PRESENTED METHOD COMPARED
TO THOSE METRICS USING THE HABIT ALGORITHM [13] ON THE SAME

DATASET.

This method HABIT

ID ∆Pij TPR PPV TPR PPV
(ms) (%) (%) (%) (%)

1 1075 100 100 100 100
2 967 99.0 99.0 100 100
3 1136 100 100 100 99.0
4 947 100 100 100 100
5 890 100 100 97.8 98.5
6 1127 100 100 99.0 100
7 1086 100 100 98.2 100
8 815 100 100 99.6 99.6
9 976 100 100 73.3 79.3
10 834 100 100 100 100
11 956 100 100 99.9 99.8
12 972 100 98.0 100 100
13 1033 100 99.8 99.6 100
14 1178 99.3 96.6 100 95.1
15 869 100 99.5 21.0 22.0
16 934 100 100 99.1 99.4
17 1235 100 95.79 98.9 95.8
18 828 99.7 99.9 98.5 99.0
19 1053 100 100 100 100
20 999 100 100 100 100
21 876 99.7 99.7 100 100
22 770 100 100 99.2 99.2
23 972 99.7 99.7 99.8 100
24 952 100 99.7 99.8 100
25 922 99.7 100 100 100
26 937 99.8 100 99.7 100
27 748 100 100 97.7 98.9
28 1012 100 100 100 100
29 834 100 99.3 99.2 99.3

x 963 99.9 99.6 95.9 96.0

TABLE II. AVERAGE BEAT-TO-BEAT DETECTION PERFORMANCE
COMPARISON BETWEEN SUPINE, AND LEFT AND RIGHT LATERAL

POSITIONS ON HEALTHY SUBJECTS.

∆Pij TPR PPV
(ms) (%) (%)

supine (n=29) 963 99.9 99.6
left (n=6) 962 99.8 99.3
right (n=6) 952 99.3 99.0

average root mean square error (RMSE) between mechanical
motion signals and the ECG reference signal.

IV. RESULTS AND DISCUSSION

The best axes for most recordings were the z-axis (dorsoven-
tral) for accelerometer signals and the y-axis for gyroscope
signals (superior–inferior). The axis-selection algorithm was
able to identify the best axes in 90% and 96% percent of cases
for accelerometer and gyroscope signals, respectively. These
results are not surprising given that the sensor placement was
carefully controlled in this study, but the results indicate that
a simple selection method could be useful for remote health
monitoring applications.

The removal of artefacts was designed to eliminate the
deviating parts of signals, on the assumption that most parts of
a signal have a stationary average spectral power. The average
duration of the signals after artefact removal were 93.4% and
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TABLE III. BEAT-TO-BEAT DETECTION PERFORMANCE METRICS FOR DS II (HEART DISEASE PATIENTS).

Range: [-150 ms: +150 ms] Range: [-100 ms: +200 ms]

SCG GCG SCG + GCG SCG GCG SCG + GCG
ID ∆Pij TPR PPV TPR PPV TPR PPV TPR PPV TPR PPV TPR PPV

(ms) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

1 1069 98 96 99.2 98 98.2 97.2 99 97 99.2 98 99.2 98.2
2 992 79.3 76.7 93.6 93 78.9 78.7 99.2 96 94.9 94 99.0 98.7
3 1290 96.3 96.3 97.7 85.6 96.9 97.9 98.8 98.8 52.4 46.1 97.5 94.1
4 1039 81.7 81.6 81.4 81.3 80.2 80.2 82.2 82.1 94.2 94 80.7 80.7
5 1146 33 32.8 79.1 79.9 43.4 44.1 70.3 69.9 81.9 83.2 83.9 85.1
6 1140 66.5 64.9 100 100 75.6 75.0 76 74.1 100 100 99.1 98.5
7 1289 75.3 74.8 64.3 64.1 75.4 74.9 96.1 94.9 99.7 99.4 97.1 96.1
8 1157 29.4 29.5 90.5 90.8 31.0 31.0 97.8 97.6 99.6 100 99.1 99.1
9 1000 99.5 99.3 100 100 99.8 99.8 99.3 99.3 100 100 100 100
10 1193 74.6 73.5 99.1 94.9 80.7 79.8 98 96.3 99.1 94.9 99.8 99.5
11 1176 85.6 85 99.4 99 71.5 71.3 98.4 97.6 99 98.8 99.0 98.8
12 1347 98.7 96.9 98.2 97.6 99.1 98.0 98.7 96.9 99.3 98.7 99.1 98.0

x 1153 76.5 75.6 91.9 90.3 77.6 77.3 92.8 91.7 93.3 92.3 96.1 95.6

92.6% compared to the original signal lengths for DS I and DS
II, respectively, without any clear difference between the sensor
modalities. This similarity in coverage, even though there
are clear differences in the beat morphologies between the
datasets, implies that the algorithm is robust against different
study subjects.

