
Journal of Ambient Intelligence and Humanized Computing manuscript No.
(will be inserted by the editor)

LISA 2.0: Lightweight Internet of Things Service Bus
Architecture Using Node Centric Networking

Behailu Negash†* · Amir-Mohammad Rahmani†‡ · Tomi Westerlund† ·
Pasi Liljeberg† · Hannu Tenhunen†‡

Received: date / Accepted: date

Abstract Internet of Things (IoT) technologies are ad-

vancing rapidly and a wide range of physical networking

alternatives, communication standards and platforms

are introduced. However, due to differences in system

requirements and resource constraints in devices, there

exist variations in these technologies, standards, and

platforms. Consequently, application silos are formed.

In contrast to the freedom of choice attained by a range

of options, the heterogeneity of the technologies is a

critical interoperability challenge faced by IoT systems.

Moreover, IoT is also limited to address new require-

ments that arise due to the nature of the majority

of smart devices. These requirements, such as mobil-

ity and intermittent availability, are hardly satisfied by

the current IoT technologies following the end-to-end

model inherited from the Internet. This paper intro-
duces a lightweight, distributed, and embedded service

bus called LISA which follows a Node Centric Network-

ing architecture. LISA is designed to provide interoper-

ability for resource-constrained devices in IoT. It also

enables a natural way of embracing the new IoT re-

quirements, such as mobility and intermittent availabil-

ity, through Node Centric Networking. LISA provides a

simple application programming interface for develop-

ers, hiding the variations in platform, protocol or phys-

ical network, thus facilitating interoperability in IoT

systems. LISA is inspired by Network on Terminal Ar-

†Department of Information Technology
University of Turku, Turku, Finland
E-mail: *behneg@utu.fi

‡Department of Industrial and Medical Electronics
School of ICT
KTH Royal Institute of Technology, Stockholm, Sweden

chitecture (NoTA), a service centric open architecture

originated by Nokia Research Center. Our extensive ex-

perimental results show the efficiency and scalability of

LISA in providing a lightweight interoperability for IoT

systems.

Keywords LISA · IoT · Interoperability · NoTA ·
NCN · Mobility

1 Introduction

The Internet has evolved through different changes that

shaped it to the current vast hub of knowledge where

more number of devices are connected than the human

population (Evans, 2011). One of the changes is the

shift in the requirement of computer networks from the
need to share hardware resources (Roberts and Wessler,

1970) to information sharing. This demand for infor-

mation sharing through a large network of computers

across the globe sustained researches in academia and

military that contributed to the birth of the Internet.

It is estimated that more than 50 Billion devices will

be connected by 2020 (CERP-IOT, 2010). A large pro-

portion of these devices will be small embedded compo-

nents which will be identified uniquely and are supposed

to interact with other devices. This network of embed-

ded devices is referred as Internet of Things (IoT) (Tan

and Wang, 2010). It is believed that enormous economic

and social benefits can be gained by utilizing IoT in dif-

ferent application domains.

To achieve the envisioned benefits of IoT, the smart

devices have to be able to communicate and exchange

information in an interoperable way. To this end, de-

vices need to follow a consistent network interface im-

plementation and use the same communication stan-

dards. This is achieved by using a common standard



2 Behailu Negash†* et al.

for the Internet. However, due to limited memory, pro-

cessing capacity and available power in the majority of

IoT components, it is not feasible to utilize the same

standards proposed for the Internet. Therefore, many

new technologies, standards, and platforms are intro-

duced to work in various operating conditions, and for

different requirements, each creating silos of applica-

tions. To overcome the heterogeneity in IoT, few or-

ganizations and alliances have contributed to provide

middleware for interoperability of the common proto-

cols and platforms. However, these frameworks do not

address the vast majority of the IoT devices which are

tightly resource-constrained.

On the other hand, end-to-end arguments (Saltzer

et al., 1984) introduced three decades ago direct the

design of computer networks and subsequently the In-

ternet architecture up to now. Based on the end-to-end

arguments, the networking function is expected to lo-

cate and address the end hosts as a mandatory step

for data transfer. Different system requirements were

listed and the networking function was designed to meet

these requirements accordingly. Therefore, application

specific requirements are built on top of this core net-

work function that is focused on data transfer. How-

ever, wide usage scenarios and various application con-

texts of computer networks, brought new requirements

that led to different modifications of core data trans-

fer function of network services. One of these modifica-

tions is the introduction of Network Address Transla-

tion (NAT) (Egevang and Francis, 1994) to overcome

the shortage of IPv4 addresses. By introducing NAT,

local addresses of communicating hosts are hidden be-

hind a router which takes care of the external commu-

nication representing the local hosts, which effectively

forms a hierarchy of addresses. Domain Name System

(DNS) (Mockapetris, 1987) is a system which is used to

translate Internet domain names in to machine network

address. It is another modification to the initial Internet

design to facilitate access for non-technical users and a

means to easily remember meaningful names (than se-

quence of numbers) which identify an Internet service.

Security is another aspect that triggered the motivation

for a new set of requirements in the Internet architec-

ture. The introduction of IoT adds a completely new

dimension to the set of requirements thereby requiring

a new mindset than the old end-to-end arguments.

In an effort to address the new network require-

ments, Blumenthal et al. (Blumenthal and Clark, 2001)

introduce a new perspective about the design of the In-

ternet. Information-Centric Networking is one of the

most novel Internet architectures considering the Inter-

net of Things as a typical application scenario. Content-

Centric Networking (CCN) (Jacobson et al., 2009) is a

special type of Information Centric Networking where

contents are named and used as the center of communi-

cation than the host machines. Instead of finding the lo-

cation of information, the information itself is searched

and routed in CCN. Looking closely at the original re-

quirements of computer networks (sharing hardware re-

sources), it is logical to address the hardware devices

for communication. A device interested to communicate

with another node sends a request to the destination

address. However, in the context of information shar-

ing, a device is only interested in the specific requested

information and its validity, not where it is located.

Therefore, CCN overcomes the unnecessary routing of

destination addresses by replacing it with content name

as the main requested entity.

In parallel to the changes in the network architec-

ture, the applications that run on a network service

have also faced major changes. Prior to the introduc-

tion of distributed information systems, simpler appli-

cations designed for specific tasks have been developed

independently. As the requirements of these systems in-

crease, larger, distributed and integrated systems were

demanded. One solution to integrate such independent

applications is to enable the smaller applications to ex-

pose their functionality as a service to be consumed by

others, known as Service Oriented Architecture (SOA)

(Sarang, 2007). However, the implementation of SOA

leads to a large amount of interaction between these

services. In addition, each service instance has to be

aware of the location of the other end as well as inter-

faces exposed during communication. Enterprise service

bus (ESB) (Keen et al., 2004) gives an infrastructure for

SOA implementation for managing the communication

between services. It also provides a common medium

for communication between different standards to fa-

cilitate interoperability.

This paper introduces a lightweight IoT service bus

architecture using node centric networking, called LISA

2.0, for interoperability of a wide range of IoT devices.

It is a major extension of our preliminary implemen-

tation of the LISA presented in (Negash et al., 2015).

It provides a uniform, socket like, application program-

ming interface hiding the underlying physical network

interface, protocol and platform differences. LISA is

small enough to fit inside the network stack of small em-

bedded operating systems for constrained devices and

also scales for devices with less resource constraints.

