
A universal cellular automaton without sensitive
subsystems

Jarkko Kari⋆

Department of Mathematics and Statistics,
FI-20014 University of Turku, Finland

Abstract. We construct a one-dimensional reversible cellular automa-
ton that is computationally universal in a rather strong sense while being
highly non-sensitive to initial conditions as a dynamical system. The cel-
lular automaton has no sensitive subsystems. The construction is based
on a simulation of a reversible Turing machine, where a bouncing signal
activates the Turing machine to make single steps whenever the signal
passes over the machine.

Keywords: reversible cellular automata, reversible Turing machine, uni-
versality, edge of chaos, sensitivity

1 Introduction

Cellular automata (CA) are discrete dynamical systems and models of massively
parallel computation, and thus a convenient platform to study the relation-
ship between computation and dynamics. It is clear that too simple dynamics
(e.g., periodic systems) cannot support computation, while [7] suggests that too
chaotic systems cannot do it either. To study this phenomenon precisely one
needs to choose good definitions for “computational universality” and “chaos”.
For both concepts, a multitude of choices exist. For universality of discrete time
symbolic dynamical systems (such as cellular automata), Delvenne et al. pro-
pose a robust definition that does not depend on details of encoding inputs and
conditions of acceptance [3]. A central aspect of dynamical complexity, on the
other hand, is sensitivity to initial conditions. The most widely used definition
of chaos by Devaney [4] requires sensitivity, but also transitivity and denseness
of periodic points.

In [6] we proved that there are cellular automata that are Devaney-chaotic
and universal, answering a question posed in [3]. So the upper boundary of
Langton’s “edge of chaos”, the proper amount of sensitivity that can support
computational universality, is not below Devaney-chaos. It remains an interesting
question whether increasing sensitivity indeed eventually prevents computation:
it would be nice to know, for example, whether an expansive cellular automaton
can be universal in the sense of [3].

⋆ Email: jkari@utu.fi. Research supported by the Academy of Finland Grant 131558.

2 Jarkko Kari

In this paper we study the lower boundary of the “edge of chaos”. It is
trivial to construct a non-sensitive but universal cellular automaton: simply add
to any universal CA a new spreading state. The new state is a blocking word
that makes the system non-sensitive, but universality remains in configurations
that do not contain the spreading state. However, this construction is cheating
since the original (possibly sensitive) CA exists as a subsystem. In this paper
we construct a cellular automaton that is universal (even in the strongest sense
in [3]), and does not have any subsystems that are sensitive to initial conditions.
The automaton that we construct is reversible, as is the chaotic one that we
presented in [6].

The paper is organized as follows. In Section 2 we recall basic aspects of
cellular automata and reversible Turing machines, and define the concepts of
universality and sensitivity that we use. In Section 3 we describe our reversible
cellular automaton, and in Section 4 we prove that it has the claimed properties
of universality and non-existence of sensitive subsystems.

2 Definitions

2.1 Cellular automata and sensitivity to initial conditions

For a finite set S, the alphabet, we denote by S∗ the set of finite words over S,
and by SZ the set of bi-infinite words over S. Elements of x ∈ SZ are called
configurations and their indices i ∈ Z are cells. When writing down configura-
tions we mark the place between cells −1 and 0 by a dot, that is, a configuration
x ∈ SZ may be written as

. . . x−2x−1 . x0x1x2 . . .

For finite E ⊆ Z, elements of SE are finite patterns with domain E. We denote
by xE ∈ SE the restriction of configuration x on E and call it the pattern in x
on domain E. In particular, for i ≤ j the pattern x[i,j] = xixi+1 . . . xj is viewed
as a finite word of length j − i+ 1.

The set SZ is equipped with the usual product topology, which makes it a
compact space. Each finite pattern p ∈ SE determines a cylinder {x ∈ SZ | xE =
p} that contains all configurations with pattern p on domain E. Cylinders are
clopen (closed and open) and they form a base of the topology. Clopen sets are
precisely the finite unions of cylinders. The shift function σ : SZ −→ SZ is the
automorphism defined by σ(x)i = xi+1 for all all x ∈ SZ and i ∈ Z.