The performance of the beat-to-beat estimation of the pre-
sented method was assessed and computed separately for
each subject in both datasets using various metrics (see the
Appendix). The results are collected in Tables I, II and
III. In Table I, the detection performance is compared to
the previously developed HABIT algorithm [13]; the same
dataset (DS I) was used for both algorithms, whereas the
HABIT algorithm used only seismocardiography. The true
predictive rate (TPR) and positive predictive value (PPV)
were 99.9% and 99.6%, respectively, in this study, and these
rates showed improved performance compared to the earlier
contribution [13]. The nearly perfect detection performance is
largely due to high-quality data.

A further evaluation was made with subjects lying on
their right and left sides. A similar detection accuracy was
achieved compared to measurements in the supine position,
as shown in Table II. This shows that a proper mechanical
coupling between a sensor and the chest can be achieved with
small, light sensing devices – although in the supine position,
measurements can be carried out by simply placing the sensor
on the chest.

To thoroughly evaluate the performance of the method, more
challenging signals were studied from heart disease patients
in a clinical environment. As illustrated in Fig. 4, the heart
disease patients had different morphologies between SCG and
GCG, and the systole of these patients were clearly wider than
those of the healthy individuals. We evaluated the detection
accuracy of the fusion approach (SCG+GCG) and compared
it with individual sensing modalities, as shown in Table III.
Interestingly, GCG showed the best beat detection accuracy
whereas the SCG+GCG showed only marginal improvement
over the use of SCG. The reason for this is that the algorithm
is unable to find the correct location of an oscillating beat with
a long duration, and these oscillations are more prominent in

SCG. A further investigation was carried out by shifting the
beat detection window (see the Appendix) by 50 ms to the
following range: [-100 ms: +200 ms]. This drastically changed
the obtained detection accuracies since the vast majority of
the missed beats among the heart disease patients fell just
outside of the detection window. This could be a result of
a larger average delay between the R-peak and the mechanical
response, as well as due to the long duration of systole, in
comparison with the healthy subjects. With this new definition
for the detection window, SCG and GCG individually showed
comparable results; in contrast, the fused approach showed the
best performance with the TPR and PPV at 96.9% and 95.3%,
respectively.

Several clustering methods have been shown to be beneficial
in detecting beats from ballistocardiograms [14], [15]. We
investigated hierarchical clustering, Gaussian mixture models
and k-means clustering algorithms. The inclusion of these
algorithms in the fusion approach, compared to not using
any clustering, showed the following average improvements
in accuracy over both datasets: 1.4%, 1.8% and 1.9% for
hierarchical clustering, Gaussian mixture models and k-means
clustering, respectively. Although the average improvements
seem moderate, the major benefit of fusing clustering with
envelope detection is the ability to significantly improve some
measurements that fail using envelope detection only. For
example, subject 5 in DS II had an F1 score increase from
68.3% to 84.5% (not shown), indicating a clear performance
improvement on a signal that had a low signal-to-noise ratio
and strong diastolic peaks.

As hinted above, the beat detection accuracy does not
reveal the full detection accuracy, and depending on how
correct detection is defined, vastly different accuracies can
be obtained. Additional performance metrics with the RMSE
between beat intervals and the RMSE for the estimated heart
rate (RMSEHR) were computed for each subject in both
datasets. These are shown in Fig. 5. The boxplots include
average values for each subject and, thus, reveal how the
error is distributed between different subjects, i.e. inter-subject
variability. The sensor modality comparison was carried out
for DS II but omitted for DS I because the high-quality
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data of DS I provided a less interesting comparison. In both
RMSE and RMSEHR, the fusion approach showed lowest
deviation between subjects, as well as lower mean values.
The mean RMSE and RMSEHR were 60.3 ms and 1.05 bpm,
respectively, for the fused approach for DS II. The healthy
subjects in DS I provided clearly smaller errors, with respective
values of 5.6 ms and 0.1 bpm.