It takes advantage of an intermediate computing layer

between the cloud and end devices to facilitate interop-

erability, mobility and allow low-power operation of de-

vices. In addition, this paper introduces a new type of

information centric networking implemented in LISA,

known as Node Centric Networking (NCN). A node



LISA 2.0: Lightweight Internet of Things Service Bus Architecture Using Node Centric Networking 3

is defined in this context as either a service-end han-

dling requests or an application utilizing services in a

SOA implementation, which is independent of the hard-

ware device. Based on such definition of a node, two or

more nodes can co-exist on a single device depending

on the available resources (memory, processing capacity

and power source). LISA is inspired by the Network on

Terminal Architecture (NoTA), a service centric open

architecture originated by Nokia Research Center. In

short, the key features of LISA 2.0 are as follows:

– Being lightweight and targeting extremely resource

constrained nodes with a few kilobytes of memory.

– Supporting low-power operations with an ultimate

goal of supporting most common interconnection

protocols for interoperability.

– Introducing a new node centric networking concept

and a hierarchical addressing mechanism.

– Utilizing NCN addresses for inter-protocol message

routing for interoperability.

– Leveraging an intermediate computing layer to sup-

port tiny nodes in overcoming resource constraints

issues.

The following sections present the motivation for

LISA and NCN (Section 2), the basis for the LISA de-

sign (Section 3) and the LISA Implementation (Section

4). Demonstration and evaluation of the middleware

are presented in Section 5 while comparison with re-

lated work (Section 6) and conclusion (Section 7) are

discussed at the end.

2 Motivation

One of the many application domains, where IoT is

expected to considerably enhance user experience, is

health and well-being. A specific application area of IoT

in this regard is Ambient Assisted Living (AAL). AAL

is a combination of different components where elderly

or in-home patients are remotely monitored to be pro-

vided with a safe and convenient environment. Fig. 1

shows a simplified view of AAL, with one body temper-

ature sensor, two thermostats in different rooms, and a

central gateway for a smart home system. The AAL

system in this scenario is an integration of two sepa-

rate systems: a smart home system which is composed

of smart lighting system, smart home appliances, smart

security system being all connected to a central gate-

way, and a mobile health system which is built from a

range of vital signal sensors connected to a smart phone.

Consider a situation where the body temperature sen-

sor sends a control signal to a thermostat to adjust the

room temperature.

From the system described above, based on avail-

able resources, we can categorize the devices into three

classes. The first class contains those devices, such as

PC, smart phones and gateways, having multiple high

speed processors with gigabytes of memory and multi-

ple networking options. Those devices which have few

megabytes of memory and used in different Industrial

or home automation belong to the second class (such

as thermostats, motion detectors, and smart switches).

The last class contains devices which are too limited

in processing power, memory and usually have a sin-

gle network interface. These devices might operate on

batteries which are meant to be used for a long period

of time. Typical devices in this class include sensors

(such as body temperature sensor) which could have

resources as small as 8-bit micro controllers having 32

Kbyte of RAM and 512 Kbyte of flash memory.

To integrate these two systems and build the AAL

scenario, first the body temperature sensor needs to

have the same network interface as the thermostat. Sec-

ond, the two devices have to use the same protocol.

Third, the thermostat has to be in listening mode to

receive the message and understand the content of the

message unambiguously. In addition, when a patient

moves from one room to another, the body tempera-

ture sensor needs to automatically roam the communi-

cation to the thermostat resided in the room the pa-

tient just moved in. Fulfilling these requirements is not

a straightforward programming challenge that could be

addressed by a single existing middleware. There are

few choices of frameworks (Razzaque et al., 2016),(Der-

hamy et al., 2015) that could be used to solve a portion

of the above requirements. However, these frameworks

fail to address the resource constraints of the third class

of devices and limit the mobility of the patient. The

above example is a typical case of an IoT vision (Singh

et al., 2014) limited by a new set of requirements that

need to be addressed.

Fig. 1: Simplified AAL scenario



4 Behailu Negash†* et al.

The main motivation of LISA comes from the IoT

concerns that arise when mash-up of separate IoT sys-

tems is developed. Most of these requirements also exist

in smaller IoT systems. The central element is interop-

erability. In IoT systems, interoperability is discussed

in three layers; technical, syntactic, and semantic in-

teroperability (IERC AC4, 2013). LISA is designed to

address all the three interoperability layers. The other

motivation is the mobility requirement of IoT systems,

which is addressed by making the application and service-

ends as central component of the communication in the

NCN implementation in LISA. NCN is proposed based

on modifications to the Internet architecture, such as

CCN and TRIAD (A Scalable Deployable NAT-based

Internet Architecture) (Cheriton and Gritter, 2000),

that rely on name based routing. In addition, the major-

ity of IoT components are constrained in terms of avail-

able memory, processing speed and power source. They

are usually battery powered and need to efficiently man-

age the battery for a long period of time. Therefore,

when devices are in idle state, they are supposed to

go to sleep state. LISA is designed with the motiva-

tion of working within the limitation of these resource-

constrained devices.

The target of LISA is to fill the interoperability gap

by providing a simple API for programmers of such

resource-constrained devices enabling developers to build

a distributed and interoperable system. In the following

section, we discuss the roots of overall architecture of

LISA.

3 Foundations of LISA

Interoperability requirements are common in informa-

tion systems. Some of the causes for differences in com-

puting or communication are lack of standardization,

differences in system requirement and application do-

main. Since the early days of distributed computing,

there has been solutions proposed to overcome hetero-

geneity. LISA is a middleware that relies on basic prin-

ciples of existing integration patterns and practices de-

scribed in (Hohpe and Woolf, 2003). The basic tech-

nologies and patterns followed by LISA are discussed

in the following sections.

3.1 Service Oriented Architecture and Enterprise

Service Bus

It was briefly mentioned that LISA enables the imple-

mentation of Service Oriented Architecture (SOA) in

IoT systems. SOA is an architectural style where in-

dividual functionality of a system are exposed as au-

tonomous services so that consumers of a service can

easily access it (Keen et al., 2004). This has been ex-

tensively used to solve the problem of interoperabil-

ity in enterprise systems regardless of the platform on

which the service runs. One example of such systems is

shown in (Amicis et al., 2011), where SOA is used for

interoperability of transport infrastructures. The ser-

vices have defined interfaces which are described using

standard specification such as web service description

language (WSDL). The format of exchanged message is

usually either XML or JSON (Keen et al., 2004). More-

over, Universal Description, Discovery and Integration

(UDDI) is used to register web services so that client

applications can easily look up the details of the service.

Similar implementation exists in LISA, where services

register to a central register for application nodes to

discover their location and learn other important be-

haviours (such as the protocol it uses).

An Enterprise Service Bus (ESB) is, in the simplest

form, a middleware that provides essential services to

implement Service Oriented Architecture (SOA) (Keen

et al., 2004). ESB enables different services, which use

various incompatible platforms and languages, to com-

municate with each other. ESB provides services for

secure communication channel and a way of transla-

tion between distinct protocols. ESB facilitates sharing

of the interface exposed by a service in a SOA archi-

tecture to the clients interested in the service. In some

configuration, ESB can be distributed (each host has

a section of the ESB locally) or centralized. There are

various open source and proprietary ESBs for the En-

terprise domain (Alghamdi et al., 2010). However, most

of these ESBs use XML as an exchange format and web

services as end nodes. Unlike the enterprise ESBs, that

run at higher abstraction level in the network stack and

are heavy for resource constrained devices, LISA works

at lower abstraction level and is very lightweight. In ad-

dition, LISA is a distributed service bus, enabling direct

communication of a client and server over the bus.

