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ABSTRACT 1 

Objective: The Systolic Blood Pressure Intervention Trial (SPRINT) reported that lowering 2 

systolic blood pressure to below 120 mm Hg (intensive treatment) reduced cardiovascular 3 

morbidity and mortality among adults with hypertension but increased the incidence of 4 

adverse events, particularly acute kidney injury. The goal of this study was to develop an 5 

accurate risk estimation tool for comparing the risk of cardiovascular events and adverse 6 

kidney-related outcomes between standard and intensive antihypertensive treatment 7 

strategies. 8 

Methods: By applying Lasso regression on the baseline characteristics and health outcomes 9 

of 8760 participants with complete baseline information in the SPRINT trial, we developed 10 

predictive models for primary cardiovascular disease outcome and incidence of acute kidney 11 

injury. Both models were validated against an independent test set of the SPRINT trial (1/3 12 

of data not used for model building) and externally against the cardiovascular and renal 13 

outcomes available in ACCORD-BP trial, consisting of 4733 participants with type 2 14 

diabetes mellitus.  15 

Results: Lasso regression identified a subset of variables that accurately predicted the 16 

primary cardiovascular disease outcome and the incidence of acute kidney injury (areas under 17 

receiver-operating characteristic curves 0.70 and 0.77, respectively). Based on the validated 18 

risk models, an easy-to-use risk assessment tool was developed and made available as an 19 

easy-to-use online tool.  20 
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Conclusions: By predicting the risks of cardiovascular disease and acute kidney injury at 1 

baseline, the developed tool can be used to weigh the benefits of intensive versus standard 2 

blood pressure control and to identify those who are likely to benefit most from intensive 3 

treatment. 4 

CONDENSED ABSTRACT 5 

Lowering systolic blood pressure to below 120 mm Hg (intensive treatment) reduces 6 

cardiovascular morbidity and mortality among adults with hypertension but can increase the 7 

incidence of adverse events, particularly acute kidney injury. In the present study, an accurate 8 

risk estimation tool for comparing the risk of cardiovascular events and adverse kidney-9 

related outcomes between standard and intensive antihypertensive treatment strategies was 10 

developed. The risk assessment tool is available as an easy-to-use online tool and can be used 11 

to weigh the benefits of intensive versus standard blood pressure control and to identify those 12 

who are likely to benefit most from intensive treatment. 13 

Key words: Hypertension, Antihypertensive Agents, Cardiovascular Diseases, Acute 14 

Kidney Injury, Machine Learning, Clinical Decision Support 15 
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INTRODUCTION 1 

The Systolic Blood Pressure Intervention Trial (SPRINT) reported recently that aiming for a 2 

systolic blood pressure of less than 120 mm Hg (intensive treatment) resulted in significantly 3 

lower rates of fatal and nonfatal cardiovascular disease (CVD) outcomes than the commonly-4 

recommended target of less than 140 mm Hg (standard treatment) among non-diabetic adults 5 

at high risk for cardiovascular events [1]. However, significantly higher rates of serious 6 

adverse events (hypotension, syncope, electrolyte abnormalities, and acute kidney injury or 7 

failure) were reported in the intensive than in the standard treatment group. The most 8 

significant difference between the two treatment strategies was observed in the incidence 9 

rates of acute kidney injury (AKI) or acute renal failure, which are common complications 10 

in hospitalized patients and are associated with increased mortality rates, longer hospital 11 

stays, and increasing costs [2,3]. For optimal treatment outcomes, it is therefore crucial to 12 

identify the individuals at high risk for serious adverse events in order to maximize the benefit 13 

from intensive treatment of hypertension. 14 

Recently, models trained using data from the SPRINT trial have been introduced to predict 15 

individualized risk of major cardiovascular events and serious adverse events for standard 16 

and intensive antihypertensive treatment strategies [4–6]. For serious adverse events, three 17 

models have been introduced, all of which consider only the composite outcome of all 18 

treatment-related serious adverse events. Since different risk factors are likely related to 19 

different types of adverse events, this approach may compromise the prediction accuracy of 20 

individual adverse outcomes. Other limitations of previous studies include lack of proper 21 
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evaluation of the discrimination performance of the models in an independent test set and/or 1 

lack of practical implementation of the models.  2 

The aim of this study was to develop an easy-to-use comparison tool for CVD and AKI risk 3 

based on the SPRINT trial data. In contrast to the previous risk prediction models for general 4 

treatment-related serious adverse events, we aimed at an accurate risk prediction model 5 

specifically designed for AKI. To ensure ease of use of the risk models in clinical practice, 6 

we aimed at a minimum number of variables needed for accurate predictions and made the 7 

developed risk comparison tool available online with an intuitive graphical user interface. 8 

