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Abstract

Numerous long-term, free-air plant growth facilities currently explore vegetation responses

to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments

as well as the experimental set-ups with active warming focus on many facets of plant

growth and performance, but information on morphological alterations of plant cells is still

scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in

dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-

situ warming experiments represent contrasting regions of B. nana distribution, with the

sites in Finland and Greenland representing the current main distribution in low and high

Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microre-

fugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B.

nana leaf cuticles. The leaves were produced in paired experimental treatment plots with

either artificial warming or ambient temperature. At all localities, the leaves were collected in

two years at the end of the growing season to facilitate between-site and within-site compari-

son. The measured parameters included the epidermal cell area and circumference, and

using these, the degree of cell wall undulation was calculated as an Undulation Index (UI).

We found enhanced leaf epidermal cell expansion under experimental warming, except for

the extremely low temperature Greenland site where no significant difference occurred

between the treatments. These results demonstrate a strong response of leaf growth at indi-

vidual cell level to growing season temperature, but also suggest that in harsh conditions

other environmental factors may limit this response. Our results provide evidence of the rel-

evance of climate warming for plant leaf maturation and underpin the importance of studies

covering large geographical scales.
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Introduction

A warmer environment affects plant growth and metabolism, causes shifts in phenology, and

alters survival and reproductive success [1, 2]. Such adjustments in vegetation are expected to

be especially pronounced in northern high latitudes, where ongoing climate change leads to

rapidly warming growth conditions [3]. In order to quantify and predict future vegetation

dynamics, field experiments are performed in various sites across the globe. Such in-situ exper-

iments generate realistic settings, where environmental background conditions are main-

tained, while relevant abiotic growth parameters such as temperature are adjusted [4, 5]. The

majority of results from experimental plot-based studies indicate that Arctic plant species as

well as plant communities are sensitive to warming, but response intensity and trends can be

complex, sometimes contrasting or with no apparent change [4].

Of special interest are phenological observations as changes in the life cycle of plants have a

profound impact on biotic ecosystem properties, including e.g. total biomass production and

reproduction capacity [6, 7], but also on abiotic properties such as hydrology and surface

albedo [8]. As phenology directly influences plant performance and fitness, it can be used to

model variations in plant success and ecological potential as a result of climate change [6, 9–

11]. Leaf level responses in experimental set-ups are largely quantified in traits that concern

whole leaves such as timing of phenological events, total and specific leaf area and leaf chemis-

try, including leaf N content [6]. The ontogenetic succession of leaf growth and maturation,

however, is understudied although the degree of leaf maturity is an important indication for

response potential to such minor changes in growth conditions that might not be captured by

using other traits [12].

Final leaf size develops during the maturation phase, i.e. once the initial cell division is com-

pleted, through lateral expansion of leaf epidermal cells [13, 14]. Analysis of epidermal cell

properties is commonly done by microscopic analysis of the cuticle, which enables a detailed

determination of cell size and shape [12, 15]. A very indicative feature of lateral epidermal cell

ontogeny is the size of epidermal cells and the degree of sinuosity of the epidermal cell walls,

whole relation is quantified as the undulation index (UI) [12, 15–17]. This microphenological

trait is closely related to the prevailing air temperature during the growing season, as has been

shown for dwarf birch, Betula nana (L.) in long-term single-site studies [12] and for downy

birch, B. pubescens (Ehrh.) in spatial analysis of leaves grown in Scandinavia during individual

years [15].

These time-series and spatial studies have clearly shown that the UI trait acclimatizes to the

intensity of the growing season, commonly expressed as growing degree days (GDD), a cumu-

lative sum of daily degrees Celsius reached throughout the year [18]. After the initial leaf epi-

dermal cell division and specialization, the lateral epidermal cell expansion first leads to an

increase in cell size and then successively to a higher cell circumference to cell size ratio, quan-

tified by using the UI [13]. The final stage of development reached thus depends on the length

and warmth of the available growth period: long and warm seasons lead to large and highly

undulated epidermal cells, while short and cold seasons suppress full maturation [12]. The

effect of GDD on UI was originally quantified as a ‘paleothermometer’ where UI of (sub-) fos-

sil B. nana epidermis material from sedimentary archives provided growing season tempera-

ture reconstructions for episodes of past climate change [12, 17, 19]. Apart from GDD

influence on UI, differences in light availability has also been documented to affect UI [20–23].

