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Abstract
Three hyperbolic-type metrics including the triangular ratio metric, the j∗-metric, and the Möbius metric are studied in an
annular ring. The Euclidean midpoint rotation is introduced as a method to create upper and lower bounds for these metrics,
and their sharp inequalities are found. A newMöbius-invariant lower bound is proved for the conformal capacity of a general
ring domain by using a symmetric quantity defined with the Möbius metric.
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1 Introduction

Given two points x, y in a domain G, their intrinsic distance
indicates how these points are located with respect to both
each other and the domain’s boundary ∂G. One way to mea-
sure these kinds of distances is the hyperbolic metric, but
there are also numerous other hyperbolic-type and intrinsic
metrics that can be used. In this article, we focus on three dif-
ferent metrics to study the intrinsic geometry of the annular
ring R(r , 1) = {z ∈ C | r < |z| < 1} with 0 < r < 1.

While the value of the hyperbolic metric can be defined in
any proper plane subdomain by mapping it conformally onto
the unit disk [10, (7.13), p. 133], this method does not work
for a non-simply connected domain such as the annular ring
R(r , 1). Consequently, one of the only ways to compute the
hyperbolic distance between points x, y ∈ R(r , 1) is to find
the infimum of the line integrals of the hyperbolic density in
[10, (7.18), p. 135] over all rectifiable curves γ from x to y in
R(r , 1), see [10, Def. 7.3, p. 125]. Since there is no explicit
formula for this infimum, the hyperbolic metric is not very
well suited for measuring the intrinsic distances in this kind
of domain.

Thus, in order to study the intrinsic geometry of the ring
R(r , 1), we use here a few known generalizations of the
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hyperbolic metric: the j∗-metric found first in [7] bymodify-
ing the distance ratio metric introduced in 1979 by Gehring
and Palka [5], the triangular ratio metric introduced by Hästö
in 2002 [9] and recently studied in [1,14–17], and theMöbius
metric originally introduced in [20, pp. 115–116] and exten-
sively studied by P. Seittenranta in his PhD thesis [18]. These
metrics are important tools in hyperbolic geometry because
they share several properties of the hyperbolic metric, such
as invariance under similarity mappings, monotonicity with
respect to domain and sensitivity to boundary variation [8,
pp. 191–192, 209]. Furthermore, as noted in the results of
this article, the values of these three metrics can be often
bounded with their distances found by rotating the original
points around their midpoint.

The structure of this article is as follows. In Sect. 3, we
study the triangular ratio metric in an annular ring and show
how the Euclidean midpoint rotation can be used to create
upper and lower bounds for the triangular ratio metric in this
domain, see Definition 3.9 and Theorem 3.12. In Sect. 4,
we introduce Theorem 4.1 that can be used to compute the
Möbius metric in an annular ring, and also present sharp
inequalities between the three hyperbolic-type metrics con-
sidered.We also inspect themetrical circles drawnwith these
three metrics. Finally, in Sect. 5, we consider the Möbius
metric in more general ring domains instead of just an annu-
lar ring and present a Möbius invariant lower bound for the
capacity of a ring.
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2 Preliminaries

For any three points x, y, z ∈ R
n , let �X ZY be the angle

centered at z with the point x on its one side and the point y
on its other side. Denote the Euclidean line passing through
x, y by L(x, y), the Euclidean line segment from x to y by
[x, y], and the smaller angle between the lines L(x, 0) and
L(y, 0) by �X OY . Furthermore, for all x ∈ R

n and r > 0,
let Bn(x, r) be the x-centered Euclidean open ball with the
radius r , B

n
(x, r) its closure and Sn−1(x, r) its boundary

sphere. For the unit ball and unit sphere, use the simplified
notations B

n = Bn(0, 1) and Sn−1 = Sn−1(0, 1). Denote
R(r , 1) = {z ∈ C | r < |z| < 1} for 0 < r < 1 as in
Introduction, and R

n = R
n ∪ {∞}.

Define the hyperbolic metric ρ for all points x, y in the
unit ball B

n with the formulas [8, (4.14), p. 55]

sh2
ρBn (x, y)

2
= |x − y|2

(1 − |x |2)(1 − |y|2) ,

th
ρB2(x, y)

2
=

∣
∣
∣
∣

x − y

1 − x y

∣
∣
∣
∣
, (2.1)

where y is the complex conjugate of y. The hyperbolicmetric
is conformally invariant: If a conformal mapping h fulfills
h : G → G ′ = h(G) for some domains G, G ′ ⊂ R

n
, then

ρG(x, y) = ρG ′(h(x), h(y)) x, y ∈ G.

According to the Riemann mapping theorem, any simply
connected proper domain G � R

2 can be mapped confor-
mally onto the unit disk, so the aforementioned formula for
ρB2(x, y) can be used to compute the hyperbolic metric in
different plane domains, such as the upper half-plane and an
open sector [10, Ex. 1, p. 133].

By denoting the Euclidean distance from a point x in a
domain G � R

n to the boundary ∂G by dG(x) = inf{|x −
z| | z ∈ ∂G}, we can define the following hyperbolic-type
metrics: The distance ratio metric [1, p. 685] jG : G × G →
[0,∞),

jG(x, y) = log

(

1 + |x − y|
min{dG(x), dG(y)}

)

,

the j∗-metric [7, 2.2, p. 1123 and Lemma 2.1, p. 1124] j∗G :
G × G → [0, 1),

j∗G(x, y) = th
jG(x, y)

2
= |x − y|

|x − y| + 2min{dG(x), dG(y)} ,

and the triangular ratio metric [1, (1.1), p. 683] sG : G ×
G → [0, 1],

sG(x, y) = |x − y|
inf z∈∂G(|x − z| + |z − y|) .

For all distinct points x, y ∈ R
n
, define the spherical

(chordal) metric [8, (3.6), p. 29]

q(x, y) = |x − y|
√

1 + |x |2√1 + |y|2 , if x, y ∈ R
n;

q(x,∞) = 1
√

1 + |x |2 .

Using this definition, the expression of the cross-ratio can be
written for any four distinct points a, b, c, d ∈ R

n
as in [8,

(3.10), p. 33]:

|a, b, c, d| = q(a, c)q(b, d)

q(a, b)q(c, d)
, a, b, c, d ∈ R

n;

|a, b, c, d| = |a − c||b − d|
|a − b||c − d| , a, b, c, d ∈ R

n .

