
Dynamic Computation Migration at the Edge: Is There an
Optimal Choice?

Sina Shahhosseini1, Iman Azimi2, Arman Anzanpour2, Axel Jantsch3, Pasi Liljeberg2,
Nikil Dutt1, and Amir M. Rahmani1,3

1University of California Irvine, Irvine, CA, USA
2University of Turku, Turku, Finland

3TU Wien, Vienna, Austria
{sshahhos, dutt, a.rahmani}@uci.edu, {imaazi, armanz, pakrli}@utu.fi, axel.jantsch@tuwien.ac.at

ABSTRACT
In the era of Fog computing where one can decide to compute cer-
tain time-critical tasks at the edge of the network, designers often
encounter a question whether the sensor layer provides the optimal
response time for a service, or the Fog layer, or their combination.
In this context, minimizing the total response time using computa-
tion migration is a communication-computation co-optimization
problem as the response time does not depend only on the compu-
tational capacity of each side. In this paper, we aim at investigating
this question and addressing it in certain situations. We formulate
this question as a static or dynamic computation migration problem
depending on whether certain communication and computation
characteristics of the underlying system is known at design-time or
not. We first propose a static approach to find the optimal compu-
tation migration strategy using models known at design-time. We
then make a more realistic assumption that several sources of vari-
ation can affect the system’s response latency (e.g., the change in
computation time, bandwidth, transmission channel reliability, etc.),
and propose a dynamic computation migration approach which
can adaptively identify the latency optimal computation layer at
runtime. We evaluate our solution using a case-study of artificial
neural network based arrhythmia classification using a simulation
environment as well as a real test-bed.

KEYWORDS
Internet of Things, Fog Computing, Computation Migration

ACM Reference Format:
Sina Shahhosseini, Iman Azimi, Arman Anzanpour, Axel Jantsch, Pasi Lilje-
berg, Nikil Dutt, and Amir M. Rahmani. 2019. Dynamic Computation Migra-
tion at the Edge: Is There an Optimal Choice?. In Proc. of GLSVLSI (GLSVLSI
’19)., May 9–11, 2019, Tysons Corner, VA, USA. ACM, NY, NY, USA. 6 pages.
DOI: https://doi.org/10.1145/3299874.3319336

1 INTRODUCTION
The number of IoT-enabled sensor devices are growing rapidly as we
are entering the Internet-of-Things (IoT) era [1]. Today, a variety of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GLSVLSI ’19, May 9–11, 2019, Tysons Corner, VA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6252-8/19/05.
https://doi.org/10.1145/3299874.3319336

Figure 1: IoT System Architecture

sensor devices such as wearables are capable of interacting with the
Internet, offering smart and connected solutions [2]. According to
Cisco, 500 billion devices will be connected to the Internet by 2030,
resulting in an exponential increase in the scale and the complexity
of existing computing and communication systems [3].

Modern IoT systems often comprise of three main layers [1] as
shown in Figure 1. At the first layer, a local sensor network is in
charge of collecting sensory data and sending it to the next layer of
interconnected smart gateways, also known as Fog layer [4]. This
layer is a bridge between the cloud layer (i.e., the third layer) and
the sensor network. It provides a set of services at the edge of the
network to reduce latency and increase availability. Third is the
cloud layer which includes data storage and analytics.

The resource constraints in sensor nodes in terms of computation
and energy is often handled by offloading computation from sensor
devices to the upper layers (i.e., Fog/Cloud). It has been shown
that migrating the computation from sensor nodes to gateways
or cloud can help the system to improve performance and energy
consumption [4]. This is based on the assumption that the response
time is mostly determined by the computation time and shifting
the computation towards more powerful units can help reduce the
total response time. However, this may not be always the case since
such migration is a communication-computation co-optimization
problem. More precisely, the response time of an application is not
only a function of the execution time but also it depends on the
transmission time when the computation of collected data is per-
formed at the upper layers [5]. Therefore, any significant increase
in transmission time leads to an increase in response time. Thus, a
complex system under continuous change, application interference,
environmental uncertainty needs to be dynamically controlled w.r.t.
computational assignments of each layer to minimize response time
and offer performance guarantees [6].

https://doi.org/10.1145/3299874.3319336


The key contribution of this paper is twofold. We first present an
abstract taxonomy of IoT applications and study the impact of full
and partial computation migration at the edge on some of applica-
tion classes to see if there is a static (design-time) optimal solution
to this problem. Based on the observations made in the first part, we
then propose a proof-of-concept dynamic computation migration
approach for the edge sensor nodes and gateways considering the
changes in the system characteristics and environment.