The significance of measuring the UI trait in experimental studies in the context of GDD lies

in the tie-in with paleo studies and an improved insight into the plasticity, adaptation, and

future change of leaf cell maturation. These aspects are hard to detangle in space-for-time sub-

stitution studies [6, 24], where the range of acclimatization and adaptation potential are not
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investigated. Betula nana today is a key-species of the low-Arctic tundra. It is commonly pres-

ent in experimental sites and is one of the species that is predicted to undergo an increase or

expansion in the Arctic greening and shrubification scenarios [25, 26].

In the present study, we make use of the full availability of B. nana in warming experiments

to investigate the ontogenetic sensitivity of leaf growth to simulated warming in contrasting

geographical regions. We apply the UI to B. nana leaves collected at Blæsedalen on Disko

Island (Qeqertarsuaq) in west Greenland, to leaves collected at Kevo in northernmost Finnish

Lapland [27], and to leaves collected at the B. nana relic stand of Linje Mire in northern Poland

[28, 29].

The main aim of our microphenological approach is to test and quantify B. nana leaf onto-

genetical adjustments and sensitivity to future warmer climate simulated in plot-based experi-

mental set ups.

Materials and methods

The selected locations represent different areas of B. nana distribution, with two (sub-)Arctic

sites in Finland and Greenland and a continental site in Poland (Fig 1). For all localities we

studied leaf samples collected from plots with ambient temperature and those collected from

plots treated with either open top chambers (OTC) or ceramic heaters to induce warming

(Table 1). For each site we also studied samples from two years to facilitate a within-site com-

parison. By comparing years within site we are able to test the responsiveness of B. nanaUI to

warming under different local conditions, while the between-site comparison allows the analy-

sis of the sensitivity of UI on a large spatial scale covering much of the distribution range of B.

nana.

Experimental sites

Greenland. The CENPERM OTC set-up, see Fig 2A, is located at a mesic tundra site in

the Blæsedalen valley, Qeqertarsuaq/Disko Island, West Greenland (69˚16 N 53˚27 W) [32].

The leaves available to this study were sampled in 2013 and 2017. Disko Island is a large island

off the west coast of Greenland. It is located near the transitional zone between the low and

high Arctic. The study site is a tundra/dry mixed shrub heath, dominated mainly by B. nana,

Vaccinium vitis-idaea, Empetrum nigrum, Salix glauca, Cassiope tetragona, and lichens. The

mean annual temperature at Blæsedalen is -3˚C (1992–2012) with an average precipitation of

436mm per year (1991–2004). The OTC set-up realizes an average warming of 2.5˚C and com-

pared to ambient surface air temperatures in spring and summer [33]. The experiment was

also designed to measure active layer-permafrost interactions, involving a plot treatment of

shrub removal and a plot treatment facilitating extra snow cover. These treatments are not

used in this study.

Finland. The Kevo open-air warming experiment, see Fig 2B, is situated at the Turku Uni-

versity Kevo Subarctic Research Institute in the northernmost Finnish Lapland (69˚45.4 N, 27˚

00.5 E) [27]. Betula nana was not originally growing in the experimental site but was planted

in the experimental plots as cloned plantlets of three B. nana genotypes in 2016 [27]. The leaves

from these plantlets were sampled in 2017 and 2018. Apart from leaves from the warming

experiment, annual monitoring of natural leaf microphenology is available in Kevo since 1996.

Kevo lies within the low Arctic, or Subarctic and is characterized by a relatively mild climate.

