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Abstract

Cellular DNA barcoding has become a popular approach to study
heterogeneity of cell populations and to identify clones with dif-
ferential response to cellular stimuli. However, there is a lack of
reliable methods for statistical inference of differentially respond-
ing clones. Here, we used mixtures of DNA-barcoded cell pools to
generate a realistic benchmark read count dataset for modelling a
range of outcomes of clone-tracing experiments. By accounting for
the statistical properties intrinsic to the DNA barcode read count
data, we implemented an improved algorithm that results in a
significantly lower false-positive rate, compared to current RNA-
seq data analysis algorithms, especially when detecting differen-
tially responding clones in experiments with strong selection pres-
sure. Building on the reliable statistical methodology, we illustrate
how multidimensional phenotypic profiling enables one to decon-
volute phenotypically distinct clonal subpopulations within a
cancer cell line. The mixture control dataset and our analysis
results provide a foundation for benchmarking and improving
algorithms for clone-tracing experiments.
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Introduction

Cellular DNA barcoding was originally developed to trace clonal

growth dynamics in vivo or in vitro (Gerrits et al, 2010; Nguyen

et al, 2014, 2015; Porter et al, 2014; Simons, 2016). More recently,

however, cellular DNA barcoding has been applied as an effective

means to detect clone-specific differences in the phenotypes other

than growth, including drug response (Bhang et al, 2015; Hata et al,

2016; Lan et al, 2017; preprint: Acar et al, 2019; Bell et al, 2019;

Caiado et al, 2019; Echeverria et al, 2019; Merino et al, 2019; Seth

et al, 2019), postsurgical recurrence (Roh et al, 2018), reprogram-

ming capacity (Biddy et al, 2018; Shakiba et al, 2019), phenotypic

plasticity (Lan et al, 2017; Mathis et al, 2017) and metastatic poten-

tial (Wagenblast et al, 2015; Echeverria et al, 2018; Merino et al,

2019). Generally, cellular DNA barcoding can be widely applied to

quantify and trace in time clone-specific differences in virtually any

phenotype for which a phenotype-based cell selection method

exists.

Unlike single-cell RNA transcriptomics-based reconstruction of

cell lineage trees from the RNA expression profiles, the DNA

barcoding-based clone tracing provides an unambiguous way to

trace the identity of a particular clone over time and accurately

quantify the changes in the clone sizes in response to a perturba-

tion. Therefore, emerging methodologies seek to integrate DNA

barcoding-based clone tracing with single-cell technologies, such as

scRNA-seq (Biddy et al, 2018; Fletcher et al, 2018; Kester & van

Oudenaarden, 2018; Raj et al, 2018; preprint: Weinreb et al, 2018),

or even isolate clones carrying a barcode of interest for in-depth

cellular profiling (Al’Khafaji et al, 2018; preprint: Rebbeck et al,

2018; preprint: Akimov et al, 2019). These developments are

expected to provide even more high-resolution insights into the biol-

ogy of heterogeneous cellular systems. However, to our knowledge,

there have been no systematic efforts to benchmark the accuracy of

clonal phenotype quantification via DNA barcoding.

In a typical clone-tracing experiment (Fig 1A), cells are infected

with virus particles carrying a short semi-random DNA sequence—a

“barcode”. The infection is performed in a very low multiplicity of

infection (MOI) to ensure that each cell receives only one barcode.

After that, the cells are expanded to achieve a sufficient representa-

tion of individual clones and divided into samples, typically

“control” and “treatment” pools, where the control pool determines

a background barcode representation, whereas the treatment pool

(s) are subjected to a phenotype-based selection (e.g. drug treat-

ment, immunophenotyping or xenografting). Finally, the barcodes

are PCR-amplified from genomic DNA, and the barcode frequencies

are estimated within each pool with next-generation sequencing

(NGS). In the quantification phase, clone sizes are assumed to be
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proportional to the barcode abundances, and accordingly, differen-

tially represented barcodes (DRBs) between the treatment pool(s)

and control population indicate clone-specific differences in the

particular phenotype.

In statistical terms, the detection of DRBs can be considered as

identification of differentially represented sequencing tags from

high-throughput count data, and RNA-seq data analysis algorithms

have been applied to this task (Seth et al, 2019). However, we

hypothesized that barcode count data from clone-tracing experi-

ments may seriously violate the basic assumptions of the RNA-seq

analysis algorithms (i.e. that tagwise variance is homogeneous

and the read counts follow a negative binomial distribution).

We reasoned that the tagwise variance and the underlying distribu-

tion of the barcode read counts may depend on the extent of the
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Figure 1. An overview of the experimental setup for the benchmark dataset generation.

A A schematic presentation of a typical clone-tracing experiment (see text for description).
B To generate the benchmark barcode count datasets, we performed two independent high-complexity DNA barcoding experiments on Mia-PaCa-II and OVCAR5 cell

lines (see Materials and Methods for details). In each experiment, cells were collected after selection and expansion step (Fig 1A) to produce two cell pools (Pool A
and Pool B). Cells in each pool were counted and mixed in a 50/50 ratio to produce “AB mix”. The AB mix was then sampled in various extents in two replicas to
produce so-called null samples with different numbers of cells (20 × 103, 40 × 103, 80 × 103, 160 × 103, 330 × 103, 660 × 103), but with the same expected
representation of each barcode. Perturbed samples were generated by taking either 20, 40, 80 or 160 thousand cells from the AB mix, and adding an indicated
percentages of cells from the Pool A (e.g. for sample with 160 × 103 cells and perturbation degree of 35%, we added 160 × 103 × 0.35 = 56 × 103 cells from the Pool
A). The number of replicas for each sample is indicated in circles next to the tube icon.

C Barcode representation fold changes (log2) in the null samples of the indicated sizes (number of cells sampled from the AB mix), relative to the mean of two Null-660
replicas. Barcodes are ordered according to their size in the Null-660 samples. Pool A barcodes are sorted in decreasing order, and Pool B barcodes are ordered in increasing
order. Boxes represent interquartile ranges for each group of 53 observations. Whiskers indicate upper and lower quartiles. Central line corresponds to the median value.

D Same data as in (C) but for the perturbed samples. Dotted lines indicate the expected barcode fold changes calculated using formula: (cells from pool A/total number
of cells)/0.5, for the Pool A barcodes, and similarly for the Pool B barcodes. Data representation is the same as in (C).
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sampling bottleneck introduced by the experimental manipulations

(e.g. treatment). Such sample size reduction can be extremely high

in some applications (e.g. high doses of a drug, cell sorting for rare

subpopulations or xenotransplantation), leading to a narrow

sampling bottleneck. Therefore, differences in the selection pressure

(and hence sampling size) may result in a biased performance of

DRB detection with the current RNA-seq analysis algorithms, unless

corrected for.

Here, we performed multiple clone-tracing experiments on

cancer cell lines to generate barcoded cell pools with non-overlap-

ping sets of barcodes. We used these cell pools to produce bench-

marking barcode read count datasets that model various outcomes

of clone-tracing experiments. Our design simulates varying degrees

of sampling-induced biases and clone-specific responses, with

known ground truth to allow for benchmarking of DRB detection

algorithms. We compared the commonly used RNA-seq analysis

algorithms, DESeq (Anders & Huber, 2010), DESeq2 (Love et al,

2014) and edgeR (Robinson et al, 2010; McCarthy et al, 2012).

Based on the benchmarking results, we developed DEBRA (DESeq-

based Barcode Representation Analysis) algorithm for more reliable

clone tracing through improved DRB detection accuracy and a

proper control for false discoveries in a wide range of experimental

conditions. Finally, we demonstrate how multidimensional pheno-

typic profiling can be implemented on barcoded cancer cells to iden-

tify phenotypically distinct clonal subpopulations.