2 SYSTEM ARCHITECTURE AND
APPLICATION CHARACTERISTICS

IoT devices are typically distributed across three layers [1]. The
first layer is the physical layer, which is comprised of sensors that
can sense and collect data from the environment. The second is the
Fog computing (interconnected smart edge gateways/servers) layer,
which is the intermediate computing layer between the cloud and
sensor devices that complement the advantages of cloud computing
by providing additional services that operate more closely to the
sensor layer. Fog computing can perform certain computations
mainly to take over some of the computation burden of sensor
nodes and/or bringing latency-sensitive cloud analytics to the edge
[4]. Another potential advantages of Fog computing is a significant
reduction in the volume of data that needs to be transferred to the
next layer(s) resulting in reduced transmission latency [7–10]. The
third layer is the cloud layer providing unconstrained computing
and storage resources. In this paper, we focus on the computation
migration at the edge network referring to how data is process in
the sensor layer and/or the Fog layer.

Response time is the total time which takes to respond to a re-
quest for a service. In a typical IoT architecture, a device in the
sensor layer consists of one or more sensors and actuators. The sen-
sors are responsible for collecting a set of data and the actuators are
responsible for performing some specific actions (e.g., commands,
notifications, etc.) according to collected data. In such systems, the
data processing unit needs to analyze the data and decide the cor-
responding action. Here, the response time is the time difference
between the moment when enough data for decision-making is
gathered on the sensor node memory and the moment when a node
has the actuation command ready-to-execute in hand [5]. Based
on this scenario, the processing can happen on the sensor node
microprocessor, gateway device processing unit, cloud server pro-
cessors, or on a combination of these. Assuming that an IoT device
is capable of sensing, local processing, and notification (e.g., a smart
watches, smart home appliances, surveillance cameras, etc.) and it
runs all the processes locally, the total response time is simply the
time it needs to process and analyze the collected data:

Response Timetotal = T
Sensor
comp (1)

In contrast, if the sensor outsources all the computation to gate-
way(s) at the Fog layer, the total response time will include the data
transmission time from the sensor device to the next layer and vice
versa. Therefore, in the case of a two-layer sensor-gateway scenario
the total response time is:

Response Timetotal = T
stoд
tran +T

Gateway
comp +T

дtos
tran (2)

Figure 2: The data flow and response time calculation based
on the computation scheme, a) Full computation at the Fog
layer, b) Full computation at the sensor layer, and c) Partial
computation at both sensor and Fog layer.

where tstoдtran and tдtostran are the sensor to gateway and gateway to
sensor transmission time, respectively, and TGateway

comp is the com-
putation time needed on the gateway to complete the task.

If the processing load is distributed across multiple layers, Equa-
tion 2 will change. For instance, for a 2-layer sensor-gateway sce-
nario, the response time will be as follows:

Response Timetotal = T
Sensor
comp +T

stoд
tran +T

Gateway
comp +T

дtos
tran (3)

where T Sensor
comp is the computation time needed on the sensor to

complete a portion of a task while TGateway
comp is the time needed

to complete the remaining of the task. The ways response time is
calculated in all these schemes are shown in Figure 2.

In addition, there exists another application characteristic which
is often neglected during design space exploration. In IoT applica-
tions, the ratio of a generated data to the input data can vary, which
significantly affects the response time. We define this characteris-
tic as Output-Input Data Generation (OIDG) ratio and classify IoT
applications based on it as follows:

(1) Class 1: Applications with extremely low OIDG ratio such
as machine learning inference where a large fraction of input
data is classified into often a handful of classes (OIDG << 1).

(2) Class 2: Applications with low OIDG ratio such as compres-
sion, down-sampling, etc. (OIDG < 1).

(3) Class 3: Applications with OIDG ratio of almost equal to 1,
such as noise filtering (OIDG ≈ 1).