METHODS 9 

Study cohort 10 

SPRINT (November 2010-August 2015, ClinicalTrials.gov: NCT01206062) was a 11 

multicenter clinical trial sponsored by the National Institutes of Health (NIH) to compare two 12 

antihypertensive treatment strategies and their effects on cardiovascular and renal outcomes 13 

[1]. In SPRINT, a total of 9361 non-diabetic participants with an increased CVD risk were 14 

randomly assigned to either standard or intensive antihypertensive treatment. The design, 15 

eligibility, and baseline characteristics of the SPRINT participants are publicly available [7] 16 

and the data on the primary outcomes are available on request from the National Heart, Lung 17 

and Blood Institute’s (NHLBI) Biologic Specimen and Data Repository Information 18 

Coordinating Center (BioLINCC, https://biolincc.nhlbi.nih.gov/). Here, the patient-level 19 

SPRINT data was obtained after approval from The Ethics Committee of the University of 20 

Turku. In the present study, we restricted the cohort to participants with a complete set of 21 
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baseline characteristics (N=8760). For model validation, we randomly divided the data into 1 

a training set (N=5840, two thirds of the data) and an independent test set (N=2920, one third 2 

of the data). 3 

In addition to validation within the SPRINT cohort, we evaluated the performance of our 4 

models against the Action to Control Cardiovascular Risk in Diabetes Blood Pressure 5 

(ACCORD-BP) clinical trial (January 2001-June 2009, ClinicalTrials.gov: NCT00000620), 6 

which had a similar study design to SPRINT but involved only participants with type 2 7 

diabetes mellitus (N=4733) [8,9]. The data from the ACCORD-BP trial are available by 8 

request at BioLINCC. 9 

Study variables and outcomes 10 

We examined the association between the baseline characteristics of the SPRINT participants 11 

and the occurrence of primary composite CVD outcome (the first occurrence of myocardial 12 

infarction, acute coronary syndrome, stroke, heart failure, or death from cardiovascular 13 

causes) and the occurrence of AKI or acute renal failure (coded if the diagnosis was listed in 14 

the hospital discharge summary and was reported by the safety officer to be one of the top 15 

three reasons for admission or continued hospitalization) [1], here referred to simply as AKI 16 

outcome. The available baseline variables included both demographic data such as age, sex 17 

and race, as well as clinical and laboratory data such as body mass index (BMI), baseline 18 

blood pressure and serum creatinine. A complete list of descriptive baseline characteristics 19 

used for predictive modeling is presented in Table 1. Features derived using other available 20 

quantities, including estimated glomerular filtration rate (eGFR) and Framingham 10-year 21 
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CVD risk score, were excluded from the model training. Due to strongly skewed distribution 1 

of urine albumin to creatinine ratios, the reported values were log10-transformed before use. 2 

In the ACCORD-BP dataset, the primary composite CVD outcome was defined as the first 3 

occurrence of myocardial infarction, stroke, or death from cardiovascular causes. No 4 

information about AKI events with the same definition as in SPRINT was available and 5 

hence the performance of our risk prediction model was tested against other relevant, pre-6 

defined outcomes related to kidney function, referred to as nephropathy outcomes: 1) serum 7 

creatinine doubling or a decrease of more than 20 ml/min in eGFR, 2) development of macro-8 

albuminuria (a urine albumin to creatinine ratio >300 mg/g), and 3) renal failure, end-stage 9 

renal disease or serum creatinine >3.3 mg/dl. Additionally, we tested the performance of our 10 

model against only those renal failures reported to be attributed to blood pressure 11 

medications. 12 

Model building 13 

Binary classification models for the primary CVD outcome and AKI were developed using 14 