Suppose then G is a domain in R
n
so that its complement

(R
n\G) contains at least two points. Then the Möbius metric

in this domain G is the function δG : G × G → [0,∞), [18,
Def. 1.1, p. 511]

δG(x, y) = sup
a,b∈∂G

log(1 + |a, x, b, y|).

While the Möbius metric is not conformally invariant
like the hyperbolic metric, it is invariant under an important
subclass of conformal mappings called the Möbius transfor-
mations:

Definition 2.2 [8, Ex. 3.2, pp. 25-26; Def. 3.6, p. 27 & Def.
3.7, p. 27] The hyperplane perpendicular to a vector u ∈
R

n\{0} and at distance t/|u| from the origin for some t ≥ 0
is

P(u, t) = {x ∈ R
n | x · u = t} ∪ {∞},

where · is the symbol of the dot product. The reflection in a
hyperplane P(u, t) is hr : R

n → R
n
,

hr (x) = x − 2(x · u − t)
u

|u|2 , hr (∞) = ∞,

and the inversion in the sphere Sn−1(v, r) is hi : R
n → R

n
,

hi (x) = v + r2(x − v)

|x − v|2 , hi (v) = ∞, hi (∞) = v.

Any function f : R
n → R

n
created as a function composi-

tion f = h1 ◦ · · · ◦ hm by combining a number m ∈ Z
+ of

these reflections and inversions is a Möbius transformation.
If the number m here is even, the Möbius transformation f
is sense-preserving, and otherwise f is sense-reversing.
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Example 2.3 For any 0 < r < 1, the function f : R
2 → R

2
,

f (x) = r x/|x |2, f (0) = ∞, f (∞) = 0,

is an inversion in the circle S1(0,
√

r) and therefore a sense-
reversing Möbius transformation that preserves the annular
ring R(r , 1) but maps S1(0, r) onto S1 and vice versa.

Theorem 2.4 [18], [8, Thm 5.16, p. 75] The Möbius metric
δG is Möbius invariant: If G ⊂ R

n
is a domain such that

card(R
n\G) ≥ 2 and f : R

n → R
n

is a Möbius transfor-
mation, then for all x, y ∈ G,

δG(x, y) = δ f (G)( f (x), f (y)).

Consider the following equalities and inequalities between
the metrics introduced above.

Theorem 2.5 [8, Thm 5.16, p. 75], [13, Cor. 3.8, p.5] For all
points x, y in a domain G ⊂ R

n such that card(R
n\G) ≥ 2:

(1) jG(x, y) ≤ δG(x, y) ≤ 2 jG(x, y), and δG(x, y)

= jG(x, y) if G = R
n\{0},

(2) j∗G(x, y) ≤ th(δG(x, y)/2) ≤ 2 j∗G(x, y),

(3) sG(x, y)/2 ≤ th(δG(x, y)/2) ≤ 2sG(x, y),

(4) δG(x, y) = ρG(x, y) if G = B
n .

3 Triangular ratio metric in the annular ring

In this section, we will study the triangular ratio metric in an
annular ring R(r , 1) with 0 < r < 1. In order to do this, we
need to find a point z from a certain circle that minimizes the
sum |x − z| + |z − y|, when both the points x, y are either
inside or outside of the circle. This optimization problem has
beenmuch studied during its long history because the correct
solution z is also the point in which a light ray from the point
x must strike a spherical mirror to be reflected to the point
y, see [2] and [3, Rmk 1.4, p. 3]. The next theorem follows
from the law of reflection:

Lemma 3.1 [2, Rmk 2.2, p. 137 & Rmk 2.7, 143] Suppose
that there are distinct points x, y ∈ R

n and the point z ∈
Sn−1 is chosen so that it gives the infimum inf z∈Sn−1(|x −
z| + |z − y|). If x, y ∈ B

n, the line L(0, z) bisects the angle
�X ZY , see Fig. 1. If x, y ∈ R

n so that [x, y]∩B
n �= ∅, then

z ∈ [x, y]∩ Sn−1. In the third case where x, y ∈ R
n\B

n
with

[x, y] ∩ B
n = ∅, the line L(0, z) bisects the angle �X ZY ,

just like in the first case.

While there is no explicit formula for the point z defining
the infimum inf z∈∂ R(r ,1)(|x − z| + |z − y|), it can be solved
from the quartic equation presented below.

SNIAMODGNIRNISCIRTEMCISNIRTNI

0

x

y

z

Fig. 1 If the point z gives the infimum inf z∈S1 (|x − z| + |z − y|) for
x, y ∈ B

2, then the line L(0, z) bisects the angle �X ZY

Theorem 3.2 Consider the annular ring domain R(r , 1)
with 0 < r < 1. Let x, y ∈ R(r , 1) and choose z
from the boundary of R(r , 1) so that it gives the infimum
inf z∈∂ R(r ,1)(|x − z| + |z − y|). Then z ∈ [x, y] ∩ S1(0, r) if

[x, y] ∩ B
2
(0, r) �= ∅, and otherwise z fulfills the equality

x yz4 − j2(x + y)z3 + j4(x + y)z − j4xy = 0

with either j = r or j = 1.

Proof The first part follows trivially from the triangle

inequality. If x, y ∈ R(r , 1) so that [x, y] ∩ B
2
(0, r) = ∅

instead, then by Lemma 3.1, the line L(0, z) bisects the angle
�X ZY . As in [2, (2.1), p. 138], L(0, z) bisects�X ZY if and
only if

arg

(
z − x

z

)

= arg

(
z

z − y

)

⇔ arg

(
z − x

z
· z − y

z

)

= 0

⇔ (z − x)(z − y)

z2
= (z − x)(z − y)

z2

⇔ z2(z − x)(z − y) = z2(z − x)(z − y)

⇔ z2z2 − (x + y)z2z + xyz2 =
z2z2 − (x + y)zz2 + x yz2

⇔ x yz2 − |z|2(x + y)z + |z|2(x + y)z − xyz2 = 0

⇔ x yz4 − |z|2(x + y)z3 + |z|4(x + y)z − |z|4xy = 0.

Above, the last equivalences follow from the fact that zz =
|z|2. Since |z| = r or |z| = 1, when z ∈ ∂ R(r , 1), the result
follows. ��

If the points x and z are fixed instead, finding a point y
such that z gives the infimum inf z∈∂S1(|x − z| + |z − y|) is
a very simple task and this is often useful when generating
points with certain values of the triangular ratio metric.
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0 x

y

z

x′

Fig. 2 The line L(0, z) bisects the angle �X ZY , if the point y is on
the line L(z, x ′), where x ′ is the point x reflected over L(0, z)

Proposition 3.3 If r > 0, x, y ∈ R
2 with [x, y]∩ B2(0, r) =

∅ and the line L(0, z) through the point z = reui ∈ S1(0, r)

bisects the angle �X ZY , then there is some R > 0 such that
y = eui (R|x |e(2u−μ)i + r − Rr), where μ = arg(x).

