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Immunological tumor status may 
predict response to neoadjuvant 
chemotherapy and outcome after 
radical cystectomy in bladder 
cancer
Minna Tervahartiala  1, Pekka Taimen2, Tuomas Mirtti  3, Ilmari Koskinen4, Thorsten Ecke5, 
Sirpa Jalkanen1 & Peter J. Boström6

Bladder cancer (BC) is the ninth most common cancer worldwide. Radical cystectomy (RC) with 
neoadjuvant chemotherapy (NAC) is recommended for muscle-invasive BC. The challenge of the 
neoadjuvant approach relates to challenges in selection of patients to chemotherapy that are likely 
to respond to the treatment. To date, there are no validated molecular markers or baseline clinical 
characteristics to identify these patients. Different inflammatory markers, including tumor associated 
macrophages with their plastic pro-tumorigenic and anti-tumorigenic functions, have extensively 
been under interests as potential prognostic and predictive biomarkers in different cancer types. In 
this immunohistochemical study we evaluated the predictive roles of three immunological markers, 
CD68, MAC387, and CLEVER-1, in response to NAC and outcome of BC. 41% of the patients had a 
complete response (pT0N0) to NAC. Basic clinicopathological variables did not predict response to NAC. 
In contrast, MAC387+ cells and CLEVER-1+ macrophages associated with poor NAC response, while 
CLEVER-1+ vessels associated with more favourable response to NAC. Higher counts of CLEVER-1+ 
macrophages associated with poorer overall survival and CD68+ macrophages seem to have an 
independent prognostic value in BC patients treated with NAC. Our findings point out that CD68, 
MAC387, and CLEVER-1 may be useful prognostic and predictive markers in BC.

Bladder cancer (BC) is the fourth most common cancer in men in developed countries. In 2012 429,800 new cases 
were recorded and 165,100 deaths occurred worldwide due to BC1. Radical cystectomy (RC) with cisplatin-based 
neoadjuvant chemotherapy (NAC) prior to the surgery is recommended for muscle-invasive BC. However, NAC 
is only effective in 30–40% of patients, and there are no validated molecular markers or baseline clinical char-
acteristics to adequately identify the patients who are likely to benefit from the treatment2,3. Patients with no 
response to NAC are subject to adverse effects of chemotherapy and delay in the definitive treatment. Hence, there 
is an urgent need for new biomarkers to guide therapeutic decisions in the treatment of BC.

Different inflammatory markers have been extensively investigated as potential prognostic and predictive bio-
markers4. Tumor associated macrophages (TAMs) are attractive targets as biological markers, as well as in ther-
apeutic strategies, with their plastic pro-tumorigenic and anti-tumorigenic functions5,6. The presence of TAMs 
in solid tumors favors tumor growth and progression7. Few studies have shown the capability of chemotherapy 
treatment to switch the TAM polarization from protumoral into more M1-like phenotype with tumoricidal and 
proinflammatory functions8–10. However in BC, the association of TAMs and other potential immunological 
markers with NAC is unknown.
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In our previous study, we showed that CD68+ and MAC387+ macrophages associate with conventional 
high-risk features in BC, the risk of progression and poorer survival in BC patients11. We also showed that, by 
contrast, CLEVER-1+ vessels associate with lower risk for progression. In the present study the objective was to 
evaluate the roles of these three immunological markers (CD68, MAC387, and CLEVER-1) and NAC response 
in BC. CD68 is the most frequently used pan-macrophage marker, while MAC387 is expressed on recently infil-
trating monocytes/macrophages and is considered as a marker of active inflammation12. In addition, various 
tumor cells also express MAC38713. We have previously shown MAC387 being expressed by BC tumor cells11. 
CLEVER-1 is an immunosuppressive scavenger receptor expressed by lymphatic and vascular endothelial cells 
and tissue macrophages14. To our best knowledge, MAC387 and CLEVER-1 have not been evaluated as biological 
markers for NAC response. The density of CD68+ macrophages has been shown to associate with chemoresponse 
in pancreatic, breast and lung cancer8,15,16, but the relationship between NAC response and CD68+ macrophages 
in BC has not been studied.