Results

A benchmark dataset for modelling response heterogeneity in
clone-tracing experiments

To systematically study the effect of sampling on DNA barcode count

data, and the applicability of the RNA-seq data analysis algorithms

to the identification of differentially responding clonal lineages, we

generated a benchmark barcode read count datasets with known

ground truth for differential barcode representation and realistic

barcode frequency distribution. Specifically, we performed high-

complexity cellular DNA barcoding experiments on two cancer cell

lines—OVCAR5 and Mia-PaCa-2 (see Materials and Methods). Each

cell line was independently transduced in two replicas, selected with

antibiotic and expanded to produce two cell pools with non-overlap-

ping sets of DNA barcodes (Pool A and Pool B, see Fig 1). For each

cell line, the produced cell pools were mixed in a 50/50 ratio to

generate the AB mix (Fig 1B), from where 18 samples of different

sizes were sampled (null samples; Fig 1B). This experimental design

models an experimental scenario in which different degrees of selec-

tion pressure (and hence bottleneck sizes) are applied to a sample

with no clone-specific differences (Fig 1C), in response to the selec-

tion pressure (e.g. treatment). We called these samples null samples

because no barcode is expected to be differentially represented, and

therefore, an accurate DRB detection algorithm is supposed to accept

the null hypothesis for all the barcodes. Such null samples enabled

us to study the effect of sampling size on the statistical characteris-

tics of barcode count data and to estimate the false discovery rate of

DRB detection algorithms.

Furthermore, we generated 24 perturbed samples, where the

representation of a set of barcodes in the AB mix mixture was

changed by adding extra number of cells from the barcoded cell

Pool A (Fig 1B). Perturbed samples model the outcome of clone-

tracing experiments on a cellular population with varying degrees of

clone-specific responses to the selection pressure (e.g. treatment;

Fig 1D). By sequencing of the Pool A and Pool B, we determined the

ground truth for differential representation of the barcodes in the

perturbed samples, which allowed us to benchmark the accuracy of

the DRB detection algorithms.

Sampling bottleneck affects statistical properties of DNA
barcode count data and DRB detection accuracy

To investigate the statistical characteristics of the benchmark

barcode count data, we first analysed the mean–variance relation-

ships for each pair of null samples. We found a marked increase

in the variance as the size of the sample decreases in both

OVCAR5 and Mia-PaCa-2 cells (Figs 2A and B, and EV1A and B).

We observed a similar dependency in the data from a pancreatic

cancer patient-derived xenograft (PDX), published by Seth (Seth

et al, 2019; Fig 2A and B), where the variance of the drug-treated

samples is much higher as compared to that of the non-treated

controls. The observed difference is likely due to the decrease in

the total number of cells (sample size) in response to the drug

treatment. We next tested how well the barcode count data follows

a negative binomial (NB) distribution using the goodness-of-fit

estimation for our OVCAR5 and Mia-PaCa-2 null samples and the

published pancreatic PDX samples (Seth et al, 2019). Notably, the

NB model approximated poorly the barcode count data at low

count region both in the small-sized OVCAR5 null samples and in

the PDX drug-treated samples (Figs 2C and EV2C). These proper-

ties of the barcode count data violate the basic assumptions made

in the RNA-seq data analysis algorithms, which may lead to sub-

optimal performance when applied to DRB detection in clone-

tracing experiments.

To test the performance of the RNA-seq analysis algorithms for

the identification of DRBs, we applied the widely used

algorithms—DESeq, DESeq2 and edgeR—on the OVCAR5 null

samples. An accurate DRB detection method is expected to accept

the null hypothesis for all the barcodes (i.e. no barcode should be

identified as differentially represented), since the representation of

the barcodes is equal across the null samples. However, all the

tested versions of the algorithms identified a significant number of

DRBs between the null samples of different sizes, with percentages

of DRBs reaching 50% at smaller sample sizes and higher FDR

levels (Fig 2D). We note that all these detections are false posi-

tives, and all the algorithms had much higher type I error rates

than those expected based on their empirical P-values

(Appendix Fig S1A). DESeq performed better than the other algo-

rithms, yet it identified more than 15% false positives at sample

size of 20 × 103 cells with a nominal FDR level of 0.25. Moreover,

the performance of DESeq decreased when implemented in other

designs (Appendix Fig S1B). With all the tested algorithms, the

proportion of falsely detected DRBs increased when comparing

null samples with larger differences in size and hence variance.

These analysis results show that the decrease in sample size due

to the selection pressure or any other manipulation leading to cell

loss may severely compromise the accuracy of DRB detection with

the standard RNA-seq analysis algorithms.
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Modified versions of DESeq and DESeq2 algorithms effectively
control for false discoveries

Mean–variance modelling is central for the inference of differentially

represented tags by the RNA-seq analysis algorithms. In DESeq and

DESeq2 algorithms, the tagwise variances are estimated by fitting a

negative binomial (NB) generalized linear model, which assumes

variance homogeneity across sample groups. However, when the

variances are not homogeneous, which is the case for the DNA

barcoding data (Fig 2A), the resulting tagwise estimates will become
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Figure 2. Sampling size affects the statistical properties and accuracy of DRB detection.

A Mean–variance plots for the benchmark OVCAR5 null samples and pancreatic cancer patient-derived xenograft (PDX) samples (Seth et al, 2019). Local variance was
calculated by averaging a tagwise variance over the mean counts using a 20 read-count window.

B Scatterplots of median-normalized read counts (log10) of OVCAR5 null samples and pancreatic PDX samples (Seth et al, 2019).
C Local goodness-of-fit testing for negative binomial distribution where the distribution parameters were estimated using maximum-likelihood estimator (MLE). Two-

sample Cramer–von Mises test was used to compare the observed and simulated negative binomial random variables. Statistical significance was determined using
Monte Carlo bootstrap method, where a small empirical P-value indicates strong deviation from the negative binomial distribution.

D The proportion of differentially represented barcodes (DRBs) identified in the OVCAR5 null samples with various versions of RNA-seq analysis algorithms. Two replicas
of the null samples of indicated sizes (x-axis) were tested for DRBs against a control group of 4 null samples (two Null-660 samples and two Null-330 samples). The
bars represent the average proportion of DRBs identified with the algorithms, calculated over threefold bootstrap runs (mean of the 10 resamples with replacement)
under the indicted false discovery rates (FDRs). The version with unadjusted P-values is shown in Appendix Fig S1A for comparison. Error bars, SD; LRT, likelihood ratio
test; Wald, Wald test; QLF, quasi-likelihood F-test; and exact, implementation of exact test proposed by Robinson and Smyth (Robinson & Smyth, 2008), as
implemented in the original algorithms.
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close to the average variance between the control and treatment

samples. In this case, subsequent statistical test will be performed

against the NB model with dispersion parameter different from that

of the treatment sample, hence compromising the accuracy of the

DRB detection. Therefore, we reasoned that the observed high rates

of false discoveries by standard RNA-seq analysis algorithms

(Fig 2D) are caused by the differences between the variances of the

control and test samples (Fig 2A). This notion is supported by the

fact that the rate of false discoveries was dependent on the sample

size and hence variance difference between control and treatment

samples (Fig 2D). Another possible source of false discoveries is the

deviance from the NB model in the low count regions (Figs 2C and

EV2C), which renders the statistical tests assuming a NB model

non-applicable for non-NB barcodes.

To address these statistical issues, we implemented two modifi-

cations to the DESeq2 and DESeq algorithms:

1 We modified the variance estimation procedure so that the esti-

mation of the tagwise variances is performed exclusively from

the replicates of test samples (e.g. treated samples). Two dif-

ferent options for the variance estimation were investigated (see

below and Materials and Methods for details).

2 We implemented a heuristic algorithm that estimates a group-

specific read count level (so-called b threshold, see Materials and

Methods), above which the read counts follow the NB model.

The estimated b threshold is used as a lower bound for the inde-

pendent filtering step (Bourgon et al, 2010; Love et al, 2014).