Proof Since x = |x |eμi and z = reui , the point x reflected
over the line L(0, z) is x ′ = |x |e(2u−μ)i . Now, the line L(0, z)
bisects the angle �X ZY if and only if y ∈ L(z, x ′) so that
y is on the same side of the line L(0, z) than x ′, see Fig. 2.
Consequently, there must be some R > 0 such that y =
R(x ′ − z) + z, from which the result follows. ��

While finding the value of the triangular ratio distance
between points x, y ∈ R(r , 1) in the general case is quite dif-
ficult, there are explicit formulas for this metric if the points
x, y are either collinearwith the origin or at the same distance
from the origin.

Proposition 3.4 If x, y ∈ R(r , 1) so that arg(x) = arg(y),
then

sR(r ,1)(x, y) = |x − y|
min{2 − |x + y|, |x + y| − 2r} .

Proof Without loss of generality, we can fix x, y ∈ [0, 1] ∩
R(r , 1). By Lemma 3.1, z = r or z = 1. Furthermore, the
sum |x − z|+|z − y| is now 2|z −|x + y|/2| = |2z −|x + y||,
from which the result follows. ��

Theorem 3.5 [6, Thm 3.1, p. 276] If x = h + ki ∈ B
2 with

h, k > 0, then

sB2(x, x) = |x | if |x − 1

2
| >

1

2
,

sB2(x, x) = k
√

(1 − h)2 + k2
≤ |x | otherwise.

Lemma 3.6 For all x, y ∈ R(r , 1) such that |x | = |y| = h
and μ ∈ (0, π) is the value of the angle �X OY ,

sR(r ,1)(x, y) = 1 if cos(μ/2) <
r

h
,

sR(r ,1)(x, y) = max

{

h,
h sin(μ/2)

√

h2 + r2 − 2hr cos(μ/2)

}

if
r

h
≤ cos(μ/2) ≤ h,

sR(r ,1)(x, y) = h sin(μ/2)
√

h2 + r2 − 2hr cos(μ/2)

if max
{ r

h
, h

}

≤ cos(μ/2) ≤ 1 + r

2h
,

sR(r ,1)(x, y) = h sin(μ/2)
√

1 + h2 − 2h cos(μ/2)

if cos(μ/2) > max

{
1 + r

2h
, h

}

.

Proof Fix x = heμi/2 = h(cos(μ/2) + sin(μ/2)i) and y =
x = he−μi/2 without loss of generality. If h cos(μ/2) ≤ r ,
then [x, y] ∩ S1(0, r) �= ∅ and trivially sR(r ,1)(x, y) = 1.
Suppose below that cos(μ/2) > r/h instead. Clearly,

sR(0,r)(x, y) = max{s
R2\B

2
(0,r)

(x, y), sB2(x, y)}.

ByLemma 3.1, the line L(0, z) through the point z giving the
infimum inf z∈S(0,r)(|x−z|+|z−y|) bisects the angle�X ZY
and, consequently, this point z must be r . Thus, by the law
of cosines and the half-angle formula of the sine function,

s
R2\B

2
(0,r)

(x, y) = |x − y|
|x − r | + |r − y| = h|1 − eμi |

2|heμi/2 − r |
= h sin(μ/2)

√

h2 + r2 − 2hr cos(μ/2)
. (3.7)

By Theorem 3.5, sB2(x, y) = h, if
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0

k

x

y

x0

y0

x1

y1

Fig. 3 Euclidean midpoint rotation for the points x, y in an annular
ring R(r , 1)

|x − 1

2
| >

1

2
⇔ |2x − 1|

=
√

(2h cos(μ/2) − 1)2 + 4h2 sin2(μ/2) > 1

⇔ 4h2 − 4h cos(μ/2) + 1 > 1 ⇔ h > cos(μ/2),

and otherwise

sB2(x, y) = h sin(μ/2)
√

1 + h2 − 2h cos(μ/2)
. (3.8)

The quotient (3.8) is greater than or equal to (3.7) if and only
if

r2 − 2hr cos(μ/2) ≥ 1 − 2h cos(μ/2)

⇔ cos(μ/2) ≥ 1 + r

2h
.

The lemma follows now by combining all the results above.
��

Any distinct points x, y ∈ R(r , 1) can be rotated around
their midpoint in the following way so that the value of the
triangular ratio metric for the rotated points can be found
with either Proposition 3.4 or Lemma 3.6.

Definition 3.9 [14, Def. 4.1, p. 10] Euclidean midpoint rota-
tion. Choose distinct point x, y ∈ R

2. Denote k = (x + y)/2
and q = |x − k| = |y − k|. Fix then four distinct points
x0, y0, x1, y1 ∈ S1(k, q) so that (x0 + y0)/2 = (x1 + y1)/
2 = k, |x0| = |y0|, |x1| = |k| + q and |y1| = |k| − q, see
Fig. 3. Note that if x, y ∈ R(r , 1), then x0, y0 ∈ R(r , 1)

always, but it might be so that y1 ∈ B
2
(0, r) or x1 /∈ B

2.

This midpoint rotation can be used to find bounds for the
value of the triangular ratiometric, because the rotated points
fulfill the inequality of Theorem 3.12.

Proposition 3.10 [14, Prop. 4.3, p. 11] A function f : [0, π/

2] → R,

f (μ) = √

u − v cos(μ) + √

u + v cos(μ),

where u ≥ v > 0 are constants, is increasing on the interval
μ ∈ [0, π/2].
Theorem 3.11 [14, Cor. 4.6, p. 14] The sG-diameter of a
closed ball B

n
(k, q) in a domain G � R

n is sG(B
n
(k, q)) =

q/(q + d), where d = inf{|x − z| | x ∈ B
n
(k, q), z ∈ ∂G}.

Theorem 3.12 For all distinct points x, y ∈ R(r , 1), fix
x0, y0, x1, y1 as in Definition 3.9. If the distance
sR(r ,1)(x1, y1) is well defined for x1, y1 ∈ R(r , 1), the
inequality

sR(r ,1)(x0, y0) ≤ sR(r ,1)(x, y) ≤ sR(r ,1)(x1, y1)

holds. Otherwise only the first part of this inequality holds
and the points x, y can be rotated around their Euclidean
midpoint into new points x ′, y′ so that sR(r ,1)(x ′, y′) → 1−.