3.2 Network on Terminal Architecture

Network on Terminal Architecture (NoTA) is a service

based open architecture designed by Nokia Research

Center (Binnema, 2009). The initial objective for the

design of this architecture was to facilitate the devel-

opment of mobile devices by minimizing the time re-

quired to integrate different modules. It also minimizes

the coupling of system modules. The architecture has

its roots in the area of Network on Chip (NoC) and

web services as it focuses on interconnection of services

and applications utilizing these techniques. It is a plat-

form and protocol independent architecture. The refer-



LISA 2.0: Lightweight Internet of Things Service Bus Architecture Using Node Centric Networking 5

ence implementation of NoTA, which was released as an

open source implementation of this architecture, sup-

ports variety of network protocols and few platforms.

There are two type of nodes in NoTA; service nodes

(SN) and application nodes (AN). The application node

is a client that requests for a service from service node.

The interaction of these nodes pass through a stack

called the Device Interconnect protocol (DIP), shown

in Fig. 2 (a). The DIP has two layers; High (H IN) and

Low (L IN) interconnect layer (Binnema, 2009). Ap-

plication and service nodes communicate either using

message passing (in control plane) or a node streams

data to a target (in data plane).

The High interconnect layer (H IN), shown in Fig. 2

(b), is the device interconnect layer that is closer to

the user application and it provides Berkeley socket

(BSD) like interface for the programmers. H IN is where

the NoTA protocol is implemented with functionalities

such as service discovery, activation and registration. It

has two operating modes; a single process mode and a

multi-process mode which is enabled running a NoTA

daemon service. On the other end of H IN, it commu-

nicates with the underlying layer, L IN to interact with

the specific network protocol.

The lower interconnect layer (L IN) has two sub lay-

ers, L INup and L INdown, as shown in Fig. 2 (b). The

upper layer (L INup) communicates with H IN and the

lower layer (L INdown) provides specific implementa-

tion of different protocols. Different L INdown imple-

mentations are enabled for a specific node based on the

available network interface and in some cases multiple

L INdown can be enabled at the same time.

NoTA also provides a special type of service node,

which can be enabled depending on the size of the net-

work. This service node is called Resource Manager

(RM), which is used to handle dynamic discovery of

services by application nodes. NoTA also provides a

stub generator, which is an easy way of handling the

process of creating and using NoTA sockets. The ser-

vices in NoTA are described using an XML based ser-

vice description file, similar to web service description

language (WSDL). The format of messages in NoTA is

different from that of web services. NoTA defines ser-

vice signal types that specify message parameters for

nodes to understand the content. Unfortunately, NoTA

was stopped after six years of development and two

updates of the reference implementation of the archi-

tecture. This work was started by exploring the option

of using NoTA for IoT. Even though it was not possible

to use NoTA for the targeted resource constrained im-

plementation, NoTA has become an inspiration for this

work. The service description technique and message

format of NoTA are used in LISA as-is.

3.3 Content Centric Networking

To share hardware resources, every one of the partic-

ipating devices needs an address to locate the other

party; for instance, IP addresses are used to identify

devices connected to the Internet. Two communicating

devices use this IP address to send and receive mes-

sages. In the current Internet, however, it is mostly in-

formation or content that is shared rather than hard-

ware resources. An alternative idea is proposed to em-

brace the changes to what is shared over the Internet.

Content centric networking (CCN) (Jacobson et al.,

2009) is one type of information centric networking. It

is a novel network architecture modified from the cur-

rent Internet architecture. CCN is aimed at minimizing

the problems that arise due to the tight coupling of the

current device addressing scheme with the initial pur-

pose of a computer network. Palo Alto Research Center

(PARC), the organization behind CCN, has an open

source implementation of the protocol called Project

CCNx for few supported platforms and application plug-

in for media transfer.

In CCN architecture, contents are given unique names

where consumers search for the content using this name.

One of the widely used naming scheme in CCN is hi-

erarchical naming. Parts of names indicate chain of re-

lation in the network similar to path names in a file

system. For CCN to work, it requires faster and more

efficient routing algorithms. This is due to the fact that

high volume of content is routed in a network contain-

ing few communicating entities. In addition, one of the

targets of CCN is to secure the information that is com-

municated over the network instead of the network in-

frastructure itself. Therefore, a device interested in a

certain content sends an interest request that could be

handled by any other device containing that specific

content. A new type of information centric networking

is implemented in LISA.

3.4 Software Defined Networking

The focus of the network service has been to create a

channel for data transfer without any dependence on

the type of actual data exchanged. For the network

service to achieve this, there are different configura-

tions that has to be done by the network administra-

tors. Individual network devices working at different

layers of the protocol stack are configured in differ-

ent ways depending on the device manufacturer. This

creates a bottleneck for a network service to be ag-

ile and meet new application requirements. In addi-

tion, the data and control plan in the traditional net-

work are merged in one device. The latest approach to



6 Behailu Negash†* et al.

Fig. 2: (a). NoTA nodes and message types; (b) Inside NoTA DIP

overcome this problem, that enables a more agile and

scalable network is called Software Defined Networking

(SDN)(Kim and Feamster, 2013). In SDN, the network

devices between two communicating devices are divided

into control plane devices (called controllers) and data

plane devices (called forwarding devices or switches).

The controller is logically organized in a central man-

ner whereas the switches are hierarchically organized

and managed by controller. The controller has a high

level overview of the network architecture and can pro-

vide a better decision on packets arriving at switches.

Switches forward the new packets whose information

does not exist in the local flow table to get instruction

from controller. There are still a wide range of ongo-

ing researches(Kreutz et al., 2015) in SDN in general.

A framework proposed by (Jararweh et al., 2015) inte-

grates the idea of SDN to solve the challenges of tradi-

tional architecture. In comparison to our NCN proposal

in this paper, SDN is viewed as an enabler underlying

infrastructure. There are some works (Nguyen et al.,

2013) that research on the possibility of running infor-

mation centric networking on top of SDN.

4 LISA: Lightweight IoT service bus

In this section, we explore the design details of LISA.

As discussed in the previous sections, LISA is designed

specifically for resource constrained devices. In most

implementations, these devices use a lightweight oper-

ating system to take care of low level details so that

user applications can focus on specific system require-

ments. There are many flavors of such operating sys-

tems; for instance Contiki, TinyOS, RIOT and FreeR-

TOS are widely used. Regardless of the internal design

of these operating systems, they are all designed to be

lightweight. One of the requirements of interoperabil-

ity is the ability to use a combination of these operat-

ing systems in a large system. In addition, each device

might also have a different network interface or uti-

lize different protocols. LISA unifies these differences

in platform and protocol levels by enabling the imple-

mentation of SOA. LISA is designed to be portable be-

tween these operating systems with minimal configura-

tion. In some cases however, there are applications that

run without any operating system. One goal is to enable

a bare metal implementation in future releases. The ini-

tial version of LISA, however, targets RIOT, discussed

in the following section.