A cellular automaton (CA) is a function F : SZ −→ SZ that is continuous
and commutes with the shift σ. Equivalently, F is determined by a local rule
f : S2r+1 −→ S of some radius r as follows:

∀i ∈ Z : F (x)i = f(x[i−r,i+r]).

A bijective CA F : SZ −→ SZ is reversible: the inverse function F−1 is auto-
matically a CA as well.

Nonsensitive Universal CA 3

The pair (SZ, F) is a dynamical system: a compact space SZ with a continuous
transformation F : SZ −→ SZ. A topologically closed X ⊆ SZ is said to be F -
invariant if F (X) ⊆ X, and we say that (X,F) is then a subsystem of (SZ, F).
If a topologically closed X ⊆ SZ is also shift-invariant then X is a subshift of
the full shift SZ.

Consider an arbitrary subsystem (X,F) of (SZ, F). The system is

– sensitive to initial conditions (or simply sensitive) if there exists a finite
observation window W ⊆ Z such that

∀finiteE ⊆ Z, ∀x ∈ X : ∃y ∈ X,∃n ∈ N : yE = xE and Fn(y)W ̸= Fn(x)W .

In other words, any configuration x can be modified at arbitrarily distant
cells in such a way that eventually the change will be observed inside window
W .

– transitive if for all cylinders U, V ⊆ SZ

U ∩X ̸= ∅, V ∩X ̸= ∅ =⇒ ∃n ∈ N : Fn(U) ∩ V ∩X ̸= ∅.

Following [4], the system (X,F) is Devaney-chaotic if it is sensitive, transitive
and the periodic points are dense. It is known that sensitivity is a weak condition
in the sense that it is implied by transitivity and denseness of periodic points [1].
In this paper we construct a CA that is not sensitive and does not have any
sensitive subsystems, and hence has no Devaney-chaotic subsystems.

2.2 Universality of cellular automata

Computational universality refers to a system’s ability to simulate arbitrary ef-
fective processes. This idea needs to be precisely formalized before it can be
mathematically treated. It is reasonable to require that the dynamics of the
system “solves” some Σ0

1 -complete decision problem, meaning that the halting
problem of Turing machines can be many-one reduced to instances of the prob-
lem. Delvenne et al in [3] introduced the following natural decision problem to
consider for a cellular automaton F : SZ −→ SZ (or more generally, on any
discrete time symbolic dynamical system):

(Trace) “Given a clopen partitioning C1, C2, . . . Ck of SZ and a regular
language L ⊆ {1, 2, . . . , k}∗, does there exist x ∈ SZ and n ∈ N
such that χ(x)χ(F (x)) . . . χ(Fn(x)) ∈ L ?”

The observation function χ is defined by χ(y) = i iff y ∈ Ci.

So the problem asks if a finite segment of the trace of some orbit with respect
to the clopen partitioning is in a given regular language. The CA F is universal
if the problem Trace is Σ0

1 -complete.
We actually consider the more restricted halting problem of dynamical sys-

tems, also defined in [3]:

4 Jarkko Kari

(Reach) “Given non-empty clopen sets C1, C2 ⊆ SZ, does there exist n ∈ N
such that Fn(C1) ∩ C2 ̸= ∅ ?”

It is clear that if the problem Reach is Σ0
1 -complete, so is Trace. Our universal

CA will be universal in the strong sense that Reach is Σ0
1 -complete. Note that

in a transitive system the problem Reach is trivial, so a Devaney-chaotic CA
can be universal only in the weaker sense given by Trace.