The locality is situated in the mountain birch Betula pubescens subsp. czerepanovii forest-tun-

dra ecotone, with the local Scots pine Pinus sylvestris tree line 60 km to the south. The mean

annual temperature at Kevo was -0.3˚C in 2017 and 0.5˚C in 2018, with a precipitation of 490

mm and 375 mm, respectively. The experimental set-up included ten ambient (control) plots
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and ten plots, where green metal plates (mimicking plant leaves) were heated to approximately

3.3˚C above ambient temperature using real-time temperature measurements and micropro-

cessor-based control of infrared ceramic heaters [27]. During 2016–2018 growing seasons,

warming led to approximately 2.3˚C warmer moving air and 1.2˚C warmer soil in the heated

plots [27]. The experiment also contained—in a fully factorial 2 × 2 design—a herbivory reduc-

tion treatment with ten plots of natural insect herbivory and ten plots with reduced insect her-

bivory [27]. The experiment also included a mix of plots with altered and natural herbivory

regimes. In 2018, due to extreme temperatures, only the surviving plots (n = 5) were used.

Poland. The CLIMPEAT OTC set-up, see Fig 2C, is located at the nutrient poor fen Linje

Mire at the border between a moraine hill and a sandur with a system of dunes, close to the

Fig 1. Locations of the experimental sites. Map created with QGIS (QGIS Development Team, 2021 [30]), shape files downloaded from [31].

https://doi.org/10.1371/journal.pone.0251625.g001

Table 1. Experimental sites and their properties.

Site Experimental setup Average warming above ambient (˚C) Number of used plots

Kevo station, FI Active warming 3.3 14 (2017), 5 (2018)

Linje Mire, PL OTC 1.5 6 (2016), 5 (2018)

Blæsedalen, GN OTC 2.5 6 (2013), 5 (2017)

https://doi.org/10.1371/journal.pone.0251625.t001
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northern Polish city of Bydgoszcz (53˚ 11 N, 18˚ 18 E) [34]. The leaves used in this study were

sampled in 2016 and 2018. Linje Mire is particularly interesting because it is the only location

in lowland Poland that maintains a glacial relict population of the arctic shrub B. nana, that

has been growing in the area since the Allerød. The bog is dominated by Sphagnum and sur-

rounded by a mixed forest. The mean annual temperature of the region is 8.5˚C with an aver-

age precipitation of 540mm per year (1981–2010, Institute of Meteorology and Water

Management-NRI). The site is located at an intersection for oceanic and continental air masses

and thus has intermediate air conditions [34]. The OTC set-up realizes a maximum average

warming of 1.5˚C compared to ambient temperatures [35].

Microphenology

In each treatment plot, three to five leaves used in this study were sampled from one B. nana
individual at the end of the growing season. From each leaf, three sections of 0.5 cm × 0.5 cm

area were bleached in sodium hypochlorite (<5%) for 12–24 hours. The epidermal cell proper-

ties of three leaves per plot were then analysed using a Leica DM LB2 microscope and an Anal-

ySIS image analysis system (Fig 3). Computer-aided analysis of epidermal and stomatal cell

properties was performed using ImageJ 1.52a.

To estimate the mean epidermal cell area (CA; [μm2]) and epidermal cell circumference

(CC; [μm]), 30 random pavement cells per leaf were analysed, avoiding cells over venation and

leaf margins. From CA and CC, the undulation index (UI; dimensionless) of the epidermal cell

wall was calculated following Kürschner [36].

UI dimensionless½ � ¼
CC

2p �
ffiffiffiffiffiffiffiffiffiffiffiffi
CA=p

p

Statistical comparison. The statistical significance of differences in mean UI values

between the control and warming treatments were tested for each site using a paired Student’s

Fig 2. In-situ warming experiments: (A) CENPERM OTC set-up on Disko Island, Greenland (B) open-air warming

experiment in Kevo, Finland (C) CLIMPEAT OTC in Linje Mire, Poland.

https://doi.org/10.1371/journal.pone.0251625.g002

Fig 3. Microscopic pictures from B. nana leaf fragments. Stomata bearing alveole areas and epidermal cells with (A)

low (UI: ~1.09) and (B) very high (UI: ~1.49) average cell wall undulation. Scale bar is 50 μm.

https://doi.org/10.1371/journal.pone.0251625.g003
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t-test. All statistical analysis performed in R statistical software with the package ggplot2

[37, 38].

Meteorological data

To allow comparison of cuticle analysis results to local weather conditions, data of mean daily

temperatures and precipitation were collected from weather stations nearest to each sampling

site.