Results
Clinicopathological characteristics. The baseline clinicopathological characteristics of the patient cohort 
were evaluated and they are presented in Table 1. All the patients (n = 68) had urothelial BCs and received NAC. 
Six patients received adjuvant chemotherapy after the RC. The cohort is a typical RC cohort.

Manual macrophage counting correlates with digital counting. Histological samples from 68 NAC 
and RC treated BC patients were stained with CD68, MAC387 and CLEVER-1 primary antibodies. Positive cells 
and vessels were counted manually from TUR-BT (transurethral resection of bladder tumor) sections. TMAs 
(tissue microarray) were created and the positive cells were counted manually to evaluate the use of TMA in the 
study of macrophages. Positive cell counts were dichotomized according to the mean value and the groups from 
manually counted whole sections are shown in Table 2. TUR-BT sections were also counted digitally to study 
different techniques when analysing immunohistochemical samples. Marker counts from manually counted 

Characteristic, n = 68 n (%)

Age (years) Mean/median (range) 64/65 (47–76)

Gender Male 58 (85)

Smoking (current or past) Yes 52 (76)

cT category (TUR-BT’)

T2 48 (71)

T3 18 (27)

T4 2 (3)

CIS1 (TUR-BT’) Yes 15 (22)

LVI2 (TUR-BT’) Yes 17 (25)

Tumor size (mm) (TUR-BT’) Mean/median (range) 23/19 (1–70)

pT category (RC”)

T0 28 (41)

pTa, pTcis, pT1 15 (22)

pT2 10 (15)

pT3 10 (15)

pT4 5 (7)

pN category (RC”)
Positive 7 (11)

Negative 58 (89)

Neoadjuvant chemotherapy
Cisplatin-Gemcitabine 64 (94)

Carboplatin-Gemcitabine 4 (6)

Chemotherapy cycles (number) Mean/median (range) 3/4 (2–6)3

Adjuvant chemotherapy Yes 6 (9)

Follow-up time (years) Mean/median (range) 3.3/3.6 (0.25–7.7)

Status

Alive, no evidence of 
disease 53 (78)

Death due bladder cancer 13 (19)

Death due other reason 2 (3)

Pathological response to the neoadjuvant chemotherapy

Complete response (pT0) 28 (41)

Partial response (pT1/
pTa/pTis) 14 (21)

No response 9 (13)

Progression (pT3 and/
or N+) 17 (25)

Table 1. Baseline clinicopathological characteristics, n = 68. ’According to the TUR-BT pathology, imaging 
studies and clinical status. ”According to the pathological data from RC. 1Concomitant carcinoma in situ. 
2Lymphovascular invasion. 39 patients (13%) received 2 cycles of NAC, 23 patients (34%) 3 cycles, 34 patients 
(50%) 4 cycles, and 1 patient 6 cycles.
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TMA samples and digitally counted TUR-BT whole section samples are shown in Supplementary Table S1. 
Representative examples of the staining patterns with different markers are represented in Fig. 1.

Manual and digital counts correlated with all markers (CD68 p = 0.008, MAC387 p < 0.001, and CLEVER-1 
p < 0.001) (Supplementary Table S2). CD68+ and MAC387+ macrophage counts from TMAs (tissue microarray) 
and whole sections correlated with each other (p = 0.002 for CD68 and p < 0.001 for MAC387, respectively), but 
CLEVER-1+ macrophages or vessels did not (both p = 0.41) (Supplementary Table S2). All of the correlation and 
survival analyses were performed with the results from the TUR-BT whole sections.