2.3 Reversible Turing machines

A Turing machine (TM) is a triplet M = (Q,A, T) where Q is a finite set of
states, A is a finite tape alphabet, and

T ⊆ (Q× {−1,+1} ×Q) ∪ (Q×A×Q×A)

is a set of instructions. Elements of Q× {−1,+1} ×Q and Q× A×Q× A are
called move instructions and write instructions, respectively. A configuration of
M is a triplet (q, i, t) ∈ Q×Z×AZ where q is the current state, i is the position
of the machine on the tape, and t is the content of the tape.

– A move instruction (q, δ, q′) ∈ T from state q to state q′ allows the machine
to convert configuration (q, i, t) into (q′, i+ δ, t), for all i ∈ Z and all t ∈ AZ.

– A write instruction (q, a, q′, a′) ∈ T from q to q′ allows to change any (q, i, t)
into (q′, i, t′), provided t(i) = a, t′(i) = a′ and t(j) = t′(j) for all j ̸= i.

A single step transformation of a configuration c into c′ is denoted by c ⊢ c′. As
usual, ⊢∗ is the reflexive and transitive closure of the relation ⊢.

The Turing machine is deterministic if for each configuration there is at most
one instruction applicable, so that ⊢ is a partial function. This property has an
easy to check characterization in terms of the instruction set T :

(q, δ1, q1), (q, δ2, q2) ∈ T =⇒ δ1 = δ2 and q1 = q2

(q, a, q1, a
′
1), (q, a, q2, a

′
2) ∈ T =⇒ q1 = q2 and a′1 = a′2

(q, δ, q′) ∈ T =⇒ ∀a, a′, q′′ : (q, a, q′′, a′) ̸∈ T.

Each instruction has an inverse, defined as follows:

– The inverse of a move instruction (q, δ, q′) is (q′,−δ, q), where we use the
notation −(−1) = +1 and −(+1) = −1.

– The inverse of a write instruction (q, a, q′, a′) is (q′, a′, q, a).

It is clear that the inverse always undoes the effect of the forward instruction,
and vice versa. We denote by T−1 the set of inverses of instructions in T , and
the TM M−1 = (Q,A, T−1) is the inverse TM of M = (Q,A, T). If M−1 is
deterministic then M is reversible. In this work we only use deterministic and
reversible Turing machines (DRTM).

Deterministic reversible Turing machines are known to be able to simulate
arbitrary Turing machines [2]. A construction of a single tape universal DRTM

Nonsensitive Universal CA 5

M = (Q,A, T) is given in [8]. This machine has specified initial and final states
i, f ∈ Q and a blank tape symbol B ∈ A, and there are no instructions in T
into state i or from state f . To each word w ∈ (A \ {B})∗ that does not contain
the symbol B we associate the initial tape content ιw = ∞B . wB∞ where w
is written on the otherwise blank tape starting at position 0. The universality
result of [8] states that the standard halting problem of Turing machines

(TMhalt) “For given w ∈ (A \ {B})∗, does (i, 0, ιw) ⊢∗ (f, j, t) for some
j ∈ Z and t ∈ AZ ?”

is Σ0
1 -complete.
In this work we consider universality in the sense of Delvenne et al., and

for that purpose we need a DRTM universality variant where the tape content
outside the input word w is not known to be initially blank, and where the final
state appears in position 0 of the tape upon acceptance. So we associate to any
Turing machine with specified initial state q0 and final state qf the following
decision problem that is an adaptation of Reach from Section 2.2:

(TMreach) “For given w ∈ A∗, do there exist tape contents t, t′ ∈ AZ with
t[0,|w|−1] = w such that (q0, 0, t) ⊢∗ (qf , 0, t

′) ? ”

Lemma 1. There exists a DRTM U with specified initial and final states such
that TMreach is Σ0

1 -complete. There is no instruction in U into the initial
state q0.

Proof. Let M = (Q,A, T) be the universal DRTM from [8] with initial and
final states i and f , and a blank tape symbol B. So there are no instructions
in T into state i or from f , and TMhalt is Σ0

1 -complete. Moreover, we may
assume that M is forced to execute a write instruction at odd time steps. This is
established by splitting each state q ∈ Q into two states q(1) and q(2), replacing
any original instruction from state q into state p by an analogous instruction
from state q(2) into state p(1), and by adding for all q ∈ Q and all a ∈ A the
tape check instruction (q(1), a, q(2), a).