4.1 Target platform

RIOT is a micro kernel based, real-time, multi-threaded

and modular operating system specifically designed to

take resource-constrained nodes into consideration. It

is designed to bridge the gap between the full-fledged

operating systems (e.g. Linux and Windows) which are

easier to program and the smaller operating systems

for sensor nodes (e.g. Contiki and TinyOs) by provid-

ing easy programmability for the lower end. It supports

standard C programming and provides inter-process com-

munication facilities with partial POSIX compliance. It

has a lightweight network stack with 6LoWPAN and

Routing Protocol for Low-Power and Lossy Networks

(RPL) support. The overall features provided for mod-

ule development and easy portability to multiple boards

and CPUs attracted us to make RIOT the first tar-

get platform to test the concept of LISA. As shown in

Fig. 3, LISA runs on top of the transport layer and can

be considered as an alternate socket layer which handles

user application requests for network services.



LISA 2.0: Lightweight Internet of Things Service Bus Architecture Using Node Centric Networking 7

Radio Transmission

Link Layer (IEEE 802.15.4 MAC)

Network Layer (6LoWPAN & RPL)

Transport Layer (UDP)

User Application (AN or SN)

LISA

 

Fig. 3: LISA in the network stack of RIOT

4.2 High level architecture

To achieve interoperability among protocol and plat-

form silos, different approaches has been taken. The

first approach is to have a single standard to overrule

all the others. This approach so far has been tried by

many industry alliances for IoT, some of which are spe-

cific to application areas (such as home automation).

The second approach is to provide a means of trans-

lation of the transmitted information between differ-

ent standards. So far, the first approach has resulted

mostly in an additional competing standards instead of

solving the interoperability problem. Our project ap-

proaches the problem of interoperability using the sec-

ond method by providing a modular framework that

scales from tiny devices, which operate within resource

constraints, up to the high capacity processing devices.

Figure 4 shows the components of LISA at a high

abstraction level. A user application on the top most

part of the stack communicates with the core of LISA

through a common programming interface (shown in

figure as Application Interface). The application inter-

Adapter (Communication Interface)

Application Interface

Network Stack

LISA Core

User Application (AN or SN)

E
m

b
edded O

S

P
latform

 In
terface

 

Fig. 4: High level components of LISA

face is intentionally made to resemble BSD sockets. The

socket interface is a low level abstraction, to eliminate

unnecessary high level abstractions that would make

our middleware heavy. It is also familiar among pro-

grammers. More over, due to the fact that LISA was

initially designed to work with NoTA, which has a sim-

ilar interface, it helps programmers to have similar ex-

perience in both cases. The calls from the user applica-

tion to the internal LISA are handled in the LISA core

including the start-up procedure to setup the federated

architecture. LISA Core is the heart of the framework

which implements LISA protocol and other core ser-

vices for connecting to a manager node. The core mod-

ule utilizes the network services provided by the net-

work stack and other important low level features built

in the platform through the two interfaces, shown on

the side and bottom of the stack, that enable swap-

ping between different protocols and platforms. Differ-

ent modules which are specific to the protocol or plat-

form handle requests coming through the common in-

terface. As a result, user applications can interoperate

with others regardless of the underlying protocol used.

4.3 Federated Nodes

LISA has three node types; application nodes (AN),

service nodes (SN) and a manager node. LISA nodes

are organized in a federated manner as shown in Fig. 5.

That is, autonomous subnetworks of ANs and SNs are

managed with a single manager node and a group of

subnetworks form a bigger network. The bigger network

is managed by a single main manager node elected from

the subnetwork managers with the support of a cloud

service. Since all manager nodes are connected to the

cloud, communication between manager nodes can take

through the cloud. Optionally, near by managers can

communicate directly without the need to pass through

the cloud. Following the node types, there are different

levels of uptime. Application node is in a sleep state

most of the time and initiates communication when-

ever it wakes up. Service nodes can also go to the sleep

state, but they are active for longer time than applica-

tion nodes. This effectively maps the three classes of de-

vices discussed in previous section into the three node

types. Application and service nodes receive manager

advertisement which contains the address of the man-

ager. Service nodes are identified with a unique name

which is descriptive of the service it provides. Services

register with the manager node as they wake up and

a unique domain specific address is generated for the

service. Application nodes request the manager for the

address of a service during discovery phase. Once the

address is resolved the application and service node can



8 Behailu Negash†* et al.

Fig. 5: Federated architecture of LISA

start to communicate directly, provided that they use

the same protocol.

When there is a request for a service which can-

not be found in the node register of the local manager

(outside the subnetwork), the manager node represents

the node in passing the request to the manager of the

respective destination subnetwork. Service requests in-

side a subnetwork occur simply in a client-server fash-

ion once the channel is established with the help of the

manager. For ease of discussion, Fig. 5 shows five sub-

networks each having a single manager (red nodes in

Fig. 5) and communicating using a different protocol

(such as 6LoWPAN or Bluetooth low Energy). This lo-

cal manager is known as Home manager for the nodes in

the subnetwork. Inside a given subnetwork, an applica-

tion node can simply communicate with the service in a

peer-to-peer fashion. However, if a node in one subnet-

work, for instance using 6LoWPAN, requests a service

which is using Bluetooth low energy, the managers of

these sub networks act on behalf of the individual nodes

in transferring messages.

4.4 Fog computing and LISA

The federated architecture discussed in the above sec-

tion followed the function of the nodes, thereby en-

abling the classification of various devices into the three

node types. Looking at another functional classification,

LISA operates in two computing layers. Application

and service nodes are in the bottom end device layer

and the manager nodes are located at the edge of the

network between the end devices and the cloud. To ac-

commodate IoT requirements for interoperability, mo-

bility and limited availability of devices, LISA uses the

intermediate computing layer, known as Fog computing

layer. Fog computing is a new computing paradigm ex-

tending the cloud computing concept, where the char-

acteristics of the cloud computing are brought closer to

the network edge where data is generated. Fog comput-

ing provides fast and real-time response to changes in

reading values by end nodes. For instance, in the ex-

ample discussed in the motivation section, the smart

phone and smart home gateway constitute intermedi-

ate computing layer between the sensor devices and the

cloud.

4.5 LISA protocol

Figure 6 shows the different protocols and the transition

of the state of LISA nodes. At a higher level of classifi-

cation, LISA has two types of messages; setup messages

and user messages. Setup messages are used during the

initial phase (such as discovery, registration and access

request) of locating and authenticating nodes whereas

user messages are application specific contents. There

are five types of setup messages which are used as a

standard for the bus to create the channel to another

segment of the bus. These messages are used for ser-

vice discovery, registration, application authentication,

handshake of nodes and service deactivation. Each of

these messages affect the state of the bus segment in

the local node. Table 1 summarizes the messages and

states in the LISA protocol.

A service node sends registration request message

(SRP REQ) to a manager in two conditions. First when

it cannot find a manager address in its internal address

log. The second condition is when the locally stored

manager address is different from the one it currently

receives through advertisement. If the registration is

successful, the manager replies with registration con-

firmation (SRP CNF). To allow mobility of devices,

nodes are not configured with static addresses. There-

fore, clients nodes have to discover for the current lo-

cation and address of the service of interest. That is,

the client node (either an application or service node)

sends a discovery request (SDP REQ) for the manager

node using the service name. It is possible for two or

more services to have the same service name as long as

they provide functionally similar service. However the

full ontology name constructed as an identifier in RDF

format is unique for every node. Looking back at the

motivational example, the two thermostats can have the

same service name. If the manager locates the requested

service, it replies a confirmation message (SDP CNF)

with the service information. Once the application node

receives the address, the application node sends an ac-

cess request to the service node which replies with a

simple access code. However, if it cannot locate the ser-

vice, a name based routing of the message through the

fog layer is carried out. The preliminary flow of events



LISA 2.0: Lightweight Internet of Things Service Bus Architecture Using Node Centric Networking 9

Table 1: Messages and states in LISA protocol.