High CD68+ macrophage count associates with LVI. Associations between immunohistological mark-
ers and clinicopathological variables were analysed. High CD68+ macrophage count correlated with the presence 
of lymphovascular invasion (LVI) (p = 0.002, Fig. 2). MAC387+ tumor cells or CLEVER-1+ macrophages/vessels 
did not associate with LVI (Supplementary Table S3). There were no associations noticed between immunohisto-
logical markers and other clinicopathological variables (Supplementary Table S3).

MAC387 and CLEVER-1 stainings identify chemosensitive/chemoresistant tumors. The asso-
ciation between the chemotherapy response and markers studied, and the chemotherapy response and the 
clinicopathological characteristics were analysed. There were no associations between response to NAC and 
clinicopathological characteristics (gender, smoking, type of chemotherapy, tumor grade, or presence of CIS 
or LVI) (Supplementary Table S4). Associations between markers and chemotherapy response are shown in 
Table 3. CD68+ and MAC387+ macrophages did not associate with the chemotherapy response. However, higher 
MAC387+ tumor cell density (scoring 0–2 vs. 3) associated with the risk of progression following NAC (progres-
sion vs. other response; hazard ratio (HR) 3.76, 95% confidence interval (CI) 1.10–12.82, p = 0.034). 47% and 
19% of the patients with high and low amounts of MAC387+ tumor cells progressed during NAC, respectively. 
On the other hand, 47% of the patients with low amount of MAC387+ tumor cells had a complete NAC response 
compared to 20% in high number group (Supplementary Table S5). High CLEVER-1+ macrophage count associ-
ated significantly with poorer response to NAC (complete/partial response vs. no response/progression; HR 2.78, 
95% CI 1.00–7.67, p = 0.049). In contrast, a significant association between a lower count of CLEVER-1+ vessels 
and progression during NAC was noticed (Mann-Whitney U-test p = 0.012) (Fig. 3).

Marker n (%)

CD68 (n = 64)
Low (0–59) 30 (44)

High (60–175) 38 (56)

MAC387 (n = 62)
Low (8–78) 37 (54)

High (79–240) 31 (46)

MAC387 tumor1 (n = 66)

0 9 (14)

1 29 (44)

2 15 (23)

3 12 (18)

CLEVER-1m2 (n = 65)
Low (0–53) 34 (50)

High (54–209) 34 (50)

CLEVER-1v3 (n = 66)
Low (0–4) 39 (57)

High (5–27) 29 (43)

Table 2. Marker counts from TUR-BT sections. Groups dichotomized according to the mean value. 1MAC387 
positive tumor cells, semiquantitative scoring. 2CLEVER-1 positive macrophages. 3CLEVER-1 positive blood 
and lymph vessels.

Figure 1. Representative examples showing immunohistochemical stainings of studied markers in TUR-BT 
specimens. Examples of (a) CD68, (b) MAC387, and (c) CLEVER-1 staining patterns. ⇧ indicates positively 
stained macrophages,  indicates a positive CLEVER-1 vessel.

http://S1
http://S2
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High macrophage counts associate with poorer survival. Survival analyses were performed with 
Kaplan-Meier estimates and uni- and multivariate Cox proportional hazard regression models. Kaplan-Meier 
estimates evaluating the relationships between the markers and OS (overall survival) are shown in Fig. 4. High 
CD68+ and CLEVER-1+ macrophage counts associated with poorer OS after NAC and RC (p = 0.038 for CD68, 
and p = 0.036 for CLEVER-1, respectively). MAC387+ macrophage/tumor cell counts and CLEVER-1+ vessels 
did not associate with survival.

Univariate and multivariate Cox proportional hazard regression models of factors affecting OS are presented 
in Table 4. In the univariate analyses, fewer chemotherapy cycles, adjuvant chemotherapy, the presence of LVI in 
TUR-BT specimens, lymph node positivity, and tumor in RC (vs. pT0) significantly associated with shorter OS. In 
addition, higher counts of CLEVER-1+ macrophages significantly associated with OS in univariate analysis (HR 
3.17, 95% CI 1.01–9.97, p = 0.048), but failed to remain significant in multivariate analysis with pT-category (HR 
2.94, 95% CI 0.93–9.27, p = 0.066). CD68+ macrophages, however, showed a significant association with OS in 
multivariate analysis after adjusting for pT-category (HR 3.97, 95% CI 1.11–14.12 p = 0.033).