For the variance estimation, we adopted two widely used

options, which we refer to as “trended” and “shrunk” methods. The

trended method corresponds to the classical approach for mean–

variance relationship modelling that estimates tagwise variances

from local mean–variance model as fitted by DESeq2 algorithm (via

locfit R package; Loader, 2013). The shrunk method corresponds to

the default method for dispersion estimation as implemented in

DESeq2, where the tagwise variances are calculated via Bayesian

shrinkage of individual estimates towards mean–variance trend

(Love et al, 2014). The proposed b thresholding approach aims to

prevent possible false discoveries arising from the read counts

which do not follow the NB model, while taking advantage of the

improved detection power provided by the independent filtering

algorithm (Bourgon et al, 2010; Love et al, 2014; see Materials and

Methods for details). We implemented the modified DESeq and

DESeq2 algorithms into a method, dubbed DEBRA (DESeq-based

Barcode Representation Analysis), which is available through the

Github portal (https://github.com/YevhenAkimov/DEBRA).

To benchmark the modified algorithms, we first applied DEBRA

to the OVCAR5 null samples. The modified methods correctly

accepted the null hypothesis for virtually all the barcodes when the

null samples were tested against each other (Fig 3A), hence demon-

strating a greatly improved control for false discoveries compared to

the original algorithms. When the trended dispersion estimates were

used, the proportion of identified DRBs were within the range of 0–

1.5 × 10�3, while the shrunken estimates led to somewhat increased

false-positive DRB rate of up to 4 × 10�3. To evaluate the relative

contributions of the two modifications implemented in DEBRA to

the false discovery rate, we first run the DEBRA algorithm without

the b thresholding step. We observed a drastic drop in the number of

false discoveries (Fig EV3), suggesting that incorrect dispersion esti-

mation is responsible for most of the false discoveries. The remain-

ing false discoveries were in the low read count region and were

therefore eliminated when the b thresholding was applied (Fig EV3).

DEBRA-modified algorithm improves the accuracy of DRB
detection for various experimental outcomes

To test the accuracy of the DEBRA-modified algorithms at detecting

DRBs, we used the perturbed samples to simulate experimental

outcomes with varying proportions of enriched barcodes. The

ground truth for the differential barcode representation in the

perturbed samples was determined by assigning each barcode to the

enriched or depleted group according to its presence either in Pool

A or in Pool B, as defined from NGS reads of these cell pools. The

ground truth information was used to generate experimental results

(read count tables), with varying proportions of enriched barcodes

(0.05, 0.15 and 0.5; 10 replicas for each size and perturbation

degree; see Materials and Methods and Appendix Fig S2 for details).

We tested each simulated experimental outcome for DRBs using the

▸Figure 3. Comparison of the algorithms’ performance.

Circles left to the algorithms’ names indicate the modified algorithms.

A Barplots of the percentage of DRBs identified by the modified algorithms in the OVCAR5 null samples, calculated over threefold bootstrap runs (10 resamples with
replacement) using the same design as in Fig 2D. Error bars, SD.

B The performance of the original and modified algorithms for detection of enriched barcodes in the perturbed samples. Two replicas of the sample with perturbation
degree of 35%, indicated size (top) and enriched proportions (right), were tested against four null samples (two replicas of Null-660 samples and two replicas of Null-
330 samples). The bars represent the average percentage of the barcodes detected as enriched DRBs (fold change > 0; FDR < 0.25) by the indicated algorithm,
calculated over threefold bootstrap runs (10 resamples with replacement). Correctly assigned barcodes (classified according to the ground truth) are marked in blue
and incorrectly detected barcodes (not classified according to the ground truth) are marked in red (see Fig EV3 for the results in the samples with other perturbation
degrees and proportions of enriched barcodes). White circles mark the percentage of barcodes corresponding to the nominal FDR level. Error bars, SD.

C The standardized partial area under the precision-recall curve (pAUC), calculated using intervals of [0,1] for precision and [0,X] for recall, where X is the mean recall
value at FDR = 0.25 for a given sample over all the tested algorithms. The panel shows the pAUC for perturbed samples of indicted size and perturbation degree with
enriched barcode proportion of 0.5 (see Appendix Figs S5 and S6 for pAUCs and precision-recall curves for other sample sizes, perturbation degrees and proportions of
enriched barcodes). For calculating the precision and recall metrics, we ranked the barcodes according to their unadjusted P-values as classification scores, where the
positive class was defined as correctly detected barcodes (correctly assigned to either enriched or depleted group; see Materials and Methods for details). A total of 10
threefold bootstrap runs with replacement were performed. Boxes represent interquartile ranges (25 to 75 percentile). Whiskers indicate upper and lower quartiles.
Central line corresponds to the median value.

D The full precision-recall curves for the corresponding sample sizes and perturbation degrees as in (C), with enriched barcode proportion of 0.5. For clarity, the
modified algorithms with shrunken dispersion estimates are not shown here.
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null samples as a control. The original algorithms showed again

relatively high rates of false positives in the low-size samples with

enriched barcode proportions of 0.05 and 0.15 (Fig 3B). Notably,

the rates of false positives were higher than expected by the nominal

FDR levels (Fig 3B, white circles), except for the samples with

proportion of enriched barcodes of 0.5 where the percentage of false

positives dropped below the nominal FDR threshold also with the

original algorithms (Fig EV3).

Notably, regardless of the proportion of enriched barcodes, the

rate of false discoveries detected by the original algorithms in the

low-sized samples became very close to the “random” results, that

is, those obtained when the P-values were randomly permuted over

the barcodes (indicated by black lines in Fig EV3). This suggests

that the empirical significance testing implemented in the original

algorithms cannot properly control for the false positives when

samples with high difference in variance are compared. In contrast,

the false-positive rates of the modified algorithms with trended

dispersion estimates never exceeded the nominal FDR threshold,

demonstrating an improved control for false discoveries when

detecting DRBs across all the tested conditions (Figs 3B and EV3).

To further investigate the effect of sequencing depth on the perfor-

mance of the DEBRA algorithm, we down-sampled reads in the

perturbed samples. We observed a robust performance of the

DEBRA algorithm across various sequencing depths until reaching a

critical value (40,000 reads in our dataset), after which the perfor-

mance started to drop rapidly (Appendix Fig S3).

To systematically test their accuracy for DRB detection, we

further compared the performance of the algorithms using partial

area under precision-recall curve (pAUC) as a summary perfor-

mance metric (see Materials and Methods). In this analysis, the

barcodes were ranked by the unadjusted P-values from the algo-

rithms, with low P-values indicating high statistical confidence that

the barcode was either enriched or depleted. We found that the

DEBRA-modified algorithms with trended dispersion estimates

provided better barcode scoring in virtually all the tested scenarios,

further supporting its improved performance (Fig 3C and D).

Among all the tested versions, the modified DESeq with trended

dispersion estimates showed the most robust scoring across all the

tested conditions (Appendix Figs S3 and S4). When applied to the

pancreatic PDX data (Seth et al, 2019), the modified algorithms with

trended dispersion estimates identified again substantially less

number of DRBs under the same FDR threshold than the original

algorithms (Appendix Fig S7A). Consistently with results from the

benchmarking dataset, the difference in the number of detected

DRBs between the original and modified methods was larger for the

higher-variance sample (AZD6244; Appendix Fig S7B).

DEBRA results are consistent across bottleneck sizes in drug
sensitivity experiments

Next, we sought to test whether the DEBRA-modified algorithms

will improve their counterparts also in actual clone phenotyping

experiments. To this end, we barcoded and expanded the OVCAR5

cells to achieve an average representation of ~ 1,000 cells per clone,

and split the cells into the control and treatment pools (Fig EV4 and

Appendix Table S2). The carboplatin treatment pool was further

divided into reference samples (four replicates, each with 3 M cells)

and subsamples of decreasing sizes (2 × 1.33 M; 2 × 0.16 M and

2 × 0.067 M cells). Each of the treatment samples was subjected to

a selection pressure—a relatively mild carboplatin treatment (IC50

of 7 lM for 4 days). The use of the mild treatment conditions as a

selection pressure enabled us to produce a benchmarking dataset

presenting with natural clone-specific responses, while modelling

different degrees of treatment-induced sample size reduction. The

reduced number of cells in the subsamples models an increasing

selection pressure, while the reference samples enable calculation of

FDR for the assessment of the algorithms’ performance. Hence, this

design allows us to benchmark the DRB detection algorithms for

various degrees of bottleneck effects (i.e. sample size reduction),

with realistic clone response profiles.