(4) Class 4: Applications with high OIDG ratio such as encryp-
tion (OIDG > 1).

We discuss in the following section how these classes can impact the
total response time when mapped to a layered IoT architecture. It
should be noted that an IoT application, depending on its structure
and use case, can be partitioned using two different ways:



(1) Data-driven Partitioning: In this case, data is divided into
several partitions and these partitions are distributed among
computing units. Each unit keeps the entire application code
while computing a portion of data, similar to the scenar-
ios shown in Figure 2. Partitioning of high dimension data
presented in [11] can be an appropriate example of such
method.

(2) Task-driven Partitioning: In this method, a multi-task ap-
plication is partitioned into (parallel) tasks, and each task or
a set of task is mapped to a computation unit. As an example
of this method, an approach for partitioning convolutional
neural network across edge devices is presented in [12].

In this paper, we focus on data-driven partitioning.

3 STATIC COMPUTATION MIGRATION
There exists a rich literature on how to offload computation from
one layer to another or how to partition IoT applications tempo-
rally or spatially across different computations layers [12–14]. An
example could be the work presented by Xu et al. [15] examining
the effect of partitioning layers of a deep neural network between
a mobile gateway and a battery powered IoT device on the overall
response time.
Although executing an IoT application fully in the sensor node or
in the Fog layer can both have several advantages and disadvan-
tages, a proper decision cannot be made without considering the
characteristics of the communication channel among them. In this
section, we assume the inter-layer communication characteristics
are static and known a priori and make an attempt to propose a par-
titioning approach for both full and partial computation migration
scenarios. In the next section, we make a more realistic assumption
by including the unpredictable nature of network latency in our
problem formulation.

3.1 Full Computation Migration
Data is inherently generated at the sensor layer, but when there
are constraints to process it locally, the data is migrated to the next
layer (e.g., the edge server/gateway). In contrast to data migration
to the next layer, which moves data to computation, computation
migration refers to the scenario when computation is moved to data
(e.g., to a sensor device). Computation migration and data migration
are complementary which means one of them performs well when
other one does not. However, different degrees of network and
application latency can determine which scheme is the optimal
solution in terms of performance and energy consumption. Assume
that computing v bits of data on a sensor takes:

T Sensor
comp (v) (4)

and computing the same v bits of data on a gateway takes:

T
Gateway
comp (v) (5)

Since the communication characteristics of the network are as-
sumed to be static, the transmission time of v bits is:

Ttran (v) (6)

where v is the number of transferred bits. Also consider that an
application processes v bits raw data and produces v ′ bits as an

output. Taking the above equations, the response time of computing
the raw data on the sensor is obtained by the following formula:

T Sensor
res (v) = T Sensor

comp (v) (7)
The response time of computing the raw data on the gateway is
obtained by following formula:

T
Gateway
r es (v,v ′) = T

Gateway
comp (v) +Ttran (v) +Ttran (v

′) (8)
In Class 1 IoT applications, as the volume of generated data is very
negligible, it can be removed and the the response time can be
estimated using the following formula:

T
Gateway
r es (v) = T

Gateway
comp (v) +Ttran (v) (9)

In a static full computation migration approach, the lower response
time at each side is simply the optimal solution. Therefore, the
system determines the computation scheme by identifying the
one leading to a shortest response time. For example, if at a given
network latencyT Sensor

res (v) > T
Gateway
r es (v), then, thev bits of raw

data are processed at the gateway layer, and the v ′ bits of output is
transferred to the gateway. Full computation migration works well
when v ′ is much less than v (i.e., Class 1 application).

3.2 Partial Computation Migration
Although the previous solution allocates all computations to the
sensor-side or the Fog-side, there are specific applications in which
dividing the processing between the sensor and gateway results in
a lower latency. In such a data-driven partitioning, we process R
portion of data on the sensor-side and the rest (1-R) on the Fog-side.
For Class 1 applications, the result of processing (v ′) is very small
in size and can be excluded from the transmission traffic. Therefore,
the response time would be:

TTotalr es (v) = RT Sensor
comp (v) + (1 − R)T

Gateway
comp (v) + (1 − R)Ttran (v)