Lasso penalized logistic regression [10] and the baseline characteristics of the training set. In 15 

brief, Lasso is a regression analysis method that aims to maximize the generalizability and 16 

prediction accuracy of the models by shrinking some of the model coefficients to zero. Here, 17 

to reduce potential instability resulting from the random subsampling when optimizing the 18 

model using cross-validation [11,12], the model training was repeated several times to obtain 19 

models that were consistent between multiple runs. More in-depth details about the 20 

development of the Lasso models can be found in Supplementary Information. 21 
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In addition to Lasso regression, we tested the utility of the gradient boosting algorithm 1 

[13,14] to create alternative, more flexible models efficiently utilizing all available variables. 2 

Gradient boosting is an ensemble learning technique that is capable of capturing 3 

nonlinearities and complex interactions in the data and has demonstrated high performance 4 

in a variety of classification tasks [15–17].  5 

All statistical analyses and mathematical modeling were carried out using R statistical 6 

computing environment (version 3.3) [18]. Lasso and gradient boosting algorithms were 7 

implemented in the R packages glmnet and gbm, respectively [19,20].  8 

Model validation 9 

The performance of all models was evaluated in terms of the area under the receiver operating 10 

characteristic curve (AUROC) and were tested both against the independent SPRINT test set 11 

that was not used for our model building (N=2920, one third of the data), and the completely 12 

independent ACCORD-BP trial dataset (N=4733). Statistical significance of the differences 13 

in the AUROC values between the models was determined using the DeLong method [21] 14 

implemented in the R package pROC [22].  15 

Additionally, we identified high-risk and low-risk subgroups according to the predicted, 16 

individualized risk scores. The risk thresholds were optimized on the basis of the training 17 

cohort using Youden’s J statistic, which optimizes the classifier’s discrimination ability when 18 

equal weight is given to sensitivity and specificity [23,24]. Among several approaches for 19 

diagnostic threshold selection, Youden’s index is a popular choice since it ties nicely into the 20 

ROC framework [25] and has been suggested to be robust to between-study variation [26]. 21 
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Finally, the time from the beginning of the treatment to the first occurrence of CVD or AKI 1 

event was compared between the risk groups. Here, Cox proportional hazards regression, 2 

implemented in the R package survival [27,28], was used to estimate the hazard ratios. 3 

Comparison to previously introduced models 4 

The performance of our CVD and AKI models were compared against three recently 5 

published prediction models for the primary composite CVD outcome and composite 6 

outcome of all treatment-related serious adverse events developed by Patel et al., Ferreira et 7 

al., and Basu et al. using data from the SPRINT trial [4–6]. The previous models were all 8 

based on different regression analysis and feature selection methods. However, all previous 9 

models include five common variables for both outcomes, namely age, antihypertensive 10 

treatment strategy, current smoking status, serum creatinine, and number of antihypertensive 11 

agents, but also a varying number of additional variables such as results from the lipid profile 12 

test (i.e. total cholesterol, HDL cholesterol, and triglyceride levels). A more detailed 13 

summary of the previously introduced models and their implementation in the present study 14 

can be found in Supplementary Information.  15 

RESULTS 16 

Model development 17 

The Lasso regression modeling identified from the available baseline variables (Table 1) a 18 

subset of seven variables that predicted both the primary composite CVD outcome (AUROC 19 

0.72, 95% confidence interval [CI] 0.69-0.75) and AKI (AUROC 0.77, 95% CI 0.73-0.80). 20 

These variables included antihypertensive treatment strategy, age, previous history of clinical 21 
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CVD, current smoking status, number of antihypertensive agents, serum creatinine, and urine 1 

albumin to creatinine ratio. The coefficients of CVD and AKI models are summarized in 2 