We next construct a DRTM U with Σ0
1 -complete TMreach. The new state

set consists of Q and 18 additional states. The tape alphabet is A ∪ A′ ∪ {[,]}
where A′ = {a′ | a ∈ A} is a disjoint copy of alphabet A. All instructions
in T are also instructions of U and, in addition, there are several instructions
to be executed before and after simulating M . The instructions are shown in
Figure 1. In the figure, vertices represent states and edges are instructions. A
move instruction (q, δ, q′) is represented by a directed edge from q to q′ with
label L or R, corresponding to cases δ = −1 and δ = +1, respectively. A write
instruction (q, a, q′, a′) is given as a directed edge from q to q′ with label a/a′.
The subgraph corresponding to instructions of M is indicated as an oval with
label M . It is straightforward to verify that the given TM is deterministic and
reversible. Note how the marked versions a′ of letters a ∈ A are needed to
guarantee reversibility.

6 Jarkko Kari

B/B’

B/B

L [/ [R

a/a’ (a A)" Î

B/B

B’/BR

R

B/B’

B/B

] /]LL

R

B/B

B’/BB/B

i fM

a/a (a A)" Î

a’/a’ (a A)" Î

R] /]L

a/a (a A)" Î

q
0

q
f

a/a (a A\{B})" Î

a/a (a A\{B})" Î

Fig. 1. A deterministic, reversible Turing machine with Σ0
1 -complete decision problem

TMreach.

Considering the first 14 states, it is easy to see that state i will be reached
from initial configuration (q0, 0, t) if and only if the content t of the tape is

x[Bn . BwBBm]y

for some w ∈ (A \ {B})∗, some n,m ≥ 0, and arbitrary left- and right-infinite
words x and y. In this case, when entering state i the machine is in position 1
of the tape (hence reading the first letter of w) and the tape content is t as in
the beginning.

From state i only instructions of M can be executed until (if ever) state f is
reached. Note that M automatically stops if it accesses a boundary symbol [or
]. This is due to the property of M that it executes a write instruction at odd
time steps and hence can only continue on cells that contain an element of A.
It is then clear that state f is reached if and only if M reaches state f on input
ιw, and n and m are sufficiently large so that the accepting computation by M
fits between the boundary symbols.

Last four states of U guarantee that the final state qf will be seen in every
tape position between the boundary symbols, and in particular then, in position
0 as required. (Note that this last part is not actually necessary since the DRTM
M constructed in [8] has the property that the Turing machine halts at cell 0.)

Nonsensitive Universal CA 7

It is clear that the problem TMhalt for M many-one reduces to the problem
TMreach for U : instance w ∈ (A \ {B})∗ of TMhalt for M is equivalent to
instance BwB of TMreach for U . �

3 The construction

In this section we present a construction of a reversible cellular automaton that
is universal in the sense that problem Reach is Σ0

1 -complete, but the automaton
and all its subsystems are non-sensitive. The cellular automaton has two tracks.
Track One is independent of Track Two and will be described first. This track
prevents sensitivity. Track Two simulates a reversible Turing machine as directed
by the activation signals it sees on Track One.

3.1 Track One

This track is a radius-3 reversible cellular automaton with four states S1 =
{ L , R , , }. States L and R are the left and right aether symbols, while

and are left and right signals that under normal circumstances (when
surrounded by left and right aether on the left and right, respectively) proceed
one position per time step to the direction of the arrow. All two-letter words
except

L L R R L L R R

are walls. Walls remain stationary: a cell that is part of a wall never changes
its state, and therefore also remains part of the wall forever. A radius-3 local
rule allows a cell to determine all wall cells within distance 2. Segments between
walls are of four possible forms

L

∗
R

∗ ∗
L R

∗ ∗
L R

∗

where, as usual, ∗ indicates an arbitrarily long repetition.
The dynamics of an arrow that is not part of a wall is as follows.