Message Description Options
SDP Service Discovery REQ (request), CNF (confirmation)
SRP Service Registration REQ (request), CNF (confirmation)
SAP Service Authentication REQ (request), CNF (confirmation)
HSP Handshake REQ (request), CNF (confirmation)
DRP Deregistration REQ (request), CNF (confirmation)
State Description Type
INIT Initialization Static
RDY Ready Static
SLP Sleeping Static
DSC Discovering Transient
REG Registering Transient
DRG Deregistering Transient
ACC Authenticating Transient
WHS Waiting Handshake Transient
ERR Error Transient

RDY

SLP

INT

REG

DRG

ERR

DSC

ACC

WHS

* ----- Indicates transition is not valid in this release

SDP_REQ

SDP_CNF & SAP_REQ

SRP_REQ

SRP_CNF

SAP_CNF

HSP_REQ / HSP_CNF

DRP_REQ

D
R

P
_C

N
F

Fig. 6: LISA messages and state transitions

in routing a message is shown in Fig. 8. The details of

name based routing are discussed in section 3.3.

The setup messages affect the current state of LISA,

and hence the state of the underlying network inter-

face. The network interface and LISA go into a sleep

state whenever there is no communication. Advanced

synchronization between a service node and application

node can be achieved by gathering the registration time

and discovery request time from service nodes and ap-

plication nodes. This feature can provide better power

management in the overall subnetwork (Dunkels et al.,

2011). The state transition of the bus segment is han-

dled as shown in the Fig. 6. The bus is in transient state

if it is in one of the yellow circles (shown in Fig. 6) and

can be utilized by the user application only when it is

in the ready state. The left path is taken by application

nodes, the middle is taken by manager nodes and the

right path is for service nodes. There are states which

are not fully implemented in the current version (such

as ERR and WHS).

4.6 LISA user messages

The user message format for LISA is adapted from

NoTA. The service interface describes what parameters

are required to use a service and the type of parameters

passed. User messages are raw application specific con-

tents exchanged among nodes with a very lightweight

header to identify it in LISA. For example, in a health

monitoring application domain, where application nodes

(sensors) send readings to a service running on another

node, the logging service might require the following

parameters from an application node: SensorID (type

unsigned integer), PatientID (type unsigned integer)
and Reading (type float). The type, length (optional)

and values of each parameter will be ordered accord-

ingly and copied to the buffer as the body of the mes-

sage. In LISA, the user message starts with 0x11, which

is a code for type of 8 bit unsigned integer (Binnema,

2009), followed by the actual value of SensorID. Simi-

larly, PatientID and Reading are also arranged and in-

serted into the buffer. The receiving end identifies user

message from the header and parse the values accord-

ing to the service definition exposed for the application

node.

4.7 NCN in LISA

An overview of CCN is given in Section 3.3. CCN is

aimed at minimizing the problems that arise due to the

tight coupling of the current device addressing scheme

with the initial purpose of a computer network. In CCN,

contents are given unique addresses and this address is



10 Behailu Negash†* et al.

used to route the information over the network. In con-

trast, Node centric networking gives names for nodes

(application, service or manager) which are functional

units of an IoT system. It was discussed that LISA

enables SOA implementation. Subsequently, the whole

system is arranged into groups of clients and services.

In addition, one of the main design goals is to provide

interoprability of devices. As discussed, interoperabil-

ity is achieved at multiple layers, one of these layers

is semantic interoperability. Semantic interoperability

deals with understanding exchanged messages in the

right context without ambiguity (Bittner et al., 2005).

Due to the huge data coming from the connected de-

vices, which could be redundant over time, has to be

analysed in a way that helps to extract information out

of it. This semantic information is one of the visions of

Internet of Things (Singh et al., 2014). Ontologies are

used to describe the common information exchanged

among component systems. It is this ontology name of

services, that LISA uses to route service requests across

protocol boundaries. However, true semantic informa-

tion out of the data is provided through the cloud and

LISA feeds semantically organized data for the upper

layer.

The ontology name of services are used only when

sending a discovery request message. Ontology names

are also hierarchical as in a Resource Description Frame-

work (RDF) identifier. However, only last part of the

identifier is used at this stage to identify a node. For in-

ternal use by managers, a hierarchical address is given

to all nodes in LISA. This is similar to the purpose of

the Domain Name System in the Internet. This hierar-

chical address is generated and managed by manager

nodes. Manager nodes map the ontology name to hier-

archical address locally as they generate the address. It

follows the format:

Domain/Home Manager/Node Type/Node ID.

Each part of the name takes 8bits, thus giving a total

of 32 bits for each node name. This address is stored

inside a table in nodes (this is a similar concept to con-

tent stores in CCN). Each of the sections of the name

are listed as domain, home, type and node as shown

in Fig. 7. This name is unique even across systems in

building mash-up of IoT subsystems. This is achieved

through the use of unique application domain identifiers

for each IoT subsystem. For example, in the motivation

example of AAL in section 2, the two major subsystems

mentioned (smart home and mobile health system) will

have two different domain Id’s.

In a discussion on LISA protocol, the specific design

of message routing across protocol boundaries was de-

ferred until this point . An application, which is looking

for a service, first sends a discovery request to its home

AN Sends SDP

SDP Resolved?

Send SN info Send Self info to AN

Reply?

Send route to all 
registered managers

NOYES

Self is Main MN?

YES

Send route to Main 
MN

NO

SN is registered?

NOSend Message to SN

YES

Send Message to 
Main MN

Send message to 
replying MN

Drop Message

NO YES

Send message to SN

Fig. 8: LISA routing based on custom addressing across sub-
networks

manager. The manager looks for the specified ontology

name in its local routing table and registers the appli-

cation with a new address. Ontology name can be sim-

ilar in two different domains. However, it is unique in a

given domain. If the manager cannot find the service, it

forwards the message to the main manager. The man-

ager nodes are assumed to have multiple network inter-

faces and relaxed resource constraints than the other

nodes (assumed class 1 devices). The request subse-

quently goes to the right manager where the service

is registered (shown in Fig. 8). In the meantime, the

application can send the message to its manager and

go to a sleep state. When the service is located, the

manager node sends the user message.

5 LISA Demonstrator and Evaluation

To demonstrate the work presented in this paper, two

configurations were setup. The first configuration was

with only three nodes from each type. The simulation is

carried out on a Linux machine running three instances

of RIOT operating system on different tap interfaces in

native mode. To measure various performance charac-



LISA 2.0: Lightweight Internet of Things Service Bus Architecture Using Node Centric Networking 11

Fig. 7: Node naming in node centric LISA

teristics of the service bus, an interactive user applica-

tion is built using LISA. RIOT provides a shell module

which can be enabled and users can interact with the

operating system and the user application. To run the

manager node, a shell command lm -m is executed

in one of the nodes. This initiates the manager appli-

cation which starts listening to incoming requests and

advertises its information to client nodes. The manager

node is assumed to run in the Fog layer and has relaxed

constraints in terms of power, processing capacity and

memory as compared to the end nodes (application and

service nodes). Devices running the manager node are

also assumed to have multiple network interfaces, such

as Bluetooth and Wi-Fi.