(10)
We take the ratios between the components of this equation into
account to have a better view of the solution and find the situation
where the partial migration leads to lower response time. We con-
sider sensor computation time to be α times and the transmission
time β times longer than the gateway computation time:

T Sensor
comp = αT

Gateway
comp (11)

Ttran = βT
Gateway
comp (12)

We expect a gateway to process data faster than a sensor, but the
transmission time can be shorter or longer than gateway’s compu-
tation time, therefore α > 1 and β > 0 . In this case the total response
time would be:
TTotalr es = RαT

Gateway
comp + (1 − R)TGateway

comp + (1 − R)βTGateway
comp

(13)
We are interested in finding the relation between α and β , there-

fore, we simplify Equation 13 by considering TTotalr es /T
Gateway
comp as

a linear function of β :

TTotalr es /T
Gateway
comp = (Rα + 1 − R) + (1 − R)β (14)

For different R values, the resulting functions are a group of lines
intersecting at [α-1, α T

Gateway
comp ]. As shown in Figure 3 (a), when

the transmission time is smaller than α-1 times of the gateway



Figure 3: The parametric graph of total response time equa-
tion in Class 1 and Class 3 Applications.

computation time, performing a part of the calculation in the sensor
node results in a shorter response time.

For Class 3 applications, the size of processed and unprocessed
data is almost the same. Therefore, the response time would be:

TTotalr es (v) = RT Sensor
comp (v) + (1 − R)T

Gateway
comp (v) +Ttran (v) (15)

Using similar coefficients for the sensor computation time and the
transmission time would result in:

TTotalr es /T
Gateway
comp = (Rα + 1 − R) + β (16)

As shown in Figure 3 (b), in Class 3 applications, any R value be-
tween 0 and 1 results in a response time betweenTGateway

comp +β and
α .TGateway

comp +β ; but the shortest response time belongs to a setting
that performs all computations on the gateway (R = 0).

The aforementioned shows that the total response time is a func-
tion of β which is the transmission time coefficient. In other words,
in a static partial computation migration scenario, the transmission
rate defines the computation migration ratio which is the key to
minimize the response time.

4 DYNAMIC COMPUTATION MIGRATION
An important challenge when using static computation migration
is the variations in the system’s behavior at run-time, in particular
w.r.t. communication characteristics. Several sources of variation
can affect the system’s response latency such as the change in
computation time, bandwidth, transmission channel reliability, and
transmission latency due to the system’s mobility and environmen-
tal changes. An alternative approach for such dynamic systems is
to dynamically incorporate system’s behaviour and context into
the computation migration decision-making.

The Observe, Decide, and Act (ODA) control loop paradigm [16]
is a proper strategy in this context to leverage real-time observa-
tions to dynamically tune system configuration. A classic ODA loop
measures the system state and/or context (Observe), performs a
decision-making w.r.t. the measurements (Decide), and applies pos-
sible changes (Act). In this section, we propose an ODA closed-loop
dynamic computation migration approach implemented in the Fog
layer to decide the optimal computation layer at runtime.

Our proof-of-concept dynamic computation migration approach
is detailed in Algorithm 1. The algorithm assumes two computa-
tion status (i.e., Cstatus ) as "computation at the sensor node" and
"computation at the Fog layer" which is a simple flag indicating
where computation is currently performed. If needed, the system

Algorithm 1 The dynamic computation migration algorithm
1: Initialize:

T sensorcomp ← estimate computation time at the sensor node
Cstatus ← computation at the sensor node

2: while system is on do
3: T дateway

comp ← estimate computation time at the Fog layer
4: Ttran ← measure transmission time between the sensor node and

the Fog layer
5: if Cstatus = computation at the sensor node then
6: if T sensorcomp − ∆/2 > Ttran +T

дateway
comp then

7: Cstatus ← computation at the Fog layer
8: end if
9: else if Cstatus = computation at the Fog layer then
10: if T sensorcomp + ∆/2 < Ttran +T

дateway
comp then

11: Cstatus ← computation on the sensor node
12: end if
13: end if
14: end while

dynamically changes the status based on 3 parameters to minimize
the total response time. The first parameter is the computation time
at the sensor (T sensorcomp ). This parameter is often fixed and can be
measured at design-time. In contrast, the computation time at the
Fog layer (Tдateway

comp ), as the second parameter, can vary as it relies
on the amount of computation capacity available at the moment.
Therefore, it needs to be estimated at runtime. The third parame-
ter is the transmission time between the sensor node and the Fog
layer (Ttran ). Ttran highly depends on several parameters such as
distance, interference, objects in the environment, just to mention
a few. There are well-established methods to estimate the network
latency at runtime, for instance based on packet loss probability.