Table 2. All other variables except for the antihypertensive treatment strategy increased the 3 

risk of the predicted outcome in both models. Intensive treatment decreased the probability 4 

of CVD events whereas increased the probability of AKI. According to Youden’s J statistic, 5 

the optimal cut-offs for identifying high-risk individuals for CVD and AKI were event 6 

probabilities of 6.1% and 3.1%, respectively. 7 

Validation in the independent SPRINT test set 8 

After building the models, we first confirmed their performance in the independent test set 9 

from the SPRINT cohort (one third of the SPRINT cohort not used for model building). 10 

Importantly, the performance of the models in the test set was similar as in the training set 11 

for both CVD and AKI (Table 3). In addition, comparison of the Lasso models to the more 12 

complex gradient boosting models showed non-significant differences for both CVD 13 

(AUROC 0.70, 95% CI 0.66-0.74, P=0.80) and AKI (AUROC 0.77, 95% CI 0.73-0.83, 14 

P=0.82), supporting the use of the simpler Lasso models. Finally, for both Lasso models, the 15 

predicted risks matched well with the observed rates (Supplementary Fig. 1). 16 

Despite of having fewer variables, our CVD model performed similarly as the recently 17 

introduced CVD models by Patel et al., Ferreira et al., and Basu et al. (Table 3, 18 

Supplementary Fig. 2A). On the contrary, for predicting the occurrence of AKI, our model 19 

performed better than the prediction models for serious adverse outcome (Table 3, 20 

Supplementary Fig. 2B).  21 
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Stratification of the participants into high-risk and low-risk subgroups confirmed that 1 

participants with high predicted risk for CVD at baseline (N=1022) had significantly higher 2 

rates of CVD (HR=3.04, 95% CI 2.24-4.12, P<0.001) than those predicted to have low risk 3 

(Supplementary Fig. 2C). In addition, participants with high predicted risk for AKI (N=852) 4 

had significantly higher rates of AKI (HR=7.25, 95% CI 4.70-11.18, P<0.001) than those 5 

predicted to have low risk (Supplementary Fig. 2D). For comparison, in the entire SPRINT 6 

cohort, the HR for CVD events associated with standard treatment was only 1.32 (95% CI 7 

1.12-1.57, P<0.001) and the HR for AKI associated with intensive treatment was 1.66 (95% 8 

CI 1.32-2.08, P<0.001), highlighting the utility of our risk stratification model in assessing 9 

the most suitable antihypertensive treatment strategy for an individual [1].  10 

Validation in the independent ACCORD-BP cohort 11 

Our CVD model performed well also in the independent ACCORD-BP cohort (AUROC 12 

0.69), being similar to that of the recently introduced CVD models by Patel et al. and Ferreira 13 

et al. with larger numbers of variables (Table 4, Supplementary Fig. 3A). As compared to 14 

the model by Basu et al., our model performed significantly better (P<0.001). 15 

In order to assess the performance of our AKI model in the ACCORD-BP cohort, we used it 16 

to predict all the three available outcomes related to kidney function (see Methods). Notably, 17 

our model developed for predicting AKI performed well in predicting the incidence of macro-18 

albuminuria (AUROC 0.79), significantly outperforming all of the previously introduced risk 19 

models for serious adverse events (Table 4, Supplementary Fig. 3B). For the other two 20 

nephropathy outcomes (i.e. 1) serum creatinine doubling or a decrease of more than 20 21 
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ml/min in eGFR, and 2) renal failure, end-stage renal disease or serum creatinine of >3.3 1 

mg/dl), the discrimination performance was poor (AUROC less than 0.6) for all models, 2 

including our AKI model. 3 

Additionally, we tested our AKI model in predicting only the renal failures attributed to blood 4 

pressure medications. For this outcome, our model reached good performance (AUROC 5 

0.77, 95% CI 0.55-0.98) and performed better than the models by Patel et al. (AUROC 0.68, 6 

95% CI 0.37-1.00, P=0.20), Ferreira et al. (AUROC 0.72, 95% CI 0.43-1.00, P=0.27), and 7 

Basu et al. (AUROC 0.61, 95% CI 0.27-0.94, P = 0.15). However, due to low number of 8 

these events, the improvement did not reach significance. 9 

The stratification of the participants into high-risk and low-risk subgroups revealed that 10 

belonging to the group at high risk of CVD (N=1723) was associated with significantly 11 

higher rates of CVD events than the low-risk group (HR=3.10, 95% CI 2.56-3.77, P<0.001) 12 