– If the arrow is next to a wall then it stays put:

−→ −→ −→ −→

Here, and in the following, indicates a cell that belongs to a wall.
– Otherwise, if there is a wall at distance two in front of the arrow then the

arrow flips its direction:

L R −→ L R and L R −→ L R

– Otherwise (i.e., the two cells in front of the arrow and the first cell behind
it are not wall cells) the arrow moves one position:

L R R −→ L L R and L L R −→ L R R

8 Jarkko Kari

Figure 2 shows a sample space-time diagram of Track One. It is easy to see that
the CA is reversible. Walls are never created or destroyed. All configurations are
made of segments separated by walls. Each segment is either unchanged forever,
or contains a single arrow that bounces between the walls.

Fig. 2. A sample space-time diagram of Track One. Time increases down. From the

second time step onward, symbol is used to indicate cells that are part of a wall.

3.2 Track Two

Track Two simulates the universal DRTM U provided by Lemma 1. The standard
technique of identifying a computation zone using left and right markers is used
to prevent several TM heads interfering with each other. Whenever the TM head
bumps into the end of its zone (or sees a wall on Track One), the simulation is
reversed and the machine starts retracing its computation backwards in time.
The construction is similar to the one used in the proof of Theorem 12 in [5].
A new aspect is that the TM makes a step only when passed over by an active
signal on Track One.

More precisely, let U = (Q,A, T) be a DRTM with initial and final states q0
and qf whose TMreach-problem is Σ0

1 -complete. There is no instruction in T
into state q0.

Track Two uses a radius-3 local rule. The state set is S2 = L ∪C ∪R where

L = A× {→},
C = A×Q× {↑, ↓},
R = A× {←}.

A state (a, q, ↓) ∈ C represents a TM tape cell that contains symbol a and
is scanned by the TM in state q running forward in time, while (a, q, ↑) ∈ C
is the same situation except that the TM is running backward in time. States
(a,→) ∈ L and (a,←) ∈ R are tape positions with symbol a that are to the
left and to the right of the TM head, respectively. (So the arrow points to the
direction where the TM head is to be found.)

Nonsensitive Universal CA 9

We define walls on Track Two analogously to Track One. All length two
words except ones that belong to LL, LC, CR or RR are walls on Track Two.
We consider walls of both tracks, so a cell is a wall cell if it is part of a wall
on either track. Any cell that is part of a wall does not change its Track Two
content in any way, so it remains in the wall forever. It is clear that a cell can
determine locally (within radius-1) if it is part of a wall. Analogously to Track
One, segments on Track Two between consecutive walls contain words of the
languages L∗, R∗ and L∗CR∗.

Cell i contains an active TM head if

1. it has a signal or on Track One,
2. It has a TM head on Track Two (i.e., belongs to C), and
3. there is no wall within radius-1 of the cell on either track.

An active TM head swaps its Track Two state from (a, q, ↓) to (a, q, ↑) in the
following cases:

– There is no instruction (q, δ, q′) or (q, a, q′, a′) in T that U could execute, or
– There is in T a move instruction (q, δ, q′) but the new position i+ δ is next

to a wall (on either track), where i is the current position of the active TM
head.

Analogously, state (a, q, ↑) becomes (a, q, ↓) in symmetric cases using the inverse
instruction set T−1 in place of T . In other words, the machine simply reverses
time if there is no applicable instruction or if the machine would move to a
position next to a wall.

Otherwise, an active TM head executes on Track Two the unique applicable
instruction in T or T−1, in the cases of state (a, q, ↓) or (a, q, ↑), respectively.
Note that in the case of a move instruction this involves updating the neighboring
cell also. In no other cases is Track Two state changed.