Our straightforward proof-of-concept algorithm iteratively mea-
sures/estimates Tдateway

comp and Ttran values at runtime and com-
pares their sum against the (T sensorcomp value to determine the layer
with the lower response time. To avoid unnecessary oscillations of
computation migration between layers, it uses a simple threshold-
based (i.e., soft margin ∆) strategy. It should be noted that our
approach is proposed as a proof-of-concept, and more advanced
and efficient control approaches (e.g., predictive modeling) can be
used to make smarter decisions.

5 EXPERIMENTAL RESULTS
We present the evaluation of our proposed dynamic full compu-
tation migration approach in this section. We first present a case
study which requires a rapid response in decision making. Then,
we perform the evaluations in two different settings.

5.1 Case Study: Neural Network-based
Arrhythmia Classification

We use a real-time arrhythmia classification approach as an ex-
emplar for a time-critical health application, where the state of a
patient’s health deterioration is estimated via Electrocardiogram
(ECG) signals. The approach is enabled via an IoT-based system
to perform ubiquitous health monitoring in everyday settings for



Figure 4: An ECG cycle with the 5 features

Raspberry Pi 3
Model B

HP Compaq
8200 Elite

Processor Quad-core Broadcom
BCM2837 64bit

Quad-core Core i3
2100

Architecture ARMv8-A Intel Core
Speed 1.2 GHz 3.10 GHz
RAM 1 GB 16GB

External Storage 16 GB fast eMMC 250GB SATA HDD

Table 1: The device specifications

patients suffering from cardiovascular diseases. Such a system con-
tinuously acquires health data (i.e., ECG signal) from a user, im-
plements a decision making (i.e., the classification approach), and
sends the health decision to the user. These situations demand a
rapid response time to alert the possibility of deterioration in health
state, which in turn requires a reduction in response time.

We use "Long-Term ST Database" available on Physiobank [17],
including normal ECG signals (patient with a normal health condi-
tion) and ECG signals showing arrhythmia (patient with a critical
health condition). A binary classification is performed on the data,
by which the normal ECG signals and ECG signals with arrhythmia
are distinguished. The classifier in this approach is an Artificial
Neural Network (ANN) method with one hidden layer and rectified
linear unit (ReLU) as the activation function. The classifier is trained
exploiting 12 hours of ECG signals, i.e., 6 hours of normal ECG and
6 hours of ECG with arrhythmia. In this regard, we, first, extract
5 different attributes from the ECG signal as QRS complex dura-
tion, ST segment duration, T wave duration, PR interval and QT
interval [18]. Figure 4 shows an ECG cycle with the 5 features. The
feature extraction is implemented via a cross-correlation between
the ECG signal and a Triangular signal. Afterwards, the features
are fed to the classifier.

In the following, the case study is evaluated first in a real-hardware
setting and then in a more comprehensive simulation-based en-
vironments to assess the efficiency of our proposed dynamic full
computation migration approach.

5.2 Evaluation on a Real Testbed
We conduct an experiment to indicate the dynamic full computation
migration in a real-time health monitoring system. The system
includes a sensor node and a gateway device, each of which is able
to implement the decision-making approach. In the following, the
details of our setup is presented.

5.2.1 Setup. We exploit a Raspberry Pi 3 as the sensor node and
an HP Compaq 8200 Elite Linux machine as the gateway device.

The latter device is equipped with a Quad-core Corei3 2100 CPU
and 16GB RAM, which is considerably more powerful than the
sensor node. The specifications of both devices are indicated in
Table 1. Both the sensor and gateway devices run Apache web
servers with PHP interpreters installed and are interconnected with
a WiFi network. The reply duration of an HTTP request is used to
measure the data transmission time.