To further investigate the timing accuracy, Bland–Altman
plots were generated for the correctly identified cardiac cycle
intervals for both datasets using the fused approach. These
plots are shown in Fig. 6. The 95% confidence intervals
were (-11 ms: +11 ms) and (-113 ms: 114 ms) for DS I
and DS II, respectively. There was no bias in the error in
either case. The algorithm did not perform as well for the
diseased group as it did with the healthy group. This is
mostly likely due to the wide systole in the mechanical signals
with increased oscillations, which resulted in an inaccurate
estimation of the corresponding R-peak locations. This implies
that rhythm monitoring with heart disease subjects is still
challenging, although the algorithm was able to distinguish
among the majority of the heartbeats accurately. One possible
solution to better match the exact location would be to use
template modelling [15]. According to the results, the CAD
patients, treated with beta blockers, had slower heart rates and
a non-normal distribution of cardiac cycle intervals. Further
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values are indicated by a cross symbol.
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Fig. 6. Bland–Altman plots for A) the healthy group (DS I) and B) the heart
disease group (DS II). The dashed lines indicate the 95% confidence interval.

investigation showed that the RR intervals in the CAD patients
had a somewhat abrupt lower limit of around 0.8 s. The non-
normality is probably due to the combined effect of the reduced
heart rate variability in CAD patients and their beta blocker
treatment [28]. In conclusion, the performance metrics show
that the proposed method can measure beat-to-beat intervals in
both healthy and cardiac disease subjects, while heart disease
patients provide a clearly more challenging case.

V. CONCLUSION

We presented a stand-alone technique for heartbeat detec-
tion that benefits from fusing accelerometer and gyroscope
signals. The method was able the detect beats accurately
from healthy subjects and coronary artery disease patients,
but timing information was clearly less accurate with heart
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diseased patients due to more challenging beat morphology. A
future task is to investigate a larger study group for a better
understanding of the capabilities of the presented method in
healthcare applications.
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APPENDIX

The performance of the presented algorithm was evaluated
using synchronized reference electrocardiography (ECG) with
respect to the detected heartbeat and interbeat intervals in
gyrocardiography (GCG) and seismocardiography (SCG). We
considered several statistical parameters, such as the mean
value of beat-to-beat intervals, precision, sensitivity and the
root mean square error (RMSE) of the estimated interbeat
intervals and heart rates. We calculated the detection ability of
the presented approach by assessing the precision, or positive
predictive value (PPV), and sensitivity, or true positive rate
(TPR), as follows:
For each i = 1, . . .M , a detected heartbeat position, Pi, is
considered

1) True positive (TP) if

∃j : |Pi − Rj | ≤ 150ms. (5)

2) False positive (FP) if

6 ∃j : |Pi − Rj | ≤ 150ms. (6)

3) False negative (FN), in which case the following con-
dition is satisfied:

6 ∃i : |Pi − Rj | ≤ 150ms. (7)

Based on the above parameters, the sensitivity (TPR) and
precision (PPV) are calculated as follows:

Sensitivity or TPR (%) =
TP

TP + FN
× 100, (8)

Precision or PPV (%) =
TP

TP + FP
× 100, (9)

where TP represents the total number of TPs, FN represents
the total number of FNs and FP represents the total number
of FPs.
The RMSE between ECG and MEMS-based interbeat intervals
was calculated. To compute these, we first define the jth RR
interval in ECG by

RRj = Rj+1 −Rj , (10)

where Rj denotes timing of the jth R-peak. Similarly, the jth
interbeat interval in SCG is obtained as

PPj = Pj+1 − Pj , (11)

where Pj+1 and Pj are consecutive heartbeats in either SCG or
GCG signals. For each RR interval, we choose the P-P interval
whose midpoint is closest to the RR interval’s midpoint. For
each of these corresponding intervals – here denoted by the
indices j and k – we calculate the time difference as

derror = RRj − PPk. (12)

As a result, the RMSEa/g for the total number of beat-to-beat
intervals (n) is obtained as

RMSE =

√√√√ 1

n

n∑
i=1

(derror,i)2. (13)

Similarly, the RMSE of heart rate measurements between ECG
and GCG/SCG, RMSEa/g , was calculated as

RMSEHR =

√√√√ 1

n

n∑
j=1

(HR(ECG)j − HR(GCG/SCG)j)2, (14)

where HR(ECG)j and HR(SCG/SCG)j are the jth mean
heart rate obtained from the GCG/SCG and ECG signals,
respectively.
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