We first confirmed that the DEBRA-modified and original algo-

rithms show agreement in the DRBs detected in the reference samples.

Indeed, the algorithms demonstrated highly consistent FDR values in

the reference samples, with DEBRA detecting slightly less DRBs at

higher FDR levels (Fig EV4B). Next, we compared the FDR values

between reference samples and subsamples estimated with DEBRA-

modified and original algorithms (Fig 4). As expected, the larger-sized

subsample (1.3 M cells) displayed a high agreement with the refer-

ence sample when analysed with either DEBRA-modified or original

algorithms. However, the number of subsample-specific DRBs

detected with the original algorithms (i.e. low FDR levels in the

subsample but not in the reference samples) increased with the

sample size reduction (Fig 4B, red frame and C, and Appendix Fig

S8), which is consistent with the previously observed pattern both in

the perturbed (Fig 3B) and null samples (Fig 2B). Since the decrease

in the cell number in the subsamples is not supposed to increase the

DRB detection power, it is likely that most of the subsample-specific

DRBs are false discoveries. On the other hand, DEBRA-modified algo-

rithms detected only a relatively few of such subsample-specific

DRBs, with no observed relationship with the sample size reduction

degree (Fig 4A and C, and Appendix Fig S8C and D), thereby demon-

strating the desired behaviour, where the sample size reduction does

not increase the proportion of false discoveries.

Interestingly, we observed a surprisingly high proportion of

subsample-specific DRBs with the original DESeq algorithm, even at

the largest subsample size of 1.3 M (i.e. subsample with the largest

bottleneck size). We found that the majority of the DESeq-detected

subsample-specific DRBs had mean count values lower than the corre-

sponding b threshold (Appendix Fig S9). This is different from the

DESeq2 detection pattern, where the number of subsample-specific

DRBs below the b threshold remained relatively low in the largest

subsample, and these numbers increased with the subsample size

reduction degree (Appendix Fig S9). We expect that this is due to

discrepancies in the dispersion estimation between the DESeq and

DESeq2 algorithms. Indeed, the DESeq-derived dispersion trend was

significantly lower than that of DESeq2 in the low count region.

Together, these results indicate an unexpected effect of non-NB reads

on the statistical inference of DRBs and stress the importance of b
thresholding for reliable detection of differentially represented clones.

Multidimensional phenotypic profiling via DNA barcoding
identifies distinct cancer cell subpopulations

Clone-tracing technology has been so far primarily applied to study

intrapopulation heterogeneity of cell lines and patient-derived

samples. Most studies have focused on determining clone-specific
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was estimated with (A) DEBRA-modified DESeq2(Wald) or (B) original DESeq2(Wald). Blue square indicates the region where barcodes have FDR values lower than
the set threshold of 0.1 in both reference and subsamples (consensus DRBs). Red square outlines the region where the barcodes are detected as significant only in
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responses to a single perturbation, such as chemotherapeutic drugs

(Bhang et al, 2015; Hata et al, 2016; Lan et al, 2017; preprint: Acar

et al, 2019; Bell et al, 2019; Caiado et al, 2019; Echeverria et al,

2019; Merino et al, 2019; Seth et al, 2019). We argue, however, that

by measuring individual responses to multiple perturbations on the

same population of the barcoded cells, one can detect phenotype–

phenotype associations and identify clusters of phenotypically

distinct clones. Such multidimensional phenotyping depends on reli-

able algorithm for DRB detection and quantification. In this

approach, multiple phenotypes are measured for each clonal lineage

in the population to produce a multidimensional phenotypic profile.

To illustrate this approach, we quantified multiple clone-specific

phenotypes for the barcoded OVCAR5 cell line (Figs 5A and EV5,

and Appendix Table S3) by applying a number of independent

phenotypic assays that introduce differing selection pressure to

barcoded OVCAR5 cells, and then analysed the clone-specific

responses using DEBRA algorithm.

To confirm the capability of the approach to yield a reliable

biological knowledge, we tested whether a well-known pheno-

typic dependence between KI67 expression and growth rate

(Miller et al, 2018) can be detected by the DNA barcode-based

phenotypic profiling (Fig 5C). Indeed, we observed a strong posi-

tive correlation between the clone-specific KI67 staining and

clonal growth rates. Similarly, we found that the proliferation rate

of the OVCAR5 clones correlated positively with their efflux

capacity and the ability of the clones to attach to the substrate in

FBS-free conditions (Fig 5D). We further tested whether these

phenotypes show the same associations at the cell subpopulation

level. Since the efflux and attachment assays were non-destructive

to cells, we isolated populations of EffluxHIGH, EffluxLOW and

AttachmentHIGH cells, and measured their growth rates. The

results of these independent assays were consistent with the

observed correlation at the clonal level; namely, the isolated

EffluxHIGH and AttachmentHIGH subpopulations showed higher

proliferation rates when compared to EffluxLOW and bulk OVACR5

cells, respectively (Fig 5E). These results indicate that the

correlation between phenotypes identified at the level of individ-

ual clones predicts phenotype–phenotype relationships at the level

of cell subpopulations, suggesting the feasibility of the proposed

multidimensional phenotypic profiling approach.

Next, we used the t-SNE (van der Maaten & Hinton, 2008) and

UMAP (McInnes et al, 2018) dimensionality reduction algorithms to

deconvolute cell subpopulations based on clonal phenotypes

measured as fold change in barcode representation in OVCAR5 cells.

We manually gated four clusters of clones with distinct phenotypic

characteristics based on the t-SNE and UMAP projections accord-

ingly (Figs 5F and G, and EV6A). Interestingly, two of the identified

cell clusters displayed carboplatin resistance phenotype (Fig 5H,

clusters 2 and 4). Cells from cluster 2 (~ 8% of the population)

exhibited an increased efflux capacity which is known to mediate

the carboplatin resistance (Stewart, 2007; Burger et al, 2011). Cells

from cluster 4 (about 1.5% of the population) displayed slower

proliferation rates, increased ALDH activity, higher autolysosomes

load and increased resistance to carboplatin (Fig 5H). Such pheno-

typic signature is typically attributed to cancer cells with stem-like

characteristics(Ma & Allan, 2011; Vitale et al, 2015; Tomita et al,

2016; Peng et al, 2017; Sharif et al, 2017; Boya et al, 2018; Nazio

et al, 2019). Within the largest cluster of clones (cluster 1), sensitiv-

ity to carboplatin showed a moderate correlation with proliferation

rate (Fig EV6B).

Taken together, the high-throughput phenotyping of the

barcoded clones suggests that the OVCAR5 cell resistance to

carboplatin could emerge through various mechanisms mediated

by different cell subpopulations. Furthermore, these data suggest

that the high-throughput phenomics approach via DNA barcoding

enables inference of phenotypically distinct clonal subpopulations,

even within a cell line. To test whether the modified significance

testing implemented in the DEBRA algorithm provides an advan-

tage also for the clone clustering analysis, we compared the

UMAP projections of clones selected by FDR value from DEBRA-

modified DESeq2(Wald) and those from the original DESeq2

(Wald) algorithm. The clustering of DEBRA-selected clones

▸Figure 5. Multidimensional phenotypic profiling approach.

A A schematic presentation of the experimental workflow for barcoding-based high-throughput multidimensional clonal lineage phenomics approach. Cells were
barcoded and expanded to achieve reasonable representation of cells per barcode (e.g. 500–4,000). Next, the population was divided into multiple samples and
selection pressure was applied to each sample. Cells passing selection conditions were collected and used to prepare a NGS library. In the present study, we
measured clone-specific fold changes in barcode representation in the following assays: carboplatin response (7 lM carboplatin for 3 days followed by 7 days re-
growth), autophagy measured by autolysosomes load (FACS; Thomé et al, 2016), ALDH activity, activity of efflux pumps, proliferation (7 days), 12 h of attachment
assay in FBS-free media (attached and non-attached cells were collected) and KI67 staining.