Data collection is emulated in this setup, leveraging the existing
dataset (i.e., "Long-Term ST Database"). The pre-recoreded data
with 250 Hz sampling frequency are stored in files in the MicroSD
card of the Raspberry Pi 3. Each file includes a 5-second window of
(ECG) signal. The files are sequentially analyzed at the sensor node
or transmitted to the gateway device. For the decision making, the
binary classification is performed on the data (each segment).

5.2.2 Measurements. The dynamic computation migration is car-
ried out to minimize the system’s response time. In this regard, two
different settings can be selected to perform the computation (i.e.,
decision making): at the sensor node or at the gateway device.

In the first setting, the sensor node performs the data collection
and decision making (i.e., binary classification). Then, the decision
is delivered to the user. As the senor node is attached to the user,
the response time only includes T sensorcomp : the computation time of
the decision making at the sensor node. Running the classifier in
1000 iterations, α equals to 86.67 ± 3.61 ms.

In the second setting, the sensor node is in charge of the data
collection and sending the data to the gateway device. The gateway
performs the classification and sends the decision back to the user.
The response time contains (1) data transmission time from the
sensor node to the gateway device, (2) Tдateway

comp : computation
time of the decision making at the gateway device , and (3) data
transmission time from the gateway device to the sensor node. We
consider (1) and (3) as the Ttran . Data flows in the two settings are
indicated in Figure 2 (a) and (b).Tдateway

comp equals to 18.39±0.63ms
in this setup (measured in 1000 iterations).Ttran is not a fixed value
and highly depends on the distance between the sensor node and
gateway device. Ttran equals to 31.88 ± 4.92 ms when the sensor
node is close to the gateway (i.e., < 2 meters). The value rises when
the distance increases. High packet loss ratio in data transmission
in long distances is one of the main reasons for such changes.

The response time of the two settings is indicated in Figure 5.
When the two devices are close, the response time will be lower if
the classification is performed at the gateway. However, when the
distance exceeds 2.5 meters, the response time will be larger then
the one of the first setting. The gateway dynamically generates a
procedure for the system to reduce the response time, determining
if the decision making should be performed at the sensor layer or at
the gateway device. In this regard, a service is implemented at the
gateway device, selecting one of the settings based to Algorithm 1.

5.3 Simulation-based Evaluation
We conduct an experiment to evaluate the dynamic full computa-
tion migration method in a more flexible simulation environment.
To this end, we use open-source Cooja Simulator [19]. For our sim-
ulations, a Sky mote as a sensor device and an ARM A9-Cortex
processor as a gateway device are used. The behavior of a gateway
sensor is modeled and simulated in MATLAB with Star topology. In



0.5 2 4 6 8

100
200

400

600

800

1,000

Distance between the sensor node and gateway [meter]

Re
sp
on

se
Ti
m
e
[m

ill
ise

co
nd

s]

T
дateway
comp + Ttran

T sensorcomp

Figure 5: Response time of the system when the classifica-
tion is performed at the gateway and at the sensor node.

the Star topology, all nodes are connected to a central connection
point, such as a gateway.

The experiment shows a sensor-gateway pair running a neural
network application (emulating our case study) using two scenar-
ios: running on the sensor node or running on the gateway. The
response time is measured with different packet loss ratio and the
results are shown in Figure 6. As can be seen from the figure, the
response time is almost constant when the application is computing
fully at sensor layer, and increasing the packet loss ratio does not
significantly increase the response time. However, as the gateway
is more computationally powerful then the sensor node, when the
packet loss is negligible the gateway response time is lower than
sensor response time at the same packet loss ratio.

The experiments also evaluate the response time of a more com-
plex system with many connected sensors to a gateway. Increasing
the number of sensors can lead to a rise in response time in the Fog
computing scheme if the we consider limited resources at the Fog
layer. Whereas, increasing the number of sensors does not affect
the response time in the sensor computing scheme. Thus, as shown
in Figure 6, by increasing the number of sensors connected to the
gateway, the Gateway response time exceeds the sensor response
time. A dynamic computation migration solution can adapt to these
variations at runtime by estimating the response time and finding
the layer for computation which leads to the shortest response time.