Note that the TM head “bounces” from walls in an analogous manner as the
signals on Track One: The head never moves next to a wall, and instead changes
the direction of time and starts tracing its steps backwards. It is clear that this
construction guarantees reversibility.

The two tracks together constitute the CA F : SZ −→ SZ with state set
S = S1 × S2. We denote by π1 : SZ −→ SZ

1 and π2 : SZ −→ SZ
2 the projections

of configurations on the tracks. Based on the discussions above, the CA F has
the following properties:

– F is reversible and has radius-3 local rule,
– Track One operates independently of Track Two, that is, there is a CA

F1 : SZ
1 −→ SZ

1 such that π1 ◦ F = F1 ◦ π1,
– Track Two is changed only at positions having an activation signal within

radius-1 on Track One.

4 Main properties of the CA

In this section we show that the reversible CA constructed in Section 3 has the
required properties.

10 Jarkko Kari

Theorem 1. The reversible CA F : SZ −→ SZ

(a) is universal in the sense that the decision problem Reach is Σ0
1 -complete,

and
(b) has no sensitive subsystems.

The proofs of (a) and (b) are presented in Sections 4.1 and 4.2.

4.1 Universality

We prove that Reach is Σ0
1 -complete for CA F by many-one reducing TM-

reach for TM U . Let w = a0a1 . . . an−1 be an arbitrary instance of TMreach
for U . An equivalent instance of Reach for F is the pair

C1 = {x ∈ SZ | π2(x)[0,n−1] = (a0, q0, ↓)(a1,←)(a2,←) . . . (an−1,←)},
C2 = {y ∈ SZ | π2(y)0 = (a, qf , ↓) for some a ∈ A }

of effectively formed clopen sets C1, C2 ⊆ SZ.

(=⇒) If w is a positive instance of TMreach then there exist t, t′ ∈ AZ such
that t[0,n−1] = w and (q0, 0, t) ⊢∗ (qf , 0, t

′) by U . Machine U can read only a
finite number of tape positions before reaching the accepting configuration so
for some m ∈ N, all intermediate configurations (q, i, t′′) have |i| < m. Consider
the configuration x ∈ SZ with

π1(x) = . . . L

m
. R

m
. . .

π2(x) = . . . (t−1,→) . (t0, q0, ↓)(t1,←) . . .

where all are, for example, equal to to cause walls on Track One. We
have x ∈ C1. From initial configuration x, the CA has the following behavior:
on Track One a single signal bounces between positions −(m − 1) and m − 1.
Each time the signal crosses the TM head on Track Two, one step of U is
simulated. This happens repeatedly as long as the TM head remains in the
interval [−(m− 1),m− 1]. We then eventually have F i(x) ∈ C2, so the instance
C1, C2 is positive for Reach.

(⇐=) Conversely, suppose C1, C2 is a positive instance of Reach for U . There
is then x ∈ C1 such that F i(x) ∈ C2 for some i ∈ N. Let t ∈ AZ be the
tape content expressed in x, that is, π2(x)j = (t[j], . . .) for all j. The only
way to change the Track Two state (t[0], q0, ↓) into some (a, qf , ↓) in cell 0 is
by repeatedly simulating U on Track Two. Note that the simulation cannot
change the time direction before reaching state qf , since otherwise U−1 would
be simulated, retracing the computation back to the initial state q0. As there
are no instructions in U−1 from state q0, the time direction would be swapped
again, leading to a periodic behavior that never leads to state qf . We conclude
that (q0, 0, t) ⊢∗ (qf , 0, t

′) by U . As t[0,|w|−1] = w, word w is a positive instance
of TMreach.

Nonsensitive Universal CA 11

4.2 Sensitive subsystems do not exist

Let us prove next that CA F has no sensitive subsystems. Recall that a subsys-
tem is any topologically closed X ⊆ SZ that satisfies F (X) ⊆ X. Note that we
do not require the subsystem to be a subshift, as it does not need to be shift-
invariant. The proof is based on properties of Track One: the only fact about
Track Two that we need is that the content of Track Two is only changed in the
vicinity of a signal on Track One.