GDD5 was then calculated using daily temperatures recorded throughout the growing sea-

son [27, 35, 39]. GDD covers the growing potential for vegetation in a given growing season

and is expressed by the cumulative sum of degrees Celsius above a chosen base temperature

[18, 40, 41]:

GDDX ¼
Xdays

i¼1

ðTi � XÞ; Ti � X

where Ti is the mean temperature for day i in the particular site and X is the selected threshold

temperature in degrees Celsius. For the latitudinal range covered in this study, 5 ˚C is the com-

monly used threshold temperature for plant growth and was thus chosen as the threshold tem-

perature X [18].

Results

The B. nana epidermal cell UI was compared between the ambient, or control (C) temperature

and warming (W) for each site (Fig 4). The over-all UI data ranged from 1.11 to 1.33, and in

Finland and Poland, warming yielded higher UI values than the ambient temperature, whereas

in Greenland, no significant differences were detected.

The ambient temperature and warming treatment growing season GDD5 values for each

experiment are shown in Table 2. The warming treatments caused a temperature increase of

1.5–3.3˚C, which lead to a GDD5 increase of 231–302.

Discussion

In this study, we compared the microphenological response of B. nana to artificial warming

between experimental set-ups across the B. nana distribution. Two locations, in Finland and

Greenland, are within the current distribution in the low-Arctic, while the third location in

Poland is an isolated glacial relict stand [34, 42].

The ratio between cell circumference and cell area is summarized as the UI of the epidermal

cells. The experiments in Finland and Poland consistently show the expected response of

higher UI in the warming treatment compared to the control treatment in both individual

years studied (Fig 4). This temperature response is in line with results from previous time-

series data for B. nana collected in Kevo, Finland [12, 17] and studies of B. pubescens and

mountain birch hybrids over a latitudinal temperature gradient in Scandinavia that both docu-

ment the strong positive correlation between GDD and UI [15]. Further experimental evi-

dence of the generality of the observed temperature response comes from climate chamber

trials, where B. pendulaUI values increased significantly with increasing chamber tempera-

tures of 12˚C, 20˚C and 30˚C in multiple weeks treatments [43].

The diverging trends observed in the experiments performed in Greenland provide inter-

esting information on the limits in leaf growth under extremely low temperature conditions.

Compared to Finland and Poland, in Greenland the GDD5 values were very low, ranging

between ambient 123 and 332 in the warming treatment. This means that the cumulative
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growing season temperature available to B. nana growth is only a fraction of what is available

in the other sites. In both years on Greenland, 2013 and 2017, the difference between treat-

ments was not significant. It has earlier been shown that the growth response of plants to

warming in experiments can be reduced or absent, probably due to other limiting factors,

when performed in an extreme part of a plants habitat range [44], compared to a more forgiv-

ing area. In the study by Hobbie et al. [44], no vegetation and shrub biomass responses to envi-

ronmental change were found in a more extreme site in Zackenberg, Greenland, while there

was a biomass response in a less extreme site in Toolik, Alaska.

That temperature alone, however, does not fully govern UI development is also revealed by

a comparison of data from Finland and Poland in our study. The experiment at Linje, Poland

yielded lower UI values than the experiment in Kevo, Finland, although the yearly GDD is

remarkably higher in Poland. This discrepancy has to be attributed to environmental condi-

tions other than temperature, like nutrient deficiency in the Linje mire fen that create sub-

Fig 4. B. nana epidermal cell UI median (horizontal lines in boxplots) and mean (black dots) values for control (C) and warming (W) treatments in the

different locations and years. T-test p values are indicated with � for<0.05, �� for<0.01 and n.s. for not significant, indicating the statistical significance for

differences between UI means (dots) in control and warming treatments. Numbers underneath the boxplots indicate GDD5 totals under which the plants have

grown, green for ambient control values and red for experimental warming values.

https://doi.org/10.1371/journal.pone.0251625.g004

Table 2. GDD5 at the moment of leaf sampling and mean UI.