Proof Denote k = (x + y)/2 and q = |x − k|. Suppose
without loss of generality that k ∈ [0, 1] ∩ R(r , 1). Now,
the points of Definition 3.9 can be written as x0 = k + qi ,
y0 = k − qi , x1 = k + q and y1 = k − q. Furthermore,
denote the angle between L(x, y) and the real axis by μ.

It follows from Lemma 3.1 that the infimum inf z∈S(0,r)

(|x0 − z| + |z − y0|) is given by z = r and thus

s
R2\B

2
(0,r)

(x0, y0) = |x0 − y0|
|x0 − r | + |r − y0|
= q

√

(k − r)2 + q2
.

By the law of cosines and Proposition 3.10,
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s
R2\B

2
(0,r)

(x, y) ≥ |x − y|
|x − r | + |r − y|

= 2q
√

q2 + (k − r)2 − 2q(k − r) cos(μ) + √

q2 + (k − r)2 + 2q(k − r) cos(μ)

≥ q
√

(k − r)2 + q2
= s

R2\B
2
(0,r)

(x0, y0).

Since sB2(x, y) ≥ sB2(x0, y0) by [14, Thm 4.11, p. 15], it
follows that

sR(r ,1)(x0, y0) = max{s
R2\B

2
(0,r)

(x0, y0), sB2(x0, y0)}
≤ max{s

R2\B
2
(0,r)

(x, y), sB2(x, y)}
= sR(r ,1)(x, y),

which proves the first part of the inequality.
Suppose next that x1, y1 ∈ R(r , 1). Now, x, y ∈

B
2
(k, q) ⊂ R(r , 1) and, by Theorem 3.11 and Proposi-

tion 3.4,

sR(r ,1)(x, y) = max{s
R2\B

2
(0,r)

(x, y), sB2(x, y)}
≤ max{s

R2\B
2
(0,r)

(B
2
(k, q)), sB2(B

2
(k, q))}

= max

{
q

q + k − q − r
,

q

q + 1 − k − q

}

= max

{
q

k − r
,

q

1 − k

}

= max

{ |x1 − y1|
|x1 + y1| − 2r

,
|x1 − y1|

2 − |x1 + y1|
}

= sR(r ,1)(x1, y1).

If x1 /∈ R(r , 1) or y1 /∈ R(r , 1), then B
2
(k, q)∩(∂ R(r , 1)) �=

∅ and the rest of the theorem follows trivially. ��
A similar result also holds in the punctured unit disk

B
2\{0}.

Lemma 3.13 For all x, y ∈ B
2\{0},

sB2\{0}(x0, y0) ≤ sB2\{0}(x, y) ≤ sB2\{0}(x1, y1),

where x0, y0, x1, y0 are as in Definition 3.9 (assuming that
y0 �= 0 and x0 ∈ B

2 so that sB2\{0}(x1, y1) is well defined).

Proof Clearly,

sB2\{0}(x, y) = max

{

sB2(x, y),
|x − y|
|x | + |y|

}

,

so the result follows from [14, Thm 4.4, p. 12 & Thm 4.11,
p. 15]. ��

4 Möbius metric in the annular ring

In this section, wewill study theMöbiusmetric defined in the
annular ring R(r , 1). Our main result is the following theo-
rem that can be used to compute the exact value of theMöbius
metric for any points x, y in R(r , 1). Since the supremum in
Theorem4.1 only needs to be found for one variable v defined
in a closed real-valued interval [μ,π ]withμ ∈ [0, π ] instead
of the two boundary points in the general expression of the
Möbius metric, this result can be used to write an effective
algorithm for computation of the Möbius metric with some
single-variable optimization function, like the function opti-
mize in R.

Theorem 4.1 For all x, y ∈ R(r , 1) with |y| ≤ |x |,

δR(r ,1)(x, y) = max

{

ρB2(x, y), ρB2

(
r x

|x |2 ,
r y

|y|2
)

,

sup
v∈[μ,π ]

log(1 + |e−u(v)i , |x |, revi , |y|eμi |)
}

,

where μ ∈ (0, π) is the value of the angle �X OY , and

u(v) = arcsin

⎛

⎝

−c2 +
√

c22 − 4c1c3

2c1

⎞

⎠ with

c1 = |x |2(1 + r2)2 + r2(1 + |x |2)2
− 2r |x |(1 + r2)(1 + |x |2) cos(v),

c2 = 4r |x | sin(v)(|x |(1 + r2) − r(1 + |x |2) cos(v)),

c3 = −r2 sin2(v)(1 − |x |2)2.

Proof Since |y| ≤ |x |, trivially

sup
a∈S1, b∈S1(0,r)

|a, x, b, y| ≥ sup
a∈S1(0,r), b∈S1

|a, x, b, y|.

Thus,

δR(r ,1)(x, y) = sup
a,b∈∂ R(r ,1)

log(1 + |a, x, b, y|)

= max{δB2(x, y), δ
R
2\B

2
(0,r)

(x, y),

sup
a∈S1, b∈S1(0,r)

log(1 + |a, x, b, y|)}.
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By using the Möbius transformation f from Example 2.3
and the Möbius invariance of the Möbius metric, it follows
that

δ
R
2\B

2
(0,r)

(x, y)=δB2( f (x), f (y))=δB2(r x/|x |2, r y/|y|2).

Since δB2(x, y) = ρB2(x, y) by Theorem 2.5(4), the first two
components of the maximum expression above are the same
as in the theorem.

Let us now maximize the supremum
supa∈S1, b∈S1(0,r) |a, x, b, y| with respect to a. Since the
cross-ratio is invariant under reflections and rotations in
the ring R(r , 1), we can assume without loss of general-
ity that arg(x) = 0 and 0 ≤ arg(y) ≤ π . Note that if
arg(a) ∈ (0, π) or arg(b) ∈ (π, 2π) now, we can reflect one
or both of the points a, b over the real axis without decreas-
ing the cross-ratio |a, x, b, y|. Thus, we can also suppose
that arg(a) ∈ ({0} ∪ [π, 2π)) and arg(b) ∈ [0, π ], and fix
a = e−ui and b = revi with u, v ∈ [0, π ]. By the law of
cosines,

|a, x, b, y| = |x − y||a − b|
|x − a||b − y| = |x − y||e−ui − revi |

||x | − e−ui ||y − b|

= |x − y|
|y − b|

√

1 + r2 − 2r cos(u + v)

1 + |x |2 − 2|x | cos(u)
.