(Supplementary Fig. 3C). Also, belonging to the group at high risk of AKI (N=875) was 13 

associated with significantly higher incidence rates of macro-albuminuria than belonging to 14 

the low-risk group (HR=6.29, 95% CI 4.91-8.06, P<0.001) (Supplementary Fig. 3D).  15 

Assessing the risks of intensive versus standard treatment 16 

Antihypertensive treatment strategy was identified as an important variable in both the CVD 17 

and AKI risk models and can therefore be used as a modifiable risk factor to estimate the 18 

effect treatment strategy on both CVD and AKI risk estimates. To illustrate the interpretation 19 

of the risk estimates, we compared the predicted risks with the observed risks in the SPRINT 20 

cohort. Importantly, the observed and predicted CVD and AKI risks were well in line among 21 
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the participants assigned to the standard treatment group. Participants assigned to the 1 

intensive treatment group showed reduced CVD risk (Fig. 1A), but increased AKI risk (Fig. 2 

1B). Notably, in the subgroup with the highest predicted AKI risk, the observed AKI event 3 

rate was nearly doubled in the intensive treatment group compared to the standard treatment 4 

group (18% vs. 11%). 5 

Online tool for clinical use 6 

In order to provide an easy-to-use analysis tool for clinicians to enable future assessment of 7 

risks and benefits of intensive versus standard blood pressure control, we developed an 8 

intuitive graphical user interface (GUI) using the R Shiny (RStudio Inc.) platform. The only 9 

information required to estimate the risk of both CVD and AKI of an individual are six pre-10 

treatment baseline variables: age, previous history of clinical CVD, current smoking status, 11 

number of antihypertensive agents, serum creatinine, and urine albumin to creatinine ratio. 12 

The calculator estimates the risks of CVD events and AKI for both intensive and standard 13 

treatment (Fig. 2). In addition to the estimated risks, the calculator indicates if the individual 14 

is at high-risk for either of the events. In order to easily compare the effect of the treatment 15 

strategy on the risk estimates, the tool also provides the user with a simple risk score plot, 16 

illustrating simultaneously the changes in the CVD and AKI risks depending on the 17 

treatment. The developed GUI is freely available at the Shinyapps.io (RStudio Inc.) service-18 

platform (https://mikkovenalainen.shinyapps.io/riskcalculator/). 19 

https://mikkovenalainen.shinyapps.io/riskcalculator/
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DISCUSSION 1 

The present study introduces predictive models for estimating the risk of CVD and AKI 2 

events. The models were developed using machine learning algorithms in the SPRINT cohort 3 

of non-diabetic adults with hypertension. Both models were validated externally using an 4 

independent test set of the SPRINT participants that were not used for model training as well 5 

as using a separate ACCORD-BP cohort of adults with type 2 diabetes. Importantly, we 6 

identified a subset of only seven variables that most accurately predicted both the CVD and 7 

AKI outcomes. In addition to antihypertensive treatment strategy, the identified variables 8 

included six easily accessible or measurable baseline variables required for predictions. 9 

Finally, a practical online tool was developed based on the validated models to enable easy 10 

risk-benefit assessment of intensive versus standard antihypertensive treatment of any new 11 

individual. 12 

Hypertension is highly prevalent in adults, affecting over one billion people worldwide [29]. 13 

Therefore, finding best antihypertensive treatment strategies is important. Although the 14 

recent findings in SPRINT provided evidence of the benefits of a lower systolic blood 15 

pressure target than previously recommended, they also reported significantly higher 16 

incidence of adverse events with the intensive treatment [1]. In the present study, we 17 

identified a subgroup of individuals where the intensive treatment was associated with 18 

increased AKI risk; our model estimated that 38% of the SPRINT participants assigned to 19 

intensive treatment were at high risk for AKI. Notably, ~6% of the participants were 20 
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predicted to have low CVD risk, but high AKI risk, for whom the standard treatment may be 1 

a safer option. These at-risk individuals can be identified using our novel predictive tool.  2 