The service nodes are composed of intermediate de-

vices with few constraints (devices in class 2). Depend-

ing on the functionality, these nodes can have varying

up times. Similar to the manager node, the service node

is started from the shell using the command ls -s fol-

lowed by the address of the Home Manager we want

to register to (this is not useful in production), then

follows Service Id and Interface Id (used to locate it by

clients). This has been changed in the second demon-

strator by replacing the Service Id and Interface Id with

the ontology name of the service. The application node

also uses similar technique; A shell command la fol-

lowed by the service and interface id it is communicat-

ing with, and finally the actual message to transfer.

One of the issues with RIOT when working with

the advertisement is the priority of threads. The man-

ager was configured to advertise every five seconds in

a separate thread. This is of lower priority than the

main thread that handles the incoming requests. How-

ever, during the testing phase, the manager was un-

able to switch from the advertisement thread to the

main thread to handle incoming requests. Hence, ser-

vice nodes and application nodes had to be manually

configured with the address of the manager. The first

demonstrator was built as a proof of concept for a lightweight

version of a service bus for IoT and published in (Ne-

gash et al., 2015).

The size of the whole application including the op-

erating system and the required modules is less than

130 Kbytes (as shown in Table 2), from which LISA

takes 22 Kbytes (less than 20%). Looking at the run-

ning processes from RIOT shell commands, LISA cre-

ates only one thread which registers itself for handling

incoming packets. This improves power and memory

management. Figure 9 shows the sequence of messages

in first demonstrator.

Table 2: Size of LISA vs NoTA (Negash et al., 2015).

API name Size (KB)
LISA Only ˜22
LISA with RIOT ˜130
NoTA ˜260

The second part of the demonstrator was an ex-

tended version of the first one. Similar to the first demon-

stration, the simulation is done on a Linux machine

running six instances of RIOT in native mode. Two

subnetworks are setup each with its own manager, of

which one is selected as a main manager. The second

manager first gets registered with the main manager

and goes into a ready state. Two nodes (one service

and one application) register in each manager; a total

of six nodes are used in this demonstrator. This creates

two subnetworks each simulating a different protocol.

An application node in one manager tries to communi-



12 Behailu Negash†* et al.

Application 
Node

Manager 
Node

Service 
Node

SRP_REQ

SDP_REQ SRP_CNF

SAP_REQ

SAP_CNF

SDP_CNF

User Message

User Message

 

Fig. 9: Sequence of messages in LISA

cate with a service in a different manager. The specific

routing algorithm of the service request and application

specific message, implemented in this demonstrator is

shown in Algorithm 1. The results of the demonstrator

are presented in the following section.

5.1 Evaluation

Looking at the operation done for each protocol mes-

sage, we can analyze the complexity of the related algo-

rithm. For instance, service registration is simply an in-

sertion operation at the manager node. That indicates a

complexity of O(1), or a constant time operation. How-

ever, discovery of a service by an application node re-

quires variable amount of time depending on the num-

ber of already registered services and the data struc-

ture used to store the nodes. For this version of LISA

a simple list is used to register the nodes. Therefore

the complexity of this operation is O(n). To show the

performance of LISA, the time required for each proto-

col message has been monitored. The time required is

measured from both sides, the sender (to process con-

firmation messages or CNF) and receiver (process re-

quests or REQ). The following graphs show the results

for different number of trials under the same configura-

tion. When a node is unable to get a confirmation mes-

sage from the receiver end, LISA tries to send the same

message five times before failing to communicate. This

naturally leads to longer communication times during

the test, as shown in the graphs (Fig. 10). The time

taken in a routed message across a sub-network varies

depending on where the service node is located. It is ba-

sically service discovery request done at multiple man-

ager nodes. To evaluate the cost of using LISA in terms

of additional overhead it brings, average times for the

different message types are collected.

The simulation is done on a 32 bit Ubuntu 14.04

machine with 4GB of memory and Intel Core 2 Duo

processor which has a speed of 3.16 GHz. For a service

node to be ready it takes an average of 2.83 µs for Ser-

vice Registration Request (SRP REQ) plus 14.67 µs for

Service Registration confirmation (SRP CNF) and one

full communication cycle with the manager, which is

a total of 17.5 µs delay. Similarly, an application node

takes an average of less than 30 µs for discovery and less

than 20 µs for authentication in the best case scenario

with additional two full communication cycles (one for

each process). The total delay for all the setup process

is less than 1ms. In addition, there is a bandwidth over-

head of 9 bytes as a LISA user message header. Com-

pared to the advantages gained by introducing LISA in

the system (interoperability, mobility, ease of program-

ming), the above delays and few additional communi-

cation costs with the manager are the design trade-off

made in this paper.

6 Related Work

Internet of Things is not a completely new technology

but an evolved one from existing ones such as Wireless

Sensor Networks and Machine to Machine communica-

tion technologies. This ancestral relation also brings the

claim that the middlewares developed for prior applica-

tion requirements can also fit for IoT. There are many



LISA 2.0: Lightweight Internet of Things Service Bus Architecture Using Node Centric Networking 13

4. NODE CENTRIC LISA
It is natural for people to use names to refer to objects. Due
to this natural behavior, human beings have developed the
Domain Name System, which translates names to addresses,
in the current Internet as discussed in Chapter 1. This paper
utilizes a customized naming scheme for easy location of ser-
vices. There are two types of names in distributed systems;
pure and impure names. Pure names have no relation with
the location or arrangement of the system. A typical exam-
ple can be a Globally Unique Identification (GUID). Simi-
lar approaches are used in some implementations of CCN.
However, it has drawbacks such as the possibility of running
out of unique names, longer processing times in identifica-
tion and routing. For the purpose of IoT, using pure names
is challenging due to the expected huge number of devices.
Impure names have residues of parent names in the child
name. Web Uniform Resource Locator (URL) is a typical
example, the name http://www.utu.fi/en/Pages/home.aspx
shows that the resource home.aspx is located in Pages which
is located in en, which is part of the root folder. This type of
naming is used in LISA for ease of administration, but modi-
fied to reflect the resource limitations of devices. In addition
to the custom addressing used, service nodes are identified
with ontology names. Ontology names are introduced for
future extension to semantic interoperability of the system.

Once properly named, the resolution of the names into pro-
tocol specific address is done at the Fog layer in the manager
nodes. Application nodes that intend to communicate with
a service node request the manager node for the address of
the specified service name. Names are given in the following
format:

Domain/Home Manager/Node Type/Node ID

Each part of the name has 8bits allocated, a total of 32 bits
for each node. This address is stored in a type called lad-
dress t, where each of the sections of the name are listed as
domain, home, type and node. This name is unique even
across systems in building mash-up of IoT systems. This
is achieved through the use of unique domain identifiers for
each IoT system. For instance, in healthcare application
where we have many manager nodes in the fog layer and
each managing multiple sensors in home or hospital (some
of which can be made as service nodes and some as applica-
tion nodes) we have the following naming. Manager nodes
take their home manager the ID of the elected main man-
ager. When it is only a single manager, it takes its own node
ID as home manager ID. Healthcare domain = 0x01, Home
Manager =0x01 - 0x0N (N=number of manager nodes in the
Fog layer), Node Type = 0x00 (manager) and Node ID is se-
quentially assigned starting from 0x01. This is stored in the
manager nodes and share information of their local nodes to
their peer when the nodes move to a different location. The
address of each registered manager, service or application is
stored in its own home manager’s internal route table. This
addressing enables protocol independent routing of messages
across boundaries. The details of routing of messages based
on this addressing scheme is given in CCN implementation
in LISA.