Bydifferentiation and the angle sum formula of the sine func-
tion,

∂

∂u

(
1 + r2 − 2r cos(u + v)

1 + |x |2 − 2|x | cos(u)

)

= 2r sin(u + v)(1 + |x |2 − 2|x | cos(u)) − 2|x | sin(u)(1 + r2 − 2r cos(u + v))

(1 + |x |2 − 2|x | cos(u))2

= 2(r(1 + |x |2) sin(u + v) − |x |(1 + r2) sin(u) − 2r |x | sin(v))

(1 + |x |2 − 2|x | cos(u))2
.

Denote t = sin(u). By the angle sum formula and the
quadratic formula,

r(1 + |x |2) sin(u + v) − |x |(1 + r2)t

− 2r |x | sin(v) = 0

⇔ r(1 + |x |2) sin(v) cos(u) = (|x |(1 + r2)

− r(1 + |x |2) cos(v))t + 2r |x | sin(v)

⇔ r2(1 + |x |2)2 sin2(v)(1 − t2) = ((|x |(1 + r2)

− r(1 + |x |2) cos(v))t + 2r |x | sin(v))2

⇔ t =
−c2 ±

√

c22 − 4c1c3

2c1
with

c1 = |x |2(1 + r2)2 + r2(1 + |x |2)2

− 2r |x |(1 + r2)(1 + |x |2) cos(v),

c2 = 4r |x | sin(v)(|x |(1 + r2)

− r(1 + |x |2) cos(v)),

c3 = −r2 sin2(v)(1 − |x |2)2.

Here, 0 ≤ t ≤ 1 because 0 ≤ u ≤ π and only the
positive root for t is a zero of the derivative above. It can
be verified that the cross-ratio |a, x, b, y| is majorized by
|e−ui , x, b, y| for u such that t = sin(u) is the positive
root in question. Clearly, this solution fulfills 0 ≤ u ≤ π/

2 because otherwise cos(u) < 0 and the left side of the
second equality above is negative, unlike the right side.
Thus, we can choose u = arcsin(t), where t is the posi-
tive root above. Since now arg(x) = 0, 0 ≤ arg(y) ≤ π

and arg(a) ∈ ({0} ∪ [3π/2, 2π)), we see that arg(b) must
be on the interval [arg(y), π ]: If 0 ≤ arg(b) ≤ arg(y), we
could reflect b over the line L(0, y) to increase the cross-ratio
|a, x, b, y|. Thus, the result follows. ��

With Theorem 4.1, we can find the value of the Möbius
metric for points collinear with the origin in the annular ring
R(r , 1).

Corollary 4.2 For all points x, y ∈ R(r , 1) collinear with the
origin such that |y| ≤ |x |,

th
δR(r ,1)(x, y)

2
= max

{ |x | − |y|
1 − |x ||y| ,

r(|x | − |y|)
|x ||y| − r2

,

(|x | − |y|)(1 − r)

2(1 − |x |)(|y| − r) + (|x | − |y|)(1 − r)

}

,

if the value of the angle �X OY is 0, and

th
δR(r ,1)(x, y)

2
= max

{ |x | + |y|
1 + |x ||y| ,

r(|x | + |y|)
|x ||y| + r2

,

(|x | + |y|)(1 + r)

2(1 − |x |)(|y| − r) + (|x | + |y|)(1 + r)

}

,

if the value of the angle �X OY is π .
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Proof Suppose without loss of generality that x ∈ R(r , 1) ∩
[0, 1]. Consider first the case where y is on the line segment
[0, 1], too. It can be shown by differentiation that (k+u+v)/

(ku) with constants u, v > 0 is decreasing with respect to
k > 0. Consequently, for all a ∈ S1 and b ∈ S1(0, r),

|a − b|
|x − a||y − b| ≤ |x − a| + |x − y| + |y − b|

|x − a||y − b|
≤ |x − 1| + |x − y| + |y − r |

|x − 1||y − r | = |1 − r |
|x − 1||y − r |

and therefore supa∈S1, b∈S1(0,r) |a, x, b, y| = |1, x, r , y|
now. If y ∈ R(r , 1) ∩ [0,−1] instead, then by Theorem 4.1,

sup
a∈S1, b∈S1(0,r)

|a, x, b, y|= sup
v∈[μ,π ]

|e−u(v)i , |x |, revi , |y|eμi |

= |e−u(π)i , x, reπ i , y| = |1, x,−r , y|,

because the value of the angle �X OY is μ = π and there-
fore v ∈ [μ,π ] = {π} here. The result now follows from
Theorem 4.1, the formula (2.1), and the observation that

th
log(1 + k/h)

2
= k

2h + k
for k, h > 0.

��
Next,wewill study theEuclideanmidpoint rotation for the

Möbius metric but, first, consider the following conjecture.

Conjecture 4.3 For all r < k < 1 and 0 < q < min{k −
r , 1 − k}, the supremum

sup
a∈S1, b∈S1(0,r)

|a, qeμi + k, b, qe(π+μ)i + k|

is decreasing with respect to μ ∈ [0, π/2].
IfConjecture 4.3 holds, theMöbiusmetric fulfills the same

inequality as the triangular ratio metric in Theorem 3.12 and
we can use the results of Corollary 4.3 to create upper bounds
for the Möbius metric defined in the annular ring R(r , 1).

Remark 4.4 Choose distinct points x, y ∈ R(r , 1) so that
|y| ≤ |x | and x0, y0, x1, y1 ∈ R(r , 1), when these points are
as in Definition 3.9. Suppose that Conjecture 4.3 holds. Now,
the Möbius metric fulfills

δR(r ,1)(x0, y0) ≤ δR(r ,1)(x, y) ≤ δR(r ,1)(x1, y1).

Proof Denote k = (x + y)/2 and q = |x − y|/2. Suppose
without loss of generality that k ∈ (1, r) and x = qeμi + k,
y = qe(π+μ)i + k for some 0 ≤ μ ≤ π/2. Now, (x, y) =
(x0, y0) if μ = π/2 and (x, y) = (x1, y1) if μ = 0. Recall
from Theorem 4.1 and its proof that the expression of δR(r ,1)

can be written as a maximum expression with three compo-
nents:

δR(r ,1) = max{ρB2(x, y), ρ
R
2\B

2
(0,r)

(x, y),

sup
a∈S1, b∈S1(0,r)

log(1 + |a, x, b, y|)}.