Discussion
In the present study, we have evaluated the role of three different immunological markers in BC patients treated 
with NAC. We demonstrated that high CD68+ and CLEVER-1+ macrophage counts associate with poorer OS 
after NAC and RC. Furthermore, high CD68+ macrophage count was an independent predictive factor for poor 
OS. When the response to NAC was analysed, there were no associations between the response and clinico-
pathological characteristics, but interestingly, MAC387+ tumor cell density associated with the response to NAC. 
High MAC387+ tumor cell density associated with disease progression during NAC, whereas the majority of the 
patients with lower amount of MAC387+ tumor cells received a complete response. CLEVER-1+ macrophage 
and vessel counts associated significantly with response to NAC. Patients with high amounts of CLEVER-1+ 

Figure 2. High CD68+ macrophage counts associate with the presence of LVI (Mann-Whitney U test).

Variable

Complete vs. other Complete/Partial vs. other Other vs. progression

HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value

CD68
Low vs. high

0.72 0.27–1.91
0.50

1.13 0.42–3.023
0.81

1.63 0.52–5.078
0.40

Continuous 0.33 0.58 0.97

MAC387
Low vs. high

0.94 0.36–2.49
0.91

1.038 0.39–2.77
0.94

1.48 0.49–4.46
0.48

Continuous 0.42 0.40 0.53

MAC387tumor1
Low vs. high

3.57 0.90–14.13
0.070*

3.18 0.97–10.37
0.056*

3.76 1.10–12.82
0.034*

All groups 
0–3 0.41 0.36 0.40

CLEVER-1m2
Low vs. high

1.63 0.62–4.32
0.33

2.78 1.006–7.67
0.049*

1.61 0.53–4.88
0.40

Continuous 0.49 0.21 0.88

CLEVER-1v3
Low vs. high

0.99 0.37–2.62
0.98

0.76 0.28–2.050
0.58

0.47 0.14–1.52
0.21

Continuous 0.26 0.10 0.012*

Table 3. Associations between markers and chemotherapy response. Regression analyses were used to evaluate 
the association between the chemotherapy response and marker groups dichotomized according to the mean 
value. Mann-Whitney U test was used to evaluate the association between the continuous variables and 
chemotherapy response. Pearson Chi-square/Fisher’s exact test was used to evaluate the association between 
MAC387+ tumor cells and chemotherapy response. 1MAC387 positive tumor cells; low (score 0–2), high (score 3). 
2CLEVER-1 positive macrophages. 3CLEVER-1 positive vessels. *Significant p-value.
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macrophages had poorer response to NAC, while higher amounts of CLEVER-1+ vessels associated with more 
favourable response.

To date, there are no validated biomarkers in clinical use to predict the outcome of NAC among BC patients. 
Some of the most interesting markers include e.g. immunohistochemical evaluation of Emmprin as demonstrated 
by Hemdan et al.17. In 2014, Choi et al. identified basal and luminal subtypes of muscle-invasive BC and demon-
strated that immune-infiltrated basal BCs respond to NAC and should be managed aggressively with NAC to 
improve the survival of the patients18.

Immunological factors have an indisputable role in cancer development19. TAMs have a dual role in the tumor 
microenvironment; they are potentially tumoricidal but can also promote cancer cell proliferation20,21. TAMs have 
an essential role in different therapeutic strategies against cancer. Chemotherapy can inhibit or activate mono-
cyte/macrophage mediated anti-tumor responses22 and the modulation of tumor responses to chemotherapy can 
vary between different cytotoxic factors and tumors23. Immunological factors and TAMs have not been studied 
thoroughly among chemotherapy treated BC patients. There are a few studies evaluating the role of peripheral 

Figure 3. Association between neoadjuvant chemotherapy response (progression and other response) and 
CLEVER-1+ vessels (Mann-Whitney U test).