Despite differences in the definition of the primary CVD outcome and participant 3 

characteristics between SPRINT and ACCORD-BP cohorts (non-diabetic versus diabetic), 4 

our predictive CVD model built using the SPRINT cohort was able to predict major CVD 5 

events also in the ACCORD-BP cohort. This suggests that the developed model is applicable 6 

for adults both with and without diabetes. This was a somewhat surprising result since the 7 

ACCORD-BP study did not find intensive treatment to significantly reduce the rates of 8 

primary CVD outcome (P = 0.20) [8]. However, it has been suggested that the discrepancies 9 

between SPRINT and ACCORD-BP could be explained by the lower statistical power of the 10 

ACCORD-BP trial (4733 participants versus 9361 participants in SPRINT) and thus further 11 

trials clarifying the benefit of more intensive treatment of hypertension in adults with diabetes 12 

are needed [30,31]. Moreover, in a subgroup analysis presented in the appendix of the 13 

ACCORD-BP study, a potential interaction (P = 0.08) was reported between the intensity of 14 

glycemic control and intensive treatment of hypertension on total CVD events, suggesting a 15 

benefit from intensive treatment for individuals with standard glycemic control [8]. 16 

The performance of our model for predicting AKI was significantly better than the 17 

performance of the previously introduced models for predicting the occurrence of composite 18 

serious adverse outcome. This suggests that when predicting individual events, the 19 

discrimination performance of a model optimized for predicting composite outcomes may be 20 

significantly reduced. Although our AKI model was not specifically developed for 21 

nephropathy outcomes reported in ACCORD-BP, it was able to predict the risk of macro-22 



 

 

 

17 

albuminuria and renal failures attributed to blood pressure medications within the cohort. 1 

This suggests that our AKI model is able to predict complications related to kidney function 2 

also outside the SPRINT cohort. Interestingly, it has been reported that albuminuria has a 3 

strong independent association with the incidence of AKI [32]. However, due to poor results 4 

in predicting the other nephropathy outcomes in ACCORD-BP, which may be explained by 5 

the differences in outcome definitions as compared to SPRINT, further comparisons should 6 

be carried out to further validate the result. 7 

As compared to the recently published CVD prediction models derived using data from the 8 

SPRINT trial [4–6], our new CVD model demonstrated similar performance but with fewer, 9 

easily accessible predictors and increasing model usability. This improvement was achieved 10 

by the use of Lasso regression and extensive cross-validation during model training in order 11 

to identify the key variables required for generalizable and accurate model predictions. In 12 

particular, our results demonstrated that using information from the lipid profile test added 13 

only little or no predictive value to the prediction models and could therefore be ignored. 14 

Surprisingly, our model performed significantly better than the model by Basu et al. [6] in 15 

the ACCORD-BP cohort even though similar level of performance was reported in the 16 

original study. The underperformance of this model may be due to overfitting to the SPRINT 17 

cohort or due to inconsistencies in the used ACCORD-BP data since there was a noticeable 18 

difference in the number of current smokers reported in the study by Basu et al. (~1% of the 19 

participants) [6] and the original ACCORD-BP study (~13% of the participants) [8]. 20 

The original definition of AKI in SPRINT [1], which was also used in the present study, has 21 

potential limitations as compared to other specific conventions of the definitions of AKI (e.g. 22 
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AKIN or RIFLE [33]). In a more recent study based on the SPRINT trial, all reported AKI 1 

events were adjudicated by two nephrologists or physician experts [34]. Even though some 2 

of the AKI events were discarded, it did not alter the conclusions of the original study. 3 

Therefore, it is expected that our present model is valid also for predicting the adjudicated 4 

AKI events. A more accurate definition of AKI or more detailed information about the 5 

individual antihypertensive classes hold potential to further improve the model if such data 6 

become available in the future. For instance, it is known that patients on diuretics or newly 7 

started RAS blockade may be more prone to AKI compared to patients on other 8 

antihypertensive medications [35]. 9 

The prediction models proposed in the present study assume that the relative effect of 10 

treatment is the same for everyone. This assumption is supported by the fact that the SPRINT 11 

study did not report any significant interactions between the treatment strategy and studied 12 

subgroups (e.g. history of CVD) with respect to the primary outcome or death from any cause 13 