The result follows if each of these three components is
decreasing with respect to μ and we already assumed that
the cross-ratio fulfills this condition. Furthermore, we can
write

th
ρB2(x, y)

2
=

∣
∣
∣
∣

x − y

1 − x y

∣
∣
∣
∣

= 2q

|1 − (qeμi + k)(qe−(π+μ)i + k)|
= 2q

|1 + q2 − k2 − 2kq sin(μ)i |
= 2q

√

(1 + q2 − k2)2 + 4k2q2 sin2(μ)
,

and this is clearly decreasing with respect to μ ∈ [0, π/2].
Suppose next that [x, y] is some diameter of S1(k∗, q∗) ⊂
R
2\B

2
where q∗, k∗ > 0. This circle can be mapped with

an inversion in the unit disk onto another circle inside the
unit disk, and both the hyperbolic metric and angle magni-
tudes are invariant under inversions. Thus, it follows directly
from above that ρ

R
2\B2(q∗eμi + k∗, q∗e(π+μ)i + k∗) is

decreasing with respect to μ ∈ [0, π/2] and, since this prop-
erty is invariant under the stretching by a factor r > 0,
ρ
R
2\B

2
(0,r)

(q∗eμi + k∗, q∗e(π+μ)i + k∗) is decreasing with
respect to μ, too. ��
Remark 4.5 Also the j∗-metric fulfills the inequality related
to the Euclidean midpoint rotation, as can be trivially seen
from its definition in (4.7).

Next, let us compare the three different hyperbolic-type
metrics in an annular ring R(r , 1). The different properties
of the triangular ratio metric, the Möbius metric, and the j∗-
metric can be visually demonstrated by plotting the metrical
circles

Ss(x, �) = {y ∈ R(r , 1) | sR(r ,1)(x, y) = �},
Sδ∗(x, �) = {y ∈ R(r , 1) | th(δR(r ,1)(x, y)/2) = �},
S j∗(x, �) = {y ∈ R(r , 1) | j∗R(r ,1)(x, y) = �}

(4.6)

for a few different values of � ∈ (0, 1). Note that the circles
of the Möbius metric are drawn by fixing their radius to be
the hyperbolic tangent function with the value of the Möbius
metric divided by two as an input, so that these circles are
comparable to those of the other two metrics which can only
attain values from the interval [0, 1].
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Figure 4 shows these metric circles in (4.6), when their
center is fixed to x = 0.75, the inner radius of the annu-
lar ring is r = 0.6 and the radii of the metrical circles are
� = 0.2, 0.3, . . . , 0.9.All the subfigures of Fig. 4were drawn

in R-Studio by using a grid of the size 1000×1000 test points
and the contourplot function contour. The values of the tri-
angular ratio metric and the Möbius metric were computed
with the optimization function optimizewith the help of The-

Fig. 4 Circles
{y ∈ R(r , 1) | d(x, y) = �}
drawn with the triangular ratio
metric sR(r ,1)(x, y) (A), the
modification th(δR(r ,1)(x, y)/2)
of the Möbius metric (B), and
the j∗-metric j∗R(r ,1)(x, y) (C),
when x = 0.75, r = 0.6 and
� = 0.2, 0.3, . . . , 0.9

OINIAR.O

(a) (b)

(c)
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orem 4.1, and the values of the j∗-metric directly obtained
with the formula

j∗R(r ,1)(x, y)

= |x − y|
|x − y| + 2min{|x | − r , |y| − r , 1 − |x |, 1 − |y|} .

(4.7)

As we can see from Fig. 4, the metrical circles drawn with
the triangular ratio metric and the Möbius metric resemble
each other more than they do the circles of the j∗-metric.
Figure 4a shows that the triangular ratio metric disks are
starlike with respect to their center x : For all points y ∈
R(r , 1) with sR(r ,1)(x, y) < � ∈ (0, 1), [x, y] ∩ Ss(x, �) =
∅. This is a general property of the triangular ratio metric
[8, p. 206], which follows from the fact that sG(x, y) = 1
whenever [x, y] ∩ ∂G �= ∅. We also notice from Fig. 4
that the metric circles drawn with the smallest radii � = 0.2
resemble Euclidean circles while the shape of the domain
affects more clearly the circles with larger radii, which is a
common property of a hyperbolic-type metric, see [8, Ch.
13, pp. 239–259].

Consider then the following inequality between these
three metrics.

Theorem 4.8 For all x, y ∈ R(r , 1),

1

2
sR(r ,1)(x, y) ≤ j∗R(r ,1)(x, y) ≤ th

δR(r ,1)(x, y)

2
≤ 2 j∗R(r ,1)(x, y) ≤ 2sR(r ,1)(x, y),

where the constants 1/2 and 1 are sharp when r → 0+, and
the constants 2 are sharp for all values of r ∈ (0, 1).

Proof By [7, Lemma 2.1, p. 1124 & Lemma 2.2, p. 1125],
j∗G(x, y) ≤ sG(x, y) ≤ 2 j∗G(x, y) holds for all x, y ∈ G �

R
n , so the inequality of the theorem follows from this and

Lemma 2.5(2). By Corollary 4.2, for x = √
r and y = −√

r ,

th(δR(r ,1)(x, y)/2)

sR(r ,1)(x, y)

= 1 + r

2(1 − √
r + r)

→ 1

2
,

th(δR(r ,1)(x, y)/2)

j∗R(r ,1)(x, y)

= (1 + r)(2 − √
r)

2(1 − √
r + r)

→ 1,

when r → 0+. Similarly by Corollary 4.2, for x = (1 + r)/

2 + h and y = (1 + r)/2 − h with 0 < r < 1 and 0 < h <

(1 − r)/2,

th(δR(r ,1)(x, y)/2)

j∗R(r ,1)(x, y)
= th(δR(r ,1)(x, y)/2)

sR(r ,1)(x, y)

= 2(1 − r)2

(1 − r)2 + 4h2 → 2,

when h → 0+. Thus, the observation about sharpness fol-
lows. ��

The result of Theorem 4.8 is useful because it gives us
bounds for the distortion of the triangular ratio metric and
the j∗-metric under Möbius transformations defined in the
annular ring R(r , 1). While both these metrics are invariant
under rotations about the origin and reflections over lines
passing through the origin, they are not Möbius invariant.
For instance, their values clearly change under the inversion
f : x �→ r x/|x |2 of Example 2.3.