B Barcode representation fold changes in response to the indicated selection pressure for the clones with mean normalized read counts larger than 70.
C Scatterplot of fold change in the barcode representation after 7 days of growth versus fold change in representation between KI67HIGH population and control. Each

point represents a clone with colour indicating the local density of points. Displayed are only clones with counts larger than 70. R, Pearson correlation coefficient.
D Scatterplot of fold changes in clone abundances after attachment in FBS-free condition and 7 days of growth (left), or upon sorting by efficacy of fluorescent dye

efflux and 7 days of growth (right), as described in Materials and Methods.
E The average doubling time of the cell subpopulations separated by their attachment to substrate in FBS-free conditions (left; n = 6 biological replicates for each

group) or sorted by their efficacy to efflux fluorescent dye (right; n = 3 biological replicates for EffluxHIGH and n = 6 biological replicates for EffluxLOW). P-values are
from Wilcoxon test. Boxes represent interquartile ranges. Whiskers indicate upper and lower quartiles. Central line corresponds to the median value.

F t-SNE and UMAP projections of the OVCAR5 clonal phenotypic profiles, each point represents a clone coloured according to the manually gated clusters based on the
t-SNE projection. The clones with read counts of more than 70 were used for the statistical analysis.

G UMAP projections of the OVCAR5 clonal phenotypic profiles. The clones are colour-coded according to the manifestation of the phenotype, calculated as log2 ratio of
barcode fractions between (1) positively and negatively selected populations after ALDH, attachment, efflux capacity or autophagy assays; (2) treated and untreated
samples for carboplatin treatment assay; or (3) day 8 and day 1 time points for proliferation assay.

H The distribution of log2 fold changes by clusters (n = 201, 19, 31, 7 for clusters 1–4, correspondingly) in barcode representations upon selection for the indicated
phenotypes. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, non-significant, based on Wilcoxon test. Boxes represent interquartile ranges. Whiskers indicate
upper and lower quartiles. Central line corresponds to the median value.
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produced visually more distinguishable clusters, and also better

recapitulated the previously detected cell clusters (Fig EV6C and

D). This suggests that DEBRA algorithm benefits the downstream

analyses of DNA barcoding experiments, including multidimen-

sional phenotypic profiling and identification of cells for subse-

quent profiling experiments.

Discussion

Clone tracing via DNA barcoding is a promising method for the

studies of intrapopulational heterogeneity of cellular systems. The

method is already well-established for tracing growth dynamics of

single clones, but the recent studies suggest a much wider scope

of the method’s applicability. In essence, these studies utilize

clone-tracing technology to detect clone-specific differences for a

phenotype of interest, which are often associated with a strong

selection pressure that imposes a narrow sampling bottleneck and

reduced cell numbers, and hence, decreased barcode representa-

tion. Here, we demonstrated that the sampling bottleneck affects

statistical properties of the barcoding read count data, hence influ-

encing the detection accuracy of differentially represented tags. By

accounting for these statistical properties, we implemented an

algorithm (named DEBRA), for reliable detection of DRBs, and

demonstrated through systematic benchmarking against the state-

of-the-art RNA-seq data analysis algorithms that DEBRA improves

the accuracy of detection of differentially responding barcodes in

various experimental conditions. The mixture control dataset and

our analysis results provide a systematic foundation for bench-

marking and improving future algorithms for DNA barcoding data

analysis.

In the clone-tracing experiments, the physical number of individual

sequencing tags (barcodes) in the sample is close to the total number

of cells, whereas in RNA-seq experiments, each cell has around 105

RNA molecules resulting in a much higher number of individual tags

in the sample. Hence, we reasoned that in a clone-tracing experiment,

unlike RNA sequencing experiment, a decrease in the cell numbers

associated with treatment procedures could impose a strong sampling

error on barcode representation in a manner dependent on the degree

of the sample size reduction. Our results supported this notion, as we

observed strong dependency between sample variance and sample

size (Fig 2). It is also tempting to speculate that the observed deviance

from negative binomial model at low count region is caused by large

values of sampling error for barcodes with low copy number (physical

number of DNA barcodes in the genomic DNA preparation). Although

we prepared the sequencing libraries right after subsampling, we

expect that the variation imposed by the sampling bottleneck is

preserved also when the samples are allowed to re-grow, something

that may have happened in the Seth et al experiments. We note that

increasing the cell expansion times to achieve higher clone abun-

dances is not a straightforward solution for the sampling issue. In fact,

the expansion time is an indispensable experimental parameter of a

clone-tracing experiment, as clonal phenotypes are subject to change

as a result of phenotypic plasticity (Gupta et al, 2011; Porter et al,

2014), which may dilute phenotypes determined by non-genetic

factors (e.g. epigenetics). Hence, limiting the expansion times is

expected to improve quantification of clonal phenotypes. Therefore,

there is a critical need for accurate detection of DRBs especially in

samples with low clone abundances, using DEBRA or similar algorith-

mic solutions.

To benchmark the performance of the original and modified

algorithms for DRB identification, we simulated clone-tracing

experiments with rather challenging scenarios. In the benchmark-

ing mixture cell pool experiments, we therefore used a relatively

low number of cells per barcode together with low effects sizes

(perturbation degrees of 18, 27 and 35%). These experimental

setups are not merely simulated scenarios; in fact, many applica-

tions of clone tracing are carried out in the context of a very strong

selection pressure (e.g. exposure to high doses of drug, xenograft-

ing or cell sorting for rare subpopulations), leading to a narrow

sampling bottleneck. The DEBRA algorithm was able to both

prevent an excess of false discoveries, as assessed with the null

and perturbed samples, and improve the accuracy of DRB classifi-

cation, compared to the original algorithms, as evaluated with

precision-recall analysis (Fig 3). The results from the perturbed

samples should be interpreted relatively to expected “random”

FDRs (indicated by black line in Fig EV3). For instance, the rela-

tively low proportion of false discoveries observed in the samples

with 50% of enriched barcodes (Fig EV3C) does not indicate a

proper statistical inference, since the level of false discoveries is

very close to the “random” FDR.

The DEBRA R package also provides the user with a functional-

ity to choose between two dispersion estimation algorithms—

“shrinkage” and “trended”. The “trended” method assumes a strict

relationship between means and dispersions, whereas the “shrink-

age” uses dispersions as estimated by the DESeq2 algorithm.

DESeq2 shrinks tagwise dispersion estimates towards dispersion

trend using an empirical Bayes approach while allowing for

dispersion outliers (Love et al, 2014). In RNA-seq experiments,

this helps to deal with genes whose dispersions do not strictly

depend on the mean and therefore cannot be approximated merely

by the dispersion trend. The dispersion outliers are typically attrib-

uted to either technical or biological factors. However, it is not

clear whether these effects arise also in the clone-tracing experi-

ments. We observed a more robust performance of the trended

method for dispersion estimation, which may be attributed to the

absence of such factors in DNA barcoding experiments. However,

we reasoned that the dispersion outliers could still appear in other

clone-tracing experiments with strong selection pressure followed

by the long re-growth phase. For instance, some smaller-sized

clones experiencing higher sampling error during the selection

phase could then re-grow to a larger relative size (shifting to a

greater mean count values), thereby becoming as dispersion

outliers. Further studies are needed to better understand the rela-

tive benefits of the different dispersion estimation methods in vari-

ous experimental setups.

We expect that the development of the DNA barcode-based

clone-tracing approach for phenotyping and the implementation of

the reliable detection algorithms proposed in the current study will

significantly aid the adoption of the technology for a broader spec-

trum of applications, such as clonal mechanisms of tumour initia-

tion, immune evasion, metastasis, differentiation and tissue

regeneration. Specifically, the increased specificity of the DEBRA

algorithm enables one to faithfully test for differential phenotypes of

smaller-sized clones and at lower effect sizes, hence providing high-

resolution clonal phenotypic profiles. Accurate detection of clones
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with differential phenotypes is also critical for the validity for the

follow-up experiments and subsequent biological conclusions. The

DEBRA approach could also become useful in the analysis of posi-

tive selection CRISPR screens, where the selection pressure is

applied to the screening pool (cells expressing Cas9 and sgRNA

library), and the representation of sgRNAs in treatment pool is

compared to the background distribution. Similar to the DNA

barcodes, the sgRNAs may undergo significant representation bottle-

neck depending on the degree of the selection pressure. Therefore,

appropriate control for the variance differences between control and

treatment samples, as implemented in DEBRA, may be required for

accurate inference of the differentially represented sgRNAs in posi-

tive selection CRISPR screens, thereby complementing the repertoire

of the pooled screening data analysis methods (Li et al, 2014; Hart

& Moffat, 2016).