6 CONCLUSIONS
This paper investigated the communication-computation co-design
aspect of computation migration for the edge network of a typical
3-layer IoT architecture. Since the total response time does not
depend only on the computational capacity of each layer, we pre-
sented a communication-computation co-optimization formulation
to minimize the total response time. Furthermore, due to the uncer-
tainty in network parameters and the number of IoT sensors, an
absolute computation scheme is not an optimal solution. Therefore
we also proposed a dynamic solution for computation migration
at the edge. We evaluated our proposed scheme through several
experiments using a real-time health monitoring application for
arrhythmia classification from real-time ECG signals. Experiments
show the optimal solution varies based on the network latency and
the number of connected sensors to the Fog layer.

Figure 6: Response Time for different number of sensors
and packet loss ratio (plotted based on the interpolation of
a large set of discrete simulation results)

7 ACKNOWLEDGMENTS
This material is based upon work supported partially by the US
National Science Foundation (NSF) WiFiUS grant CNS-1702950 and
Academy of Finland grants 311764 and 311304.

REFERENCES
[1] L. Atzori et al. The internet of things: A survey. Computer networks, 54(15), 2010.
[2] F. Firouzi et al. Internet-of-Things and big data for smarter healthcare: From

device to architecture, applications and analytics. FGCS, 2018.
[3] CISCO. Internet of Things At a Glance, 2016. https://www.cisco.com/c/dam/en/

us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf.
[4] A.M. Rahmani et al. Fog Computing in the Internet of Things - Intelligence at the

Edge. Springer, 2017.
[5] M.R. Nakhkash et al. Analysis of Performance and Energy Consumption of

Wearable Devices and Mobile Gateways in IoT Applications. In COINS, 2019.
[6] C. Perera et al. Context Aware Computing for The Internet of Things: A Survey.

IEEE Communications Surveys Tutorials, 16(1):414–54, 2014.
[7] R. Roman et al. A survey and analysis of security threats and challenges. Future

Generation Computer Systems, 78, 2018.
[8] D. Amiri et al. Edge-Assisted Sensor Control in Healthcare IoT. In IEEE GLOBE-

COM, 2018.
[9] I. Azimi et al. Hich: Hierarchical fog-assisted computing architecture for health-

care iot. ACM Transactions on Embedded Computing Systems, 16(5), 2017.
[10] I. Azimi et al. Empowering healthcare iot systems with hierarchical edge-based

deep learning. In IEEE/ACM CHASE, 2019.
[11] J. Zhou et al. An efficient multidimensional fusion algorithm for IoT data based

on partitioning. Tsinghua Science and Technology, 18(4):369–78, 2013.
[12] S. Dey et al. Partitioning of CNN Models for Execution on Fog Devices. In 1st

ACM Int. Workshop on Smart Cities and Fog Computing, pages 19–24, 2018.
[13] T.N. Gia et al. Fog Computing in Body Sensor Networks: An Energy Efficient

Approach. In IEEE Int. Body Sensor Networks Conference, 2015.
[14] A.M. Rahmani et al. Exploiting smart e-health gateways at the edge of healthcare

Internet-of-Things: a Fog computing approach. Future Generation Computer
Systems, 78(2):641–58, 2018.

[15] M. Xu et al. Enabling cooperative inference of deep learning on wearables and
smartphones. CoRR, abs/1712.03073, 2017.

[16] H. Hoffmann et al. SEEC: A Framework for Self-aware Computing. Technical
report, MIT, 2010.

[17] F. Jager et al. Long-term st database: a reference for the development and
evaluation of automated ischaemia detectors and for the study of the dynamics
of myocardial ischaemia. Medical & Biological Engineering & Computing, 2003.

[18] J.T. Catalano. Guide to ECG Analysis. Lippincott Williams &Wilkins, 2002.
[19] Osterlind, F. and others. Cross-level sensor network simulation with COOJA.

Proceedings. 2006 31st IEEE Conf. on Local Computer Networks, 2006.

https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf

	Abstract
	1 Introduction
	2 System Architecture and Application Characteristics
	3 Static Computation Migration
	3.1 Full Computation Migration
	3.2 Partial Computation Migration

	4 Dynamic Computation Migration
	5 Experimental Results
	5.1 Case Study: Neural Network-based Arrhythmia Classification
	5.2 Evaluation on a Real Testbed
	5.3 Simulation-based Evaluation

	6 Conclusions
	7 Acknowledgments
	References