Corollary 4.9 For all x, y ∈ R(r , 1) and any Möbius trans-

formation f : R
2 → R

2
such that f (R(r , 1)) = R(r , 1),

1

4
sR(r ,1)(x, y) ≤ sR(r ,1)( f (x), f (y)) ≤ 4sR(r ,1)(x, y),

1

2
j∗R(r ,1)(x, y) ≤ j∗R(r ,1)( f (x), f (y)) ≤ 2 j∗R(r ,1)(x, y).

Proof Follows from Theorem 4.8 and the Möbius invariance
of the Möbius metric. ��
Remark 4.10 Computer tests suggest that the Lipschitz con-
stant Lip( f |R(r , 1)) of the function f of Example 2.3 is 2
for both the triangular ratiometric and the j∗-metric, so prob-
ably only the inequality for the distortion of the j∗-metric in
Corollary 4.9 is sharp.

Let us yet study the Möbius metric in the punctured unit
disk B

2\{0}.
Theorem 4.11 For all x, y ∈ B

2\{0} with |y| ≤ |x |,

δB2\{0}(x, y) = max

{

ρB2(x, y), log

(

1 + |x − y|
(1 − |x |)|y|

)}

.

Proof Since |y| ≤ |x |, the point a giving the supremum
supa,b∈(S1∪{0}) |a, x, b, y| cannot be zero and, by Theo-
rem 2.5(4), we will have

δB2\{0}(x, y) = max{ sup
a,b∈S1

log(1 + |a, x, b, y|),

sup
a∈S1

log(1 + |a, x, 0, y|)}

= max

{

δB2(x, y), sup
a∈S1

log

(

1 + |x − y|
|x − a||y|

)}

= max

{

ρB2(x, y), log

(

1 + |x − y|
(1 − |x |)|y|

)}

.

��
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Lemma 4.12 For all distinct points x, y ∈ B
2\{0} such that

|y| ≤ |x |,

δB2\{0}(x0, y0) ≤ δB2\{0}(x, y) ≤ δB2\{0}(x1, y1),

when these points are as in Definition 3.9, and y1 �= 0 and
|x1| < 1 so that δB2\{0}(x1, y1) is well defined.

Proof Let x = qeμi + k and y = qe(π+μ)i + k for k =
(x + y)/2, q = |x − y|/2 and μ ∈ [0, 2π). Suppose without
loss of generality that k ∈ (r , 1) and 0 ≤ μ ≤ π/2. Clearly,
(x, y) = (x0, y0) ifμ = π/2 and (x, y) = (x1, y1) ifμ = 0.
Since ρB2(qeμi +k, qe(π+μ)i +k) is decreasing with respect
to μ as in the proof of Remark 4.4 and it can be shown by
differentiation that so is the quotient

|x − y|
(1 − |x |)|y|

= 2q

(1+√

k2+q2+2qk cos(μ))
√

k2+q2−2qk cos(μ)
,

the result follows from Theorem 4.11. ��
Lemma 4.13 For all x, y ∈ B

2\{0},
1

2
sB2\{0}(x, y) ≤ j∗

B2\{0}(x, y) ≤ th
δB2\{0}(x, y)

2
≤ 2 j∗

B2\{0}(x, y) ≤ 2sB2\{0}(x, y)

and the constants here are the best ones possible.

Proof The inequality follows from [7, Lemmas 2.1, p. 1124
and 2.2, p. 1125] and Lemma 2.5(2), and its sharpness from
the fact that, for h → 0+,

th(δB2\{0}(h,−h)/2)

sB2\{0}(h,−h)
= 1

2 − h
→ 1

2
,

th(δB2\{0}(h,−h)/2)

j∗
B2\{0}(h,−h)

= 2

2 − h
→ 1,

th(δB2\{0}(1/2 + h, 1/2 − h)/2)

j∗
B2\{0}(1/2 + h, 1/2 − h)

= th(δB2\{0}(1/2 + h, 1/2 − h)/2)

sB2\{0}(1/2 + h, 1/2 − h)
= 2

1 + 4h2 → 2.

��

5 Möbius metric in ring domains and
capacity

In this final section, we briefly study condenser capacity by
using theMöbiusmetric. Below, we introduce a new quantity
that can be used to create lower bounds for the ring capacity

of an arbitrary ring, see Lemma 5.7 and the preceding defi-
nitions. Note that it is useful to form bounds for the capacity
of a condenser or a ring with the Möbius metric rather than
some other intrinsicmetric, because theMöbius invariance of
this metric reflects the conformal invariance of the capacity
at least partially.

Definition 5.1 For all disjoint non-empty sets E, F ⊂ R
n

with E ∩ F = ∅, let δ(E, F) be the quantity δ
R

n\F (E) =
sup{δ

R
n\F (x, y) | x, y ∈ E}, which is the δ-diameter of a set

E in the domain R
n\F .

It follows from Corollary 5.3 below that the quantity
δ(E, F) is truly symmetric but, in order to prove this the-
orem, we will need to consider another result first.

Theorem 5.2 (1) For a line segment [u, v] in a domain
G ⊂ R with card(R\G) ≥ 2, δG([u, v]) = δG(u, v).
(2) For a compact set E in a domain G ⊂ R

2 with
card(R2\G) ≥ 2, δG(E) = δG(∂ E).
(3) For a compact set E in a domain G ⊂ R

n
with

card(R
n\G) ≥ 2, δG(E) = δG(∂ E).

Proof (1) By the Möbius invariance of δG , we may assume
thatG is an interval (a, b) ⊂ R and, since themaximumvalue
of the cross-ratio |a, x, b, y| for a < u ≤ x < y ≤ v < b is
trivially obtained with x = u and y = v, the result follows.

(2) Let a, b ∈ ∂G and choose some points x, y ∈ E .
Suppose that y /∈ ∂ E . Rotate y around the point x into a
new point y′ ∈ E so that |y′ − b| is at minimum. Clearly,
|a, x, b, y′| > |a, x, b, y| because |y′ − b| decreases and all
the other distances are preserved in this rotation. If y′ ∈ ∂ E ,
fix y∗ = y′. If y′ /∈ ∂ E , then �B XY ′ = 0. Fix now y∗ ∈
[y′, b] ∩ ∂ E instead as in Fig. 5. Note that the points are
collinear in this case, and regardless whether they are on the
line in the order x, y′, y∗, b or in the order x, b, y∗, y′, we
will have |a, x, b, y∗| > |a, x, b, y′|. Thus, for any y /∈ ∂ E ,
we can always find a point y∗ ∈ ∂ E such that |a, x, b, y∗| >

|a, x, b, y|. Similarly, if x /∈ ∂ E , the point x can be replaced
with a suitable boundary point x∗. Thus, for all a, b ∈ ∂G,
the maximum value of |a, x, b, y| is obtained with points
x, y ∈ ∂ E and the result follows.