[1]. In addition, Ferreira et al. assessed interactions between the treatment strategy and 14 

several candidate predictors for the composite safety outcome that included also AKI, but 15 

none were significant [5]. Similarly, our models were compared against models generated 16 

using the gradient boosting algorithm, which is able to capture even deep interactions in the 17 

data. However, no improved performance over the simpler models was observed. 18 

Even though all the developed models reached good to very good discrimination performance 19 

comparable to previous risk calculators in this field (AUROCs between 0.70 and 0.80), it 20 

should be noted that some individuals may still be misclassified as having high or low risk 21 

of AKI or CVD. Therefore, it is recommended that the risk predictions should only be used 22 
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to support decision making alongside the traditional clinical guidelines when the suitability 1 

of the intensive antihypertensive treatment in terms of adverse health outcomes is of concern. 2 

In these cases, the developed online tool allows for easy checking of the risk levels associated 3 

with both treatment strategies. 4 

The present study introduces a practical risk-benefit assessment tool for intensive versus 5 

standard blood pressure control and validates it in the SPRINT and ACCORD-BP cohorts. 6 

The tool can be applied in clinical practice to help select individuals for intensive blood 7 

pressure treatment to gain maximum health benefits and to reduce the risk of adverse events 8 

due to AKI. 9 
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Table 1. Baseline characteristics of the SPRINT participants in the training and test cohorts 1 

(N=8760).* 2 

 Training set Test set 

Characteristic 

Standard 

Treatment 

(N=2882) 

Intensive 

Treatment 

(N=2958) 

Standard 

Treatment 

(N=1480) 

Intensive 

Treatment 

(N=1440) 

Age – yr. 67.9 ± 9.5 67.9 ± 9.3 67.9 ± 9.5 68.0 ± 9.5 

Female sex – no. (%) 1006 (34.9) 1037 (35.1) 551 (34.8) 538 (37.4) 

History of CVD – no. (%)     

 Clinical 500 (17.3) 521 (17.6) 247 (16.7) 219 (15.2) 

 Subclinical 163 (5.7) 167 (5.6) 69 (4.7) 71 (4.9) 

Race or ethnic group – no. (%)     

 Non-Hispanic black 881 (30.6) 869 (29.4) 470 (31.8) 434 (30.1) 

 Hispanic 294 (10.2) 321 (10.9) 161 (10.9) 158 (11.0) 

 Non-Hispanic white 1657 (57.5) 1715 (58.0) 829 (56.0) 809 (56.2) 

 Other 50 (1.7) 53 (1.8) 20 (1.4) 39 (2.7) 

Baseline blood pressure – mm Hg     

 Systolic 139.8 ± 15.3 139.6 ± 15.8 139.7 ± 15.9 139.8 ± 15.7 

 Diastolic 78.2 ± 12.2 78.3 ± 11.9 77.8 ± 11.8 78.0 ± 11.8 

Serum creatinine – mg/dl 1.08 ± 0.34 1.08 ± 0.35 1.08 ± 0.33 1.07 ± 0.34 

Ratio of urinary albumin (mg) to 

creatinine (g) 39.6 ± 149.5 44.1 ± 173.2 44.7 ± 162.4 42.8 ± 188.3 

Fasting total cholesterol – mg/dl 189.4 ± 40.0 189.8 ± 40.9 189.9 ± 41.6 191.5 ± 43.0 

Fasting HDL cholesterol – mg/dl 52.7 ± 14.7 52.5 ± 14.2 52.6 ± 14.5 53.5 ± 14.8 

Fasting total triglycerides – mg/dl 125.5 ± 76.9 124.7 ± 74.2 128.9 ± 88.2 127.1 ± 108.7 

Fasting plasma glucose – mg/dl 98.9 ± 13.2 98.7 ± 13.8 98.8 ± 13.8 99.2 ± 13.8 

Statin use – no. (%) 1295 (44.9) 1272 (43.0) 669 (45.2) 608 (42.2) 

Aspirin use – no (%) 1460 (50.7) 1519 (51.4) 741 (50.1) 746 (51.8) 