Figure 4. Kaplan-Meier estimates for OS after NAC treatment. The effect of CD68+ (a), MAC387+ 
macrophages (b), MAC387+ tumor cells (c), CLEVER-1+ macrophages (d) and CLEVER-1+ vessels on the 
OS in TUR-BT specimens in BC patients receiving NAC. The markers were dichotomized into two groups 
according to the mean value.
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blood lymphocytes in BC patients receiving NAC24–26, but there is a lack of studies evaluating the role of immu-
nological cells in the tumor microenvironment. To our best knowledge, this is the first study to evaluate the 
relationship between NAC and immunological markers CD68, MAC387 and CLEVER-1 as predictive markers in 
BC patients. The results are in line with our previous study, where we demonstrated that CD68+ and MAC387+ 
macrophages associate with high risk factors and poorer survival in BC patients while CLEVER-1+ vessels predict 
more favourable outcome11. Although further validation studies are still needed, our results strongly suggest that 
immunological factors do play an important role in NAC response, and such markers could be used in clinical 
practice to identify patients who benefit from the treatment. Especially MAC387 could be used to identify the 
tumors that are more prone to progress during NAC (high MAC387+ cell count) or receive an expected response 
(low MAC387+ cell count).

Different therapeutic agents can influence plastic TAMs causing inhibition or activation on antitumor 
responses22. Mantovani et al. demonstrated in 2013, that tissue damage caused by chemotherapeutic treatments 
can lead to misdirected macrophage-orchestrated tissue repair response and promotion of tumor growth and 
limited antineoplastic efficacy27. Our results show, that the risk of progression after NAC increases when there 
is higher amounts of MAC387+ tumor cells. It could be speculated, that MAC387 introduces the misdirected 
tissue repair orchestrated by TAMs, and thus, restrain the effect of the treatment. In the other hand, we demon-
strated that immunosuppressive CLEVER-1 enhanced the chemotherapy response. We have previously shown, 
that CLEVER-1+ vessels associate with improved survival in BC11, but however, this association with survival 
after NAC, could not be seen in the present study.

The present study has the known limitations of a retrospective study. The number of patients was limited, but 
contained consecutive BC patients receiving NAC prior to RC from two academic referral centers in Finland 
in 2008–2013. Macrophages are challenging to investigate with immunohistochemistry due to their nature to 
cluster. This may lead to variation in results especially when using TMAs and would require sufficient tissue 
sampling in routine clinical practice. Both the TMA and whole section based cell counting techniques were tested 
in the present study. The results from CD68 and MAC387 stainings correlated with each other, but the results 
from CLEVER-1 quantifications were different when using TMAs and whole sections. TMAs are an efficient 
method in immunohistochemistry, but it should be considered attentively when studying clustering particles, 
e.g. macrophages. We also compared manual and digital counting of macrophages. Manual counting is subjective 
and time-consuming but more accurate when sorting different cell types and artefacts, while digital counting is 