(3) By the Möbius invariance of δG , it is enough to prove
the result in the case G ⊂ R

n . If n = 1, the result follows
from the first part of this theorem. Suppose that n ≥ 2, fix
x, y ∈ E and let a, b ∈ ∂G be the points giving the supre-
mum supa,b∈∂G |a, x, b, y|. If y /∈ ∂ E , consider the plane
containing y, x, b and replace y by a new point y∗ on this
plane, just like above. If x /∈ ∂ E , choose similarly a new
point on the plane with x, a, y∗. Since these changes cannot
decrease the cross-ratio, the result follows. ��

Corollary 5.3 For all non-empty sets E, F ⊂ R
n

such that
E ∩ F = ∅, δ

R
n\F (E) = δ

R
n\E (F).
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x

y y′

y∗

a

b

Fig. 5 The point y∗ ∈ ∂ E such that |a, x, b, y∗| ≥ |a, x, b, y| is found
as in the proof of Theorem 5.2 for x, y ∈ E ⊂ G and a, b ∈ ∂G

Proof It follows from Theorem 5.2(3), the symmetry of
cross-ratio and the fact that ∂ F = ∂(R

n\F) for all sets
F ⊂ R

n
that

δ
R

n\F (E) = δ
R

n\F (∂ E)

= sup
x,y∈∂ E

δ
R

n\F (x, y)

= sup
x,y∈∂ E, a,b∈∂ F

log(1 + |a, x, y, b|)

= sup
x,y∈∂ E, a,b∈∂ F

log(1 + |x, a, b, y|)

= sup
a,b∈∂ F

δ
R

n\E (a, b) = δ
R

n\E (∂ F)

= δ
R

n\F (E).

��
Now that we have proved the symmetry of δ(E, F), let us

study it further by finding its value in a few special cases.

Theorem 5.4 (1) For the subsets E = [−1, 0] and F =
[s,∞), s > 0, of R

n
, δ(E, F) = log(1 + 1/s).

(2) If E = [0, r ] and F = Sn−1, 0 < r < 1, instead, then
δ(E, F) = 2arth(r).

Proof (1) Let x, y ∈ [−1, 0] and s ≤ a < b. Now, y <

a < b and |a − b| < |y − b| so we need to choose b = ∞
to maximize |a, x, b, y|. The cross-ratio |a, x,∞, y| is at
greatest within limitations x, y ∈ [−1, 0] and a ≥ s > 0,
when a = s, x = 0 and y = −1. Consequently,

δ(E, F) = δ
R

n\F (E)

= log(1 + |s, 0,∞,−1|) = log(1 + 1/s).

(2) By Theorem 2.5(4),

δ(E, F) = δ
R

n\F (E)

= δBn (E) = ρBn (E) = ρBn (0, r) = 2arth(r).

��
Wewill yet introduce a few definitions that will be needed

for Lemma 5.7. The pair (G, E) consisting of a domain
G ⊂ R

n and a non-empty compact set E ⊂ G is called
a condenser. Furthermore, if G and E are convex, then the
set difference G\E is an example of a ring. More generally,
a ring is any domain D ⊂ R

n
whose complement R

n\D
consists of exactly two components C0 and C1, and it can
be denoted by R(C0, C1). The annular ring R(r , 1) with

0 < r < 1 is a ringR(B
2
(0, r), R

n\B
2).

Define now the conformal capacity of a condenser (G, E)

as

cap (G, E) = inf
u

∫

G
|∇u|ndm, (5.5)

where infimum is taken over all functions u ∈ C∞
0 (G), u :

G → [0,∞) with u(x) ≥ 1 for all x ∈ E and dm stands for
the n-dimensional Lebesgue measure. The definition (5.5)
can be also written as

cap (G, E) = M(�(E, ∂G; G)),

where �(E, ∂G; G) is the family consisting of all such
curves joining the set E to the boundary ∂G that are fully
inside the domain G, andM(	) means the conformal modu-
lus of the curve family 	, see [19, 6.1, p. 16] and [8, pp.
103–106]. Similarly, the capacity of a ring R(C0, C1) is
M(�(C0, C1)), where �(C0, C1) = �(C0, C1; R

n
).

Define yet the constant cn , n ≥ 2, as in [8, 7.1.3, p. 114]:

cn = ωn−2

(

2
∫ π/2

0
(sin t)(2−n)/(n−1)dt

)1−n

≥ ωn−2(π(n − 1))1−n and c2 = 2

π
, (5.6)
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where ωn−2 is the (n − 2)-dimensional surface area of the
sphere Sn−2.

Lemma 5.7 If R = R(E, F) ⊂ R
n

is a ring and cn as in
(5.6), then

cap (R) ≥ 1

2
cnδ(E, F).

Proof By symmetry, let us suppose that ∞ /∈ E . By [8,
Lemma 9.29, p. 166],

cap (R) ≥ cn min{ jRn\F (E), jRn\E (F)},
if ∞ /∈ F, and

cap (R) ≥ cn jRn\F (E), if ∞ ∈ F .

Regardless of whether ∞ ∈ F or not, we will have by The-
orem 2.5(1) and Corollary 5.3,

cap (R) ≥ 1

2
cn min{δRn\F (E), δRn\E (F)}

≥ 1

2
cn min{δ

R
n\F (E), δ

R
n\E (F)} = 1

2
cnδ(E, F).

��
Example 5.8 Let F be a compact subset of B

n and consider
the ring R = R(F, Sn−1). There are two different lower
bounds for the capacity of this ring: By Lemma 5.7 and The-
orem 2.5(4),

cap (R)≥1

2
cnδ(F, Sn−1)=1

2
cnδ

R
n\Sn−1(F) = 1

2
cnδBn (F)

= 1

2
cnρBn (F) (5.9)

and, by [8, Lemma 7.13, p. 109; Lemma 9.20, p. 163],

cap (R) = M(�(F, Sn−1)) ≥ 1

2
M(�(F, Sn−1; B

n))

≥ 1

2
γn

(
1

th(ρBn (F)/2)

)

, (5.10)

whereγn is theGrötzsch ring capacity function, see [8, (7.17),
p. 121] for definition. If n = 2, the lower bound (5.10) is
better at least in some cases, but finding the exact value of
the lower bound (5.9) is considerably easier since c2 = 2/π .
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