Finally, we introduced a DNA barcoding-based clone

phenomics approach, which links multidimensional phenotypes to

clones in a high-throughput manner (Fig 5). We expect this

approach will expedite the inference of cellular subpopulations

with distinct phenotypic properties, finding associations between

multiple phenotypes and to improve the quantification accuracies

when analysing intrapopulational phenotypic heterogeneity. The

obtained information on the single-clone phenotypic state could be

further integrated with single-cell technologies. For instance,

simultaneous readouts of expressed DNA barcodes and single-cell

gene expression via scRNA sequencing enable single-cell trajectory

tracing (Biddy et al, 2018; preprint: Weinreb et al, 2018). In such

combination, the readout via scRNA-seq provides both single-cell

expression profiles and clone identities. The clone identities could

then be used to link single-cell gene expression to the multidimen-

sional phenotypic profiles of clonal lineages. Similar integration of

clonal lineage phenomics with other single-cell approaches, e.g.,

single-cell genotyping or scATACseq (Navin et al, 2011; Cusano-

vich et al, 2015; Guo et al, 2017; Kim et al, 2018), could also

promote the discovery of genetic and non-genetic determinants of

intrapopulation phenotypic heterogeneity in tumours, given a reli-

able testing for differentially represented clones enabled by the

DEBRA algorithm.

Materials and Methods

Reagents and Tools table

Reagents/Resources Reference or source Identifier or catalog number

Experimental models

OVCAR-5 NCI collection –

Mia-PaCa-2 ATCC CRL-1420

HEK 293FT Thermo Fisher Scientific R70007

Recombinant DNA

B-GLI-Barcoding This study

pCMV-dR8.2 dvpr Addgene #8455

pCMV-VSV-G Addgene #8454

Reagents

Lipofectamine 2000 Thermo Fisher Scientific 11668019

NucleoSpin® Tissue kit MACHEREY-NAGEL 740952.50

Platinum SuperFi II DNA Polymerase Thermo Fisher Scientific 12361010

AMPure XP SPRI beads Beckman Coulter A63880

OneTaq® DNA Polymerase New England Biolabs M0480

AarI restriction enzyme Thermo Fisher Scientific ER1581

Plasmid-SafeTM DNase Lucigen E3101K

EnduraTM Escherichia coli Lucigen 60242-2

NucleoBond® Xtra Midi Kit MACHEREY-NAGEL 740410.50

NucleoSpin® Gel and PCR Clean-up kit MACHEREY-NAGEL 740609.50

NEBNext® UltraTM II Q5® Master Mix New England Biolabs M0544

Rapid Ligation Buffer Thermo Fisher Scientific K1422

T4 DNA Ligase (5 U/ll) Thermo Fisher Scientific EL0014

Carboplatin MedChemExpress HY-17393

Aldefluor ALDH activity Kit STEMCELL Technologies 01700

Rabbit anti-Ki67 antibody Abcam 16667
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Reagents and Tools table (continued)

Reagents/Resources Reference or source Identifier or catalog number

Goat anti-Rabbit Secondary Antibody, Alexa Fluor 555 conjugated Thermo Fischer Scientific A27039

Acridine orange hemi(zinc chloride) salt Sigma-Aldrich A6014

CDy1 fluorescent dye Active Motif 895

Tariquidar Selleck S8028

Probenecid Santa Cruz Biotechnology sc-202773

SH800Z Cell Sorter SONY –

Cytation 5 BIOTEK –

Oligonucleotides

Barc.LGMU6.templ (ssDNA) This study Table EV1

Barc.LGMU6.aarI.ampl.F This study Table EV1

Barc.LGMU6.aarI.ampl.R This study Table EV1

B-GLI_Barcoding (9,301 bp) This study Table EV1

P5.seq-B-GLI.v1 This study Table EV1

P7.seq-B-GLI.v1 This study Table EV1

Illumina_indX_F This study Table EV1

Illumina_indX_R This study Table EV1

Methods and Protocols

Generation of the lentiviral plasmid barcode library
Semi-random single-stranded DNA template (Barc.LGMU6.templ;

Table EV1) from Merck (Sigma-Aldrich) was used in the work. The

oligonucleotide was amplified with Barc.LGMU6.aarI.ampl.F and

Barc.LGMU6.aarI.ampl.R primers (Table EV1), using SuperFI DNA

polymerase to include cloning overhangs compatible with Golden

Gate cloning. Five microlitres of the reaction was transferred to a

new 50 ll PCR with an excess of Barc.LGMU6.aarI.ampl.F and

Barc.LGMU6.aarI.ampl.R primers (Table EV1). The reaction was

run one cycle (2 min at 98°C denaturation, 5 min 72°C annealing/

elongation) to produce dsDNA barcodes with no mismatches. The

barcode cassette was purified with AMPure XP SPRI beads (Beck-

man Coulter; catalog number A63880). The barcode cassette was

then cloned into previously generated B-GLI-Barcoding plasmid

(preprint: Akimov et al, 2019; see Appendix Fig S10 for the plasmid

map and Table EV1 for the DNA sequence) by the Golden Gate

assembly method (Engler et al, 2008; see Appendix Table S4 for

reaction composition and cycling conditions). In order to reduce

contamination with uncut B-GLI-Barcoding plasmid, an extra 2 ll of
the AarI enzyme was added to the reaction after the Golden Gate

cycling, followed by incubation at 37°C for 16 h. The cloning reac-

tion was purified with magnetic beads (Beckman Coulter; catalog

number A63880) and incubated with Plasmid-SafeTM DNase (Luci-

gen, catalog number E3101K), according to the manufacturer’s

instructions. The reaction was again magnetic bead-purified and

transformed into electrocompetent Lucigen EnduraTM E. coli (Luci-

gen; catalog number 60242-2) using Bio-Rad MicroPulser Electropo-

rator (catalog number #1652100) with program EC1 following the

manufacturer’s instructions. The reaction was plated onto

5 × 15 cm LB-agar plates with 100 lg/ml ampicillin. After incuba-

tion for 16 h at 32°C, bacteria were collected and plasmid DNA was

extracted with NucleoBond� Xtra Midi Kit (MACHEREY-NAGEL;

catalog number 740410.50). The efficiency of transformation and

approximate number of the unique barcodes in the library was

assessed by plating 1/10,000 of the reaction onto 15-cm LB-agar

plate with 100 lg/ml ampicillin and counting colonies after over-

night incubation at 37°C.

Lentivirus packaging
HEK 293FT cells were seeded at a density of 105 cells per cm2. Next

day, the cells were transfected with a transfer plasmid, packaging

plasmids pCMV-VSV-G (Stewart, 2003; Addgene plasmid #8454)

and pCMV-dR8.2 dvpr (Stewart, 2003) using Lipofectamine 2000

Transfection Reagent according to the manufacturer’s instructions.

Virus supernatants were collected 48 h post-transfection. The titre

of the virus was determined as described (Stewart, 2003; Najm et al,

2018).