The specific implementation in LISA is not purely CCN but
a customized implementation which is more of node centric

networking. As defined early, in the context of LISA, a node
is either a service, manager or application instance running
on a device. Multiple services or application might run a
single device but each will be assigned a unique LISA ad-
dress. Routing of messages from each node is done at the
managers. An application which is looking for a service first
sends a discovery request to its home manager. The man-
ager looks for the specified ontology name in its local route
table and register the application with a new address. If the
manager cannot find the service, it forwards the message to
the main manager. The manager nodes are assumed to have
multiple network interfaces and relaxed resource constraints
than the other nodes. The request subsequently goes to the
right manager where the service is registered. In the mean-
time, the application can send the message to its manager
and go to sleep state. When the service is located, the man-
ager node sends the user message. The routing implemented
is in its very preliminary state and shows only a basic con-
cept.

Result: Node message delivered to destination
if SDP Request == True then

if SDP Resolved then
Return SDP confirmation;

else
Return SELF information;
Message Received;
if SELF == Main Manager then

while All Registered Managers do
Send route to ith;

Send Message to ith;

end

else
Send route to Main Manager;
Send Message to Main Manager;

end

end

else
Route Received;
Message Received;
if SELF == Main Manager then

if Node exists locally then
Deliver Message;

else
while All Registered Managers do

Send route to ith;

Send Message to ith;

end

end

else
if Node exists locally then

Deliver Message;
else

Drop Message ;
end

end

end
Algorithm 1: Simplified manager routing algorithm

Two sub networks are setup each with its own manager, of
which one is selected as main manager. The second manager
first gets registered with the main manager and becomes in

middleware options specially for WSN application (Az-

zara et al., 2013). Other category of middlewares are

designed for data aggregation from various sensor nodes

(Perera et al., 2014) without focusing on the heteroge-

neous communication protocols. A more comprehensive

survey of middlewares proposed for IoT are presented

in (Razzaque et al., 2016). Several frameworks and de-

sign patterns were studied during this work. However,

most of the identified frameworks are either heavy for

resource constrained devices or those that propose a

lightweight middleware run above the application layer

protocol which limits the range of supported transport

protocols. In comparison, our proposal is closer to low

level protocol layers and is lightweight enough for re-

source constrained devices. The framework introduced

by AllSeen is promising in both the applicability and

the community behind it, AllSeen Alliance (Allseen Al-

liance, a), (Allseen Alliance, b). One advantage of the

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

Number of Iterations

T
im

e
(m

ic
ro

se
c.
)

Service Registration (SRP)

Service Node
Manager Node

1 2 3 4 5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

N
or
m
al
iz
ed

T
im

e
Service Discovery (SDP)

Application Node
Manager Node

1

Fig. 10: LISA SRP and SDP processing times

framework is the support of multiple programming lan-

guages and familiar platforms in the PC and mobile

device domain. However, this work is not focused on

the resource-constrained devices which are targeted by

LISA. A device service bus presented by Medeiros et al.

(Medeiros Araújo and Siqueira, 2009) uses web services

for interoperability based on Device Profile for Web Ser-

vices (DPWS). However, similar to the above discus-

sion, this service bus is also targeted for non-resource-

constrained nodes.

The initial design of the current Internet was not

meant for service centered operation. The work pre-

sented by Nordstrom et al. (Nordström et al., 2012)

addresses the resulting mobility problem accessing the

Internet. By introducing a middle layer between the

network and transport layer, they provide a means of



14 Behailu Negash†* et al.

addressing services which is network address agnostic.

This has been the motivation for LISA to integrate a

discovery mechanism which is customized for the IoT

domain.

This work is originally started with the inspiration

of Network on Terminal Architecture (NoTA) (Binnema,

2009), (Negash et al., 2015). The work introduced in

TRIAD (Cheriton and Gritter, 2000) and Information

centric networking (Pentikousis et al., 2015) also mo-

tivated us to utilize the idea of Node centric network-

ing in LISA. Different types of information centric net-

working concepts have been implemented so far. One of

the main implementations is Content Centric Network-

ing (CCN) (Jacobson et al., 2009). In CCN architec-

ture, contents are given unique names where consumers

search for the content using the corresponding name.

This requests for specific information known as interest.

When a node receives an interest for a specific content,

it tries to match the name and if it is the same, the

node will reply to the interest. One of the widely used

naming scheme in CCN is hierarchical naming. Parts

of names indicate chain of relation in the network sim-

ilar to path names in a file system. For CCN to work,

it requires faster and more efficient routing algorithms

than routers in traditional network routers, which are

also conceptually different. This is due to the fact that

high volume of content is routed through a network con-

taining few communicating entities. CCN routers have

pending interest store for unanswered interest requests,

and content stores to save contents served in previous

requests. Data Oriented Network Architecture (DONA)

(Koponen et al., 2007) is also a similar approach to

CCN with the focus on data. DONA mainly focuses

on the interoperability requirements and address mo-

bility, intermittent availability of constrained nodes to

move forward to the vision of IoT. In this regard, our

work in NCN fits better for IoT in that, it enables a

hierarchical, scalable, and service oriented organization

of the overall system, and enables interoperability and

mobility of IoT components.

7 Conclusions and Future Works

We introduced a lightweight embedded service bus (LISA)

to address recent requirements of Internet of Things

such as interoperability and mobility, by facilitating the

implementation of service oriented architecture. The

paper also discussed our implementation of a node cen-

tric networking (NCN), a node based routing coupled

with LISA. Our implementation has been discussed and

demonstrated to be compact for resource constrained

devices. LISA offers service discovery, registration and

authentication that are essential features to setup and

communicate application messages between nodes. More-

over, it presented the benefit of addressing nodes (func-

tional units) in NCN instead of the actual content shared

among IoT devices with the additional benefit of ex-

tending it for semantic interoperability. The performance

of the middleware has also been shown in relation to re-

source constraints. The middleware takes advantage of

Fog computing architecture by implementing federation

of nodes, which can route messages independent of the

underlying protocol. The performance of the gateways

in the Fog layer, which are referred as manager nodes

in LISA, is also analyzed and presented. The work is

planned to be extended to support multiple operating

systems, platform and protocols for IoT with additional

layer of semantic interoperability through detailed im-

plementation of domain specific ontologies at the fog

layer. The future research works include studying the

possibility of running LISA without any operating sys-

tem, support additional embedded operating systems

and adding more features for manager node to activate

services. The future work will also contain the develop-

ment of an optional configuration for quality-of-service

messaging depending on the application type. We will

release LISA as an open source project thereby provid-

ing a community of developers and in house contribu-

tion to enhance the features of LISA.

References

A.S. Alghamdi, I. Ahmad, and M. Nasir. Selecting the

best alternative SOA service bus for C4I systems us-

ing multi-criteria decision making technique. In In-
ternational Conference on Computational Technolo-

gies in Electrical and Electronics Engineering, pages

790–795, 2010.

Allseen Alliance. Alljoyn standard core.

https://allseenalliance.org/framework/documentat

ion/learn/core/standard-core, a. Accessed: 2015-03-

19.

Allseen Alliance. Alljoyn thin core.

https://allseenalliance.org/framework/documentat

ion/learn/core/thin-core, b. Accessed: 2015-03-19.