Current smoker – no (%) 363 (12.6) 427 (14.4) 207 (14.0) 185 (12.8) 

Framingham 10-yr CVD risk score – % 23.3 ± 11.8 23.3 ± 11.7 23.2 ± 11.5 23.1 ± 11.9 

Body-mass index – kg/m2 29.9 ± 5.8 30.0 ± 5.9 29.8 ± 5.7 29.8 ± 5.7 

Antihypertensive agents – 

no./participant 1.8 ± 1.1 1.9 ± 1.0 1.8 ± 1.0 1.8 ± 1.0 

* Values containing plus-minus sign are means ± standard deviation. There were no significant 

differences (P<0.05) between training and test cohorts for any variable. 
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Table 2. Coefficients of the Lasso regression models for cardiovascular disease (CVD) and acute 1 

kidney injury (AKI). The coefficients indicate the impact of one unit change in a predictor variable 2 

on the response variable when the other predictors are held constant. 3 

Baseline variable Coefficient  

in CVD model 

Coefficient  

in AKI model 

Intercept -6.51 -8.20 

Age (per 1 year) 0.03 0.03 

History of clinical CVD 0.83 0.51 

Current smoking status 0.56 0.53 

Serum creatinine (per +1 mg/dl) 0.33 1.06 

Urine albumin to creatinine ratio 

(per 1 log increase) 

 

0.60 0.73 

Number of antihypertensive agents 0.11 0.12 

Assignment to intensive treatment -0.31 0.46 

  4 
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Table 3. Discrimination performance in terms of areas under the receiver operating characteristic 1 

curve (AUROC) in the independent SPRINT test set. The P values are reported for comparisons 2 

between our model vs. the previously introduced risk calculators by Patel et al. [4], Ferreira et al. [5] 3 

and Basu et al. [6]. 4 

Model 
CVD AKI 

AUROC (95% CI) P value AUROC (95% CI) P value 

Our model 0.70 (0.66—0.74) - 0.77 (0.73—0.82) - 

Patel et al. 0.70 (0.66—0.75) 0.39 0.72 (0.67—0.77) <0.001 

Ferreira et al. 0.70 (0.66—0.74) 0.10 0.74 (0.69—0.79) <0.001 

Basu et al. 0.69 (0.65—0.73) 0.66 0.75 (0.70—0.80) 0.08 

  5 
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Table 4. Discrimination performance in terms of areas under the receiver operating characteristic 1 

curve (AUROC) in the independent ACCORD-BP cohort. The P values are reported for comparisons 2 

between our model vs. the previously introduced risk calculators by Patel et al. [4], Ferreira et al. [5] 3 

and Basu et al. [6]. 4 

Model 
CVD Macro-albuminuria 

AUROC (95% CI) P value AUROC (95% CI) P value 

Our model 0.69 (0.67—0.72) - 0.79 (0.76—0.81) - 

Patel et al. 0.69 (0.66—0.71) 0.42 0.62 (0.58—0.65) <0.001 

Ferreira et al. 0.69 (0.66—0.71) 0.90 0.74 (0.71—0.77) <0.001 

Basu et al. 0.64 (0.61—0.66) <0.001 0.60 (0.56—0.64) <0.001 

  5 
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FIGURE LEGENDS 1 

Figure 1. Comparison between the predicted risks and the observed event rates of A) cardiovascular 2 

disease (CVD) and B) acute kidney injury (AKI) in the SPRINT cohort. The participants were divided 3 

into three risk groups based on their predicted risks for the standard treatment. 4 

Figure 2. An easy-to-use online risk calculator for comparing the risks of cardiovascular (CVD) 5 

events and acute kidney injuries (AKI) between standard and intensive antihypertensive treatment 6 

strategies. Based on baseline information on six variables identified as most important for the 7 

prediction, the tool returns the absolute risk for both outcomes and treatment strategies. If the 8 

estimated risk exceeds the optimal cut-off determined for each outcome, the tool will inform the user 9 

about elevated risk with graphical cues. The differences in risk for the two treatment strategies can 10 

easily be explored from the AKI versus CVD risk plot.  11 