Generation of null and perturbed samples
OVCAR5 and Mia-PaCa-2 cells were seeded at a density of 2 × 104

cells/cm2 and 1 × 105 cells/cm2, respectively, both in 6-well plates

in two replicas. Cells were incubated overnight with lentiviral

barcoding library carrying ~ 5 × 106 unique barcodes in a presence

of 8 mg/ml polybrene. The amount of added virus was selected to

achieve a multiplicity of infection (MOI) of ~ 0.01. Cells were

selected for 7 days in the presence of 150 lg/ml hygromycin. Cells

were kept at a density of at least 1 × 104 cells/cm2 to improve

viability during selection and expansion. Cells were expanded to

achieve approximately 4,000 cells per clone (12 cell divisions) to

produce two cell pools for each cell line (Pool A and Pool B). Cells

from each pool were counted and mixed in a 50/50 ratio to produce

the AB mix (Fig 1B). The AB mix was then subsampled to various

extents in two replicas to produce null samples with different sizes

(20 × 103, 40 × 103, 80 × 103, 160 × 103, 330 × 103, 660 × 103

cells) but with the same expected representation of each barcode

(i.e. modelling null hypothesis).
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Perturbed samples were generated by taking either 20, 40, 80 or

160 thousand cells from the AB mix, and perturbing it by adding

extra number of cells from Pool A to achieve the intended perturba-

tion degree (Fig 1B). For example, to achieve a perturbation degree

of 35% for a sample with 160 × 103 cells, we added 160 × 103 ×

0.35 = 56 × 103 cells from the Pool A.

NGS library preparation and sequencing
NucleoSpin� Tissue Kit (MACHEREY-NAGEL) was used to isolate

genomic DNA according to the manufacturer’s instructions. Barcodes

were amplified from genomic DNA with P5.seq-B-GLI.v1 and P7.seq-

B-GLI.v1 primers using OneTaq� DNA Polymerase (NEB; catalog

number M0480). Reactions were purified using NucleoSpin� Gel and

PCR Clean-up Kit (MACHEREY-NAGEL). Then, purified amplicons

were amplified with primers, Illumina_indX_F and Illumina_indX_R

(where X indicates the index sequence), to add Illumina adapters and

indexes for sample multiplexing. This round of PCRs was performed

using NEBNext� UltraTM II Q5� Master Mix (NEB, catalog number

M0544). Samples were purified using AMPure XP beads (Beckman

Coulter; catalog number A63880). Next-generation sequencing

library was sequenced with HiSeq 2500 Illumina sequencer using

100-bp paired-end protocol (with 10% PhiX DNA spike-in). To

improve cluster calling, we increased sequence diversity by using a

15-bp random sequence stagger in the P5.seq-B-GLI.v1 primer.

Barcode retrieval from NGS data
We used the previously developed (preprint: Akimov et al, 2019)

custom Python script for retrieving original barcode counts from

FASTQ files.

Generation of experimental datasets with varying proportions of
enriched clones
Using the perturbed samples, we generated datasets with varying

percentage of the enriched barcodes. For this experiment, we

assigned a ground truth for every barcode based on sequencing

results of Pool A and Pool B samples (Fig 1B). Then, we sampled

barcodes from the read count dataset of a perturbed sample of inter-

est to generate a simulated dataset with the required proportion of

the enriched barcodes (Appendix Fig S2). For instance, to generate a

dataset with 5% enriched barcodes, perturbation degree of 35% and

size of 20 × 103 cells, we randomly sampled barcodes detected in

the Pool A (enriched in the perturbed samples) and Pool B (depleted

in the perturbed samples) in the 5/95 ratio from the columns of the

read count table corresponding to the perturbed samples with

35% perturbation degree and 20 × 103 cells (m_null_20.p35.1;

m_null_20.p35.2; see Appendix Table S1).

Running DESeq, DESeq2 and edgeR
Dispersion estimation in DESeq (Anders & Huber, 2010) and DESeq2

(Love et al, 2014) algorithms was implemented using fitType =

“local” parameter, as the “parametric” fit option resulted in frequent

errors, possibly due to the statistical properties of the barcode count

data. Furthermore, we used method = “per-condition” setting in

DESeq algorithm. The in-built independent filtering option was

switched off in DESeq2. The edgeR algorithm was run with its

default parameters (Robinson et al, 2010). We used “~condition”

formula for finding differentially represented barcodes between

control and treatment groups.

DEBRA implementation aspects
The b threshold estimation

The DEBRA algorithm identifies a threshold b—a lower count limit

for an independent filtering step above which it is assumed that the

read counts follow a negative binomial distribution. This threshold

is used for removing results for barcodes with read counts not

following negative binomial model and hence possibly incorrectly

classified as differentially represented. To find a suitable b for a

given data, the DEBRA algorithm samples read count data using a

window of N barcodes ordered by their mean count values

(Appendix Fig S11). For each sampling step, the algorithm estimates

the parameters of the negative binomial (NB) distribution—disper-

sion (a) and mean (m). DEBRA uses these parameters to generate

NB random variables X~NB(m,a) of the same size as the sampled

data to calculate theoretical (expected) and empirical two-sample

Kolmogorov–Smirnov (KS) test statistics for each sampling window.

The KS empirical test statistic was calculated between the sampled

values and X~NB(m,a) random variables, while the theoretical KS

statistics is calculated between two X~NB(m,a) random variables

(see Appendix Fig S12A for examples). The b threshold was esti-

mated by searching for the value of the mean read count at which

the overlapping area between the empirical and theoretical density

functions of the KS test statistic is close to the maximum overlap for

the given data sample. For the estimation, both the theoretical and

empirical test statistics are modelled as a Gamma-distributed

random variables (see Appendix Fig S13) for each window of size N

(here, 30 KS test statistics values on the mean ordered data). The

overlap area was calculated separately for each window and then

combined from multiple windows by fitting a sigmoid function of

mean read counts (see Appendix Fig S12B for examples of fitting the

null samples) with four parameters using drc::drm() function with

fct = LL.4() parameter. If the sigmoid curve is ascending and the

minimum overlap value is less than 0.25, then b threshold is esti-

mated as the mean count at which the sigmoid-fitted overlap takes

the value of 0.8 of the maximum (see Appendix Table S5 for full b
threshold estimation rules).

Dispersion estimation and inference of differentially

represented barcodes

To estimate tagwise dispersions, we created a DESeqDataSet object,

where we pass only the treatment columns (aka test columns) and

calculate the dispersion using DESeq2::estimateDispersions() func-

tion using the intercept model (design = ~1) and fitType = “local”

parameter.

For trended method, we estimate dispersions from a local disper-

sion trend function as fitted by DESeq2 (parametrization first

proposed in DEXSeq (Anders et al, 2012)). For calculation, the local

dispersion model was obtained from DESeqDataSet object by

object@dispersionFunction command and used to calculate the

tagwise dispersions by providing mean read counts to the obtained

fitting function.

The shrunken dispersion estimates were extracted directly from

DESeqDataSet object using DESeq2::dispersions() function.

The dispersions for barcodes with counts less than b in the test

samples were set to the maximum value of the calculated tagwise

dispersions to reduce false positives from the barcodes not following

NB model if the b thresholding step (aka modified independent fil-

tering) is not used.
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In the next step, the previously obtained dispersions were passed

to the DESeqDataSet (DESeq2) or CountDataSet (DESeq) object,

containing both control and condition columns with design = ~con-

dition formula that are required for inference of DRBs. This object

was used to test the barcodes for differential representation with

either nbinomWaldTest() or nbinomLRT() tests for DESeq2 imple-

mentation or with nbinomTest() for DESeq. Parameter indepen-

dentFiltering was set to “FALSE” when calling results() function of

DESeq2.

Independent filtering and b thresholding

We applied the independent filtering procedure (Bourgon et al,

2010; Love et al, 2014) as a separate function, which uses

DESeq2 or DEseq result table as an input. The filtering algorithm

uses the genefilter::filtered_p function to find the number of null

hypothesis rejections at a user-specified FDR cutoff (default

parameter is set to 0.2) for the quantiles of the filter statistics

(mean read counts). The search algorithm identifies the quantile

threshold value that maximizes the total number of rejections in

the quantile range of [b,1], where b is the previously estimated

threshold for the given data. For the search, the number of rejec-

tions is fit as a function of the quantile threshold using a smooth-

ing spline (R function smooth.spline), which enables finding the

quantile value that corresponds to the maximum number of rejec-

tions. User can also set the b threshold value other than the one

estimated by the algorithm (see The b threshold estimation

section).