Location Ambient GDD5 Warmed GDD5 Mean UI ambient Mean UI warming P-value

Finland (2017) 597 828 1.20 1.25 0.01, n = 14

Finland (2018) 900 1200 1.16 1.21 0.03, n = 5

Greenland (2013) 174 332 1.14 1.14 0.65, n = 6

Greenland (2017) 123 253 1.13 1.13 0.93, n = 5

Poland (2016) 1882 2184 (calculated max) 1.14 1.20 0.01, n = 6

Poland (2018) 2183 2477 (calculated max) 1.18 1.22 0.02, n = 5

https://doi.org/10.1371/journal.pone.0251625.t002
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optimal conditions for UI development [34, 45]. The influence of light induced UI changes, as

described by Thomas et al. (2003) in tobacco and used in phytolith based proxies by Dunn

et al. (2015), can be neglected since all of the experiment designs allow for optimal B. nana
light conditions [20, 23].Growth chamber experiments performed with B. pendula subjected to

different nitrogen supply levels resulted in significantly reduced UI in the N-limited experi-

ments under ambient CO2 [43] accompanied by reduced total shoot dry weight (DW g g-1)

measured on the same plants [46]. These studies also suggest nutrient availability as an addi-

tional stress factor for overall leaf expansion and maturation [43]. In Kevo, the UI values were

lower in 2018 than in 2017 although summer 2018 had higher GDD than summer 2017. Kevo

experienced extreme drought in July 2018 [27], which either suppressed leaf epidermal cell

maturation [12, 47] or induced an early leaf shed during the maximum drought phase followed

by a second leaf generation after precipitation was received in the later part of the growing sea-

son. In the latter case, the studied samples will have had a shorter growth period which did not

allow for maximum leaf expansion by the end of the 2018 growth season. That drought has an

negative effect on epidermal cell expansion, however, has been shown in field studies with lau-

rel oak (Quercus laurifolia) where epidermal cell expansion is strongly supressed by low pre-

cipitation amounts received during the growing period [48]. Which of these potential causes

however ultimately led to the diverging results observed between the individual years in Kevo,

is difficult to disentangle and required more studies on the role of drought stress in arctic

vegetation.

Previous studies have highlighted the need for more inclusive, unified and geographically

widespread monitoring efforts to better resolve the interacting effects of warming and other

local and regional ecological factors [4, 6]. In our study, we covered a large geographical area

by carrying out the same analysis with plant material collected from comparable experiments

in different locations. This approach revealed the potential restrictions imposed by local habi-

tat and temperature ranges for plant physiological responses to warming.

The Polish and Finnish experiments showed that the epidermal UI in B. nana increases

under elevated temperatures from temperate to low Arctic regions. Such plasticity and sensi-

tivity to a subtle, but relevant, increase in temperature indicate that B. nana has the necessary

physiological reactiveness to undergo enhanced plant performance under future warmer cli-

mate. However, this potential may not emerge in more extreme environmental conditions of

B. nana distribution, as shown in the Greenland experiment. The response of P. sylvestris sur-

vival and growth to increasing GDD in tree line conditions was recently shown to depend

heavily on soil fertility [49]. It is possible that water and nutrient availability also restricts the

response of B. nana leaf cell development, and for this reason, no warming effect was found in

Greenland. In sites with enhanced plant performance, higher temperatures will likely lead to

plant communities with higher number and larger size of B. nana as well as expansion of B.

nana into previously unsuitable areas [50–54]. This does not hold for the relic site of Linje

Mire, Poland, however, as the environment involves species that would outcompete B. nana
outside the refugium area.

To conclude, we found further evidence that B. nana can react to a warmer environment in

terms of plant performance, which in our case was reflected in microphenology, i.e., in the UI

of leaf epidermal cells. As this reaction to temperature is produced within one leaf generation,

it is responsive to yearly weather variation and sensitive enough for representing growing sea-

son intensity. The potential of B. nana as one of the key plant species of tundra to increase its

performance under climate warming underlines the probability of the Arctic greening sce-

nario. Shrub expansion in the High Arctic is projected to accelerate. However, our results sug-

gest that under the more extreme conditions of the species’ distribution range towards the

High Arctic, where other limiting factors might still be at play, only rudimentary increase in B.
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nana growth may occur in moderate (~3˚C) warming scenarios. Although, these limiting fac-

tors such as nutrient availability, soil humidity, shade, symbiotic relations, and growing season

changes will change along with a warming climate in general, encouraging further combined

experiments.
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