OS Univariate Multivariate

Variable HR 95% CI p-value HR 95% CI p-value

Age 1.009 0.939–1.083 0.81

Gender
Male REF

Female 2.43 0.77–7.63 0.13

Smoking
No REF

Yes 0.44 0.12–1.64 0.22

Neoadjuvant chemotherapy
Cisplatin-Gemcitabine REF

Other 1.00 0.13–7.59 1.00

Chemotherapy cycles 0.50 0.28–0.91 0.022*

Adjuvant chemotherapy
No REF

Yes 4.32 1.37–13.60 0.012*

LVI (TUR-BT’)
No REF

Yes 3.072 1.11–8.51 0.031*

pN category (RC”)
Negative REF

Positive 5.36 1.82–15.82 0.002*

pT category (RC”)
T0 REF REF

Other 5.46 1.23–24.22 0.026* 4.60 1.004–21.022 0.049*

CD68 continuous 1.009 0.994–1.023 0.24 1.008 0.995–1.021 0.23

MAC387 continuous 1.002 0.990–1.014 0.80 1.002 0.991–1.013 0.73

CLEVER-1m1 continuous 0.999 0.981–1.018 0.95 0.998 0.982–1.015 0.82

CLEVER-1v2 continuous 0.873 0.718–1.062 0.17 0.901 0.748–1.086 0.28

CD68 dichotomized 3.50 0.99–12.44 0.053 3.97 1.11–14.12 0.033*

MAC387 dichotomized 1.48 0.54–4.08 0.45 1.57 0.57–4.32 0.39

MAC387tumor2 dichotomized 2.13 0.73–6.25 0.17 1.65 0.56–4.89 0.36

CLEVER-1m1 dichotomized 3.17 1.01–9.97 0.048* 2.94 0.93–9.27 0.066

CLEVER-1v2 dichotomized 0.64 0.22–1.87 0.42 0.65 0.22–1.90 0.43

Table 4. Univariate and multivariate Cox proportional hazards regression analysis of factors affecting OS. 
The stage of the tumor was combined with each marker separately in multivariate analyses. ’According to 
the TUR-BT pathology, imaging studies and clinical status. ’’According to the pathological data from RC. 
1CLEVER-1 positive macrophages. 2CLEVER-1 positive vessels. 3MAC387 positive tumor cells. *Significant 
p-value.
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objective and repeatable, but vulnerable to artefacts such as diffusely distributed necrotic tissue material. In this 
study, however, we demonstrated that digital counting with Fiji-ImageJ is reliable enough to determine the num-
ber of macrophages in an automated fashion.

In conclusion, we found that MAC387+ cells and CLEVER-1+ macrophages and vessels associate with the 
response after NAC in BC patients. High MAC387+ tumor cell density associated with disease progression after 
NAC, whereas majority of patients with lower amount of MAC387+ tumor cells received a complete response. 
Patients with high amounts of CLEVER-1+ macrophages associated with poorer response to NAC, while higher 
amounts of CLEVER-1+ vessels associated with more favourable response. The results verify also our previous 
studies where we demonstrated that CD68 and MAC387 associate with poorer survival in BC patients whereas 
CLEVER-1 vessels act more as a protective marker. Further studies are needed to validate the results of immuno-
logical markers predicting NAC outcome in BC patients.

Methods
Patients. All BC patients undergoing NAC followed by RC from Helsinki (years 2010–2013) and Turku 
(2007–2013) University Hospitals were included in the study (n = 76). After exclusion of patients with 
non-urothelial histology, inadequate (<2 cycles) NAC and insufficient tissue material, 68 patients were included 
in the study.

TUR-BT was performed using standard technique. Patients received NAC, 2–6 cycles either cisplatin- 
gemcitabine (64/68 patients), or carboplatin-gemcitabine (4/68 patients) prior to the RC. RC included removal of 
the bladder, prostate, and seminal vesicle in men and the uterus, ovaries, and anterior vaginal wall in females. All 
patients had pelvic lymph node dissection (PLND). The PLND template was decided by responsible surgeon and 
the nodal specimens were evaluated according institutional pathology guidelines. 42/68 (62%) had an extended 
PLND and 26/68 (38%) limited dissection with definitions similar to the paper by Dhar et al.28. In the extended 
dissection, the upper limit of dissection was aortic bifurcation or ureteric crossing of the iliac vessel, and in lim-
ited the dissection was distal to iliac bifurcation. The mean number of the removed nodes in the whole cohort was 
19 (24 in patients with extended dissection, 10 with limited).