Barcode classification
A barcode is considered to be differentially represented if the Benja-

mini and Hochberg procedure-controlled FDR is less than a prede-

fined threshold (here, 0.05, 0.10 and 0.25 were tested). If the count

fold change between the test and control groups is less than one,

then the barcode is considered to be depleted; otherwise, it is classi-

fied as enriched. Ground truth for the barcode representation in the

perturbed samples was obtained by sequencing the barcode pools

(Pool A and Pool B; see Fig 1B), which were used to produce the

perturbed samples (Fig 1A). For the ground truth assignments, a

barcode is considered enriched if its read Pool A to Pool B count

ratio is more than 10; if the ratio is less than 0.1, then the barcode is

considered depleted. False positive is defined as a barcode identified

by the algorithm as enriched DRB, but which is non-enriched

according to the ground truth. For the “random” FDR level, we

treated a barcode as enriched if the log fold change was greater than

0.5. Log fold change threshold for the depleted barcodes was set to

minus 0.5.

Precision-recall curves and pAUC calculation
We used precision-recall curves to enable the proper assessment of

the test results in samples with varying number of the DRBs (imbal-

anced dataset). Precision-recall curves were constructed using the

“precrec” R package (Saito & Rehmsmeier, 2017). For calculations,

the positive class was defined as barcodes correctly assigned by the

algorithm to the group it belongs to (enriched or depleted), while

the negative class was defined as wrongly assigned barcodes. We

used the unadjusted P-values for the class assignment by the algo-

rithms, i.e., ranking the barcodes against the ground truth, with low

P-values indicating high statistical confidence that the barcode

belongs to the positive class (i.e. assigned to either enriched or

depleted groups by the algorithm). To calculate the precision-recall

metrics for simulated experiments with low proportion of enriched

barcodes (5%, 15%), we used only barcodes with positive fold

change values to assess the algorithms’ performance specifically for

the enriched barcodes.

We used partial area under the precision-recall curve (pAUC) to

compare the relative performance of the algorithms for detecting

DRBs in the perturbed samples. The intervals for pAUC calculations

were [0,1] for the precision and [0,X] for the recall, where the

upper bound X for the recall interval was determined separately for

each set of tested samples as the mean recall value at FDR = 0.25

across all the tested algorithms. Such an unbiased selection of the

sample-specific recall interval for pAUC calculation allows for

comparing the relative performance of the methods in terms of

ranking the most significant DRBs for follow-up experiments, espe-

cially for the barcodes with low FDR values, without the need for

manual selection of the appropriate recall interval for each tested

set of samples. The full PR curves are shown in Fig 3D, and

Appendix Figs S5B and S6B.

t-SNE and UMAP algorithms
t-SNE (van der Maaten & Hinton, 2008) was run using Rtsne::Rtsne

R function (Krijthe, 2015) with parameter of perplexity = 25 and

iterations = 1,000. We set the pca = FALSE to disable initial PCA

step. UMAP (McInnes et al, 2018) algorithm was run using umap::

umap R function (Konopka, 2019) with default parameters.

OVCAR5 multidimensional phenotypic profiling and carboplatin
sensitivity experiments
The same pool of barcoded OVCAR5 cells that was produced for

generation of the null and perturbed samples were used for OVCAR5

multidimensional phenotypic profiling experiment. The 5 × 107 cells

were taken for the multidimensional phenotypic profiling (T0 time

point) experiments, as outlined in Fig EV5.

For carboplatin phenotyping experiments, the cells were

barcoded the same way as described for the generation of the null

and perturbed samples, and grown to reach an average representa-

tion of ~ 1,000 cells per barcode. Cells were counted and split to

control, reference and subsample pools, as depicted in Fig EV4.

Immunostaining

Cells were trypsinized, washed and resuspended in PBS. Then, the

cells were fixed and permeabilized with cold 96% ethanol for

30 min on ice, pelleted in a swinging rotor centrifuge at 1,000 × g

for 15 min, rehydrated for 30 min in PBS, washed two times in

10 ml of PBS and blocked in PBS with 0.5% BSA for 1 h at room

temperature. The staining was done overnight at 4°C in PBS/BSA.

Rabbit anti-Ki67 antibody (ab16667, Abcam) was used at 1.5 lg/ml.

Following three washes with PBS with 0.5% BSA, the cells were

stained with secondary goat anti-rabbit conjugated with Alexa555 at

1/500 for 30 min at room temperature, washed three times and

resuspended in PBS for subsequent sorting.

FACS

All the sorting experiments were carried out using SONY SH800Z

Sorter at Biomedicum Helsinki FACS Core Facility, and the data

analysis was performed using Sony Cell Sorter software.
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ALDH activity assay

The cells in the log phase of growth were trypsinized and resus-

pended in medium; the concentration of cells was adjusted to

2 × 106/ml. The ALDH activity was measured using Aldefluor

assay (StemCell Technologies, catalog number 01700) according to

the manufacturer’s protocol. Cells from the upper and lower quan-

tiles of the Aldefluor fluorescence intensity range were sorted as

ALDHhigh and ALDHlow populations, respectively.

Efflux assay

Cells were trypsinized and resuspended in medium, and the

concentration of cells was adjusted to 2 × 106/ml. The cells were

incubated with CDy1 fluorescent dye diluted 1/1,000 (Active Motif,

catalog number 895) for 30 min at 37°C in a water bath in the

presence or absence of the ABC pump inhibitors tariquidar (1 lM)

and probenecid (50 lM). Then, the cells were washed three times

in ice-cold PBS and resuspended in medium with or without the

drugs. Control cells in medium with efflux inhibitors were left on

ice for 2 h, while the test samples were incubated at 37°C for 2 h

to allow the efflux of the dye. After three washes, the cells were

resuspended in PBS and sorted by the fluorescence intensity in the

FL3 (PE-Texas Red) channel. The gating of the efflux-positive cells

was set based on the fluorescence intensity of the efflux-inhibited

control.

Autophagy assay

The autophagy was analysed by the ratiometric FACS measurement

of the amount of Acridine Orange-stained autolysosomes as

described previously (Thomé et al, 2016). Overnight-starved cells

were used as a control for the induction of the autolysosomes

formation. 4 × 105 cells with high autolysosomes load and 106 cells

with low autolysosomes load were sorted by FACS for subsequent

gDNA extraction.

Proliferation assays

For quantification of the clone proliferation rate, the barcoded

OVCAR5 cells were propagated in RPMI-1640 medium for seven

passages. Samples for barcode representation analysis were collected

at days 0, 5, 8, 11, 14, 18, 25, 29. For the analysis of proliferation rate

in validation experiments (Fig 4D), the cells were plated at 2 × 104

per well in 12-well plates (Costar) and imaged every 4 h in an Incu-

Cyte HD live cell analysis system (Sartorius) until the cell confluence

of all wells reached 100%. The confluence values during the loga-

rithmic growth phase were used to estimate the population doubling

time using the formula H/Log2(CF/CI), where H is elapsed time in

hours, CF is final confluence, and CI is initial confluence.

Attachment assay

OVCAR5 cells in the log phase of growth were starved for 16 h in

serum-free RPMI supplemented with 2 mM L-glutamine. Upon star-

vation, the cells were trypsinized, washed in serum-free medium

and counted using a Countess II device (Invitrogen). Five millions

of live cells were plated in serum-free medium to 15-cm cell culture

dishes and allowed to attach for 12 h. Upon incubation, the non-

adherent cells were collected for genomic DNA extraction by

centrifugation at 500 × g for 5 min. For the validation experiments,

non-adherent cells were collected and replated, and both adherent

and non-adherent cells were allowed to recover in serum-

supplemented medium for 24 h prior to the evaluation of their

proliferation rate.

Data availability

The datasets and computer codes produced in this study are avail-

able as following:

• Barcode read counts for benchmark datasets are provided as

Datasets EV1–EV3.

• Barcode read counts for OVCAR5 multidimensional phenotyping

experiments are provided as Dataset EV4.

• Computer code used to generate the main figures is provided as

Code EV1.

• The implementation of the DEBRA algorithm is accessible through

Github portal (https://github.com/YevhenAkimov/DEBRA).

Expanded View for this article is available online.
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