For the sake of argument, suppose there is a subsystem X on which F is
sensitive to initial conditions. There is then a finite observation window W such
that for any x ∈ X and any finite E ⊆ Z there exists y ∈ X such that xE = yE
but Fn(x)W ̸= Fn(y)W for some n ≥ 0. Notice that this directly implies that

(•) for all x ∈ X, the first track π1(x) does not have wall states both to the
right and to the left of window W .

This is because the walls are blocking words: future states between the walls are
not influenced by any states outside the walls.

Let us consider the following two cases:

(1) There is a finite window W such that all Track One walls of all x ∈ X are
inside W . We can choose this W to be also an observation window for the
definition of sensitivity.

(2) For arbitrarily large k, there are x ∈ X with a Track One wall in some
position i satisfying |i| > k.

Case (1): Let x ∈ X have the maximum number of Track One arrows outside
W , among all x ∈ X. This number is 0,1 or 2 since the segments outside W do
not contain a wall. Let E = [a, b] be a finite segment that contains the radius-3
neighborhood of W and all the positions where x has arrows on Track One. (We
include the radius-3 neighborhood because the local rule of F uses radius 3.)
There are then uniform aethers in π1(x) to the left and to the right of E.

If y ∈ X and yE = xE then necessarily π1(y) = π1(x). Since Track One
operates independently of the content of Track Two, for all n ≥ 0 we have
π1(F

n(y)) = π1(F
n(x)). Both boundaries of E are crossed by a Track One signal

at most once, and in such a case the signal moves out from E. Consequently,
only three cells on each boundary can be updated differently in x and y, and it
follows that Fn(y)W = Fn(x)W for all n ∈ N. This contradicts sensitivity (and
means that x is an equicontinuity point).

Case (2): Let x ∈ X be such that π1(x) has a wall in position i to the right of
W but no wall in any position to the left of W . (The other case is symmetric.)
Note that property (•) excludes the possibility of walls on both sides of W . As
in case (1) we assume that x has the maximal number of Track One arrows
to the left of W . Let E = [a, b] be a finite segment that contains the radius-3
neighborhood of the sensitivity window W , position i and the possible position
left of W where x has an arrow on Track One. If y ∈ X satisfies yE = xE then

12 Jarkko Kari

π1(y) cannot contain a wall in any position < a by property (•). We then have
that π1(y) and π1(x) are identical at all cells ≤ b. As there is a wall in cell i,
we clearly have also for all n ∈ N that π1(F

n(y))(−∞,i] = π1(F
n(x))(−∞,i]. As

in case (1), a signal crosses the left boundary of E at most once (moving out of
E), so at most three leftmost cells of E can be be affected by the states to the
left of E. The wall at position i prevents any influence on W by states on the
right of E. We see that Fn(y)W = Fn(x)W for all n ∈ N. �

References

1. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of
chaos. Am. Math. Mon. 99(4), 332–334 (1992)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532
(Nov 1973)

3. Delvenne, J.C., Kurka, P., Blondel, V.D.: Decidability and universality in symbolic
dynamical systems. Fundam. Inform. 74(4), 463–490 (2006)

4. Devaney, R.: An introduction to chaotic dynamical systems. Global analysis, pure
and applied, Benjamin/Cummings (1986)

5. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In:
Ochmanski, E., Tyszkiewicz, J. (eds.) MFCS. Lecture Notes in Computer Science,
vol. 5162, pp. 419–430. Springer (2008)

6. Kari, J., Salo, V., Törmä, I.: Trace complexity of chaotic reversible cellular au-
tomata. In: Proceedings of Reversible Computing 2014. p. to appear (2014)

7. Langton, C.G.: Computation at the edge of chaos: Phase transitions and emergent
computation. Phys. D 42(1-3), 12–37 (Jun 1990)

8. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible turing machine.
Trans. IEICE Japan E72, 223–228 (1989)