A detailed database was collected retrospectively including detailed patient data and tumor characteristics, 
as well as details of the treatment and follow-up. Histological tissue samples were re-reviewed by two expert 
uro-pathologists in consensus (P.T., T.M.). The study protocol was approved by the Research Ethical Board of the 
Hospital District of Southwestern Finland. All methods were carried out in accordance with relevant guidelines 
and regulations. The study was conducted in compliance with the current revision of the Declaration of Helsinki 
guiding physicians and medical research involving human subjects. A written informed consent from the patients 
was obtained. The study did not affect the patients or there further treatment of follow-up in any way. All the 
sample collections were done on already existing tissue specimens received during the diagnosis and treatment 
of these patients.

Immunohistochemistry and scoring. Formalin-fixed, paraffin-embedded tissue blocks were cut at three 
μm thickness. The detailed protocol of the immunohistochemistry has been previously reported11. The primary 
antibodies used were mouse monoclonal IgG1 anti-CD68 (concentration 1/5, KP1, ab845, Abcam, U.K.), mouse 
monoclonal IgG1 anti-MAC387 (concentration 1/500, ab22506, Abcam, U.K.) and rat IgG 2–7 (concentration 
1/5) against CLEVER-1/Stabilin-129,30. Mouse IgG1 3G631 and rat IgG2a anti-mouse CD62L (MEL-14, Exbio, 
Czech Republic) were used as negative controls.

From TUR-BT samples, the whole sections of paraffin-embedded blocks were analysed as well as the TMAs 
(tissue microarray). The immunohistological stainings were analysed manually and digitally blinded to the clin-
ical information. Manual analyses were performed microscopically from three hotspots using a 0.0625 mm2 grid 
with 20x (vessels) or 40x (macrophages) magnifications. The most macrophages/vessels containing hotspots were 
selected from the samples. The number of macrophages and vessels were counted within each hotspot and the 
mean numbers per field were calculated. MAC387+ tumor cells were graded semiquantitatively into four catego-
ries 0–3 (from none to abundant). For digital analyses, sections were scanned with Pannoramic 250 Slide Scanner 
(3DHISTEC). Three hotspots were chosen from the scanned images and analysed with Fiji-ImageJ 2.0.0. Shortly, 
the macrophage-positive areas were extracted by colour deconvolution and the resulting image was thresh-
olded. Then a size limit was applied and macrophage-positive areas were calculated. For MAC387 analyses, the 
images were watershed and a size limit was applied to exclude the larger positive tumor cells from macrophages. 
The mean percentages of the hotspots were calculated and used in analyses. CLEVER-1+ vessels were analysed 
manually.

Data availability. The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request.

Statistical Analyses. Spearman rank-order correlation coefficient was used to test the correlations between 
manual vs. digital cell counting from whole sections and TMA vs. whole sections. Associations between clin-
icopathological characteristics and markers were evaluated with Spearman rank-order correlation coefficient, 
Mann-Whitney U test and Kruskal-Wallis test. NAC response was categorized as follows: complete response 
(pT0N0), partial response (pT1/pTa/pTisN0), no response (pT2N0), and progression (pT3 and/or N+). 
Associations between the chemotherapy response and clinicopathological characteristics were evaluated with 
Pearson Chi-square. Fisher’s exact test was used when >20% of the cells had expected count less than five or the 
minimum expected count was <1. Analysed macrophage and vessel markers were dichotomized by the mean 
value (low vs. high). MAC387+ tumor cells were divided into two groups according to the density of positive 
cells (0–2 vs. 3). Regression analyses were used to evaluate the association between the dichotomized markers 
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and chemotherapy response. Mann-Whitney U test was used to evaluate the associations between continuous 
markers and response. Pearson Chi-Square or Fisher’s exact test was used for MAC387+ tumor cells (groups 
0–3). The Kaplan-Meier method, log-rank testing, and Cox proportional hazards regression model were used in 
survival analyses. The survival time was calculated from the date of RC to the date of the last follow-up or death. 
All statistical tests were two-sided and p-values ≤ 0.05 were considered as statistically significant. The statistical 
analyses were performed with SPSS 21 (IBM).
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