Raffaele Amicis, Giuseppe Conti, Stefano Piffer,

and Federico Prandi. Service oriented comput-

ing for ambient intelligence to support manage-

ment of transport infrastructures. Journal of

Ambient Intelligence and Humanized Computing,

2(3):201–211, 2011. ISSN 1868-5145. URL

http://dx.doi.org/10.1007/s12652-011-0057-z.

Somaya Arianfar, Pekka Nikander, and Jörg Ott. On

Content-centric Router Design and Implications.

In Proceedings of the Re-Architecting the Internet



LISA 2.0: Lightweight Internet of Things Service Bus Architecture Using Node Centric Networking 15

Workshop, ReARCH ’10, pages 5:1–5:6, New York,

NY, USA, 2010. ACM. ISBN 978-1-4503-0469-6.

A. Azzara, S. Bocchino, P. Pagano, G. Pellerano, and

M. Petracca. Middleware solutions in wsn: The iot

oriented approach in the icsi project. In Software,

Telecommunications and Computer Networks (Soft-

COM), 2013 21st International Conference on, pages

1–6, Sept 2013.

Emmanuel Baccelli, Oliver Hahm, Matthias Wählisch,

Mesut Gunes, and Thomas Schmidt. RIOT: One OS

to Rule Them All in the IoT. Research Report RR-

8176, December 2012.

Dirk-Jan C. Binnema. NoTA programming guide. Nokia

Research Centre, Finland, 2009.

Thomas Bittner, Maureen Donnelly, and Stephan Win-

ter. Ontology and semantic interoperability. In

Large-scale 3D Data Integration Challenges and Op-

portunities. CRC Press, 2005. ISBN 978-0-8493-9898-

8.

Marjory S. Blumenthal and David D. Clark. Communi-

cations Policy in Transition. chapter Rethinking the

Design of the Internet: The End-to-end Arguments

vs. The Brave New World, pages 91–139. MIT Press,

Cambridge, MA, USA, 2001. ISBN 0-262-03292-9.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh

Addepalli. Fog Computing and Its Role in the In-

ternet of Things. In Proceedings of the First Edition

of the MCC Workshop on Mobile Cloud Computing,

MCC ’12, pages 13–16, New York, NY, USA, 2012.

ACM. ISBN 978-1-4503-1519-7.

M.R. Bosunia, Anbin Kim, D.P. Jeong, Chanhong Park,

and Seong-Ho Jeong. Efficient data delivery based on

content-centric networking. In Big Data and Smart

Computing (BIGCOMP), 2014 International Con-

ference on, pages 300–304, Jan 2014.

M.R. Butt, O. Delgado, and M. Coates. An energy-

efficiency assessment of Content Centric Network-

ing (CCN). In Electrical Computer Engineering

(CCECE), 2012 25th IEEE Canadian Conference on,

pages 1–4, April 2012.

CERP-IOT. Vision and Challenges for realizing the

Internet of Things. Technical report, European com-

mission, Information society and media, 3 2010.

David R. Cheriton and Mark Gritter. TRIAD: A Scal-

able Deployable NAT-based Internet Architecture.

Technical report, 2000.

H. Derhamy, J. Eliasson, J. Delsing, and P. Priller. A

survey of commercial frameworks for the internet of

things. In Emerging Technologies Factory Automa-

tion (ETFA), 2015 IEEE 20th Conference on, pages

1–8, Sept 2015.

Adam Dunkels, Joakim Eriksson, and Nico-

las Tsiftes. Low-power Interoperability for

the IPv6-based Internet of Things. Techni-

cal report, Wireless Ad-hoc Networks, 5 2011.

http://dunkels.com/adam/dunkels11adhoc.pdf.

Kjeld Borch Egevang and Paul Fran-

cis. The IP Network Address Translator

(NAT). RFC 1631, RFC Editor, May 1994.

http://www.rfc-editor.org/rfc/rfc1631.txt.

Dave Evans. The Internet of Things How the Next

Evolution of the Internet Is Changing Everything.

Technical Report 2, Cisco Internet Business Solu-

tions Group (IBSG), 4 2011. Available Online

http://www.iotsworldcongress.com/.

Gregor Hohpe and Bobby Woolf. Enterprise Integration

Patterns, Designing, Building and Deploying Mes-

saging Solutions. Addison Wesley, Boston, 2003.

IERC AC4. IoT Semantic Interoperability: Research

Challenges, Best Practices, Recommendations and

Next Steps. Technical report, European Commission

Information Society and Media, 8 2013. Available

online: http://www.probe-it.eu/.

Van Jacobson, Diana K. Smetters, James D. Thornton,

Michael F. Plass, Nicholas H. Briggs, and Rebecca L.

Braynard. Networking Named Content. In Proceed-

ings of the 5th International Conference on Emerging

Networking Experiments and Technologies, CoNEXT

’09, pages 1–12, New York, NY, USA, 2009. ACM.

ISBN 978-1-60558-636-6.

Yaser Jararweh, Mahmoud Al-Ayyoub, Ala’ Darabseh,

Elhadj Benkhelifa, Mladen Vouk, and Andy Rindos.

Sdiot: a software defined based internet of things

framework. Journal of Ambient Intelligence and

Humanized Computing, 6(4):453–461, 2015. URL

http://dx.doi.org/10.1007/s12652-015-0290-y.

Martin Keen, Amit Acharya, Susan Bishop, Alan

Hopkins, Sven Milinski, Chris Nott, Rick Robin-

son, Jonathan Adams, and Paul Verschueren. Pat-

terns: Implementing an SOA Using an Enter-

prise Service Bus. Technical report, IBM, 2004.

http://www.redbooks.ibm.com.

J. Kiljander, M. Etelapera, J. Takalo-Mattila, and J.-

P. Soininen. Opening information of low capacity

embedded systems for Smart Spaces. In Intelligent

Solutions in Embedded Systems (WISES), 2010 8th

Workshop on, pages 23–28, July 2010.

Hyojoon Kim and N. Feamster. Improving network

management with software defined networking. Com-

munications Magazine, IEEE, 51(2):114–119, Febru-

ary 2013. ISSN 0163-6804.

Teemu Koponen, Mohit Chawla, Byung-Gon Chun, An-

drey Ermolinskiy, Kye Hyun Kim, Scott Shenker,

and Ion Stoica. A Data-oriented (and Beyond) Net-

work Architecture. In Proceedings of the 2007 Con-

ference on Applications, Technologies, Architectures,



16 Behailu Negash†* et al.

and Protocols for Computer Communications, SIG-

COMM ’07, pages 181–192, New York, NY, USA,

2007. ACM. ISBN 978-1-59593-713-1.

D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Es-

teve Rothenberg, S. Azodolmolky, and S. Uhlig.

Software-defined networking: A comprehensive sur-

vey. Proceedings of the IEEE, 103(1):14–76, Jan 2015.

ISSN 0018-9219.

Gustavo Medeiros Araújo and Frank Siqueira. The De-

vice Service Bus: A Solution for Embedded Device

Integration Through Web Services. In Proceedings of

the 2009 ACM Symposium on Applied Computing,

SAC ’09, pages 185–189, New York, NY, USA, 2009.

ACM. ISBN 978-1-60558-166-8.

P. Mockapetris. Domain names - concepts and fa-

cilities. STD 13, RFC Editor, November 1987.

http://www.rfc-editor.org/rfc/rfc1034.txt.

Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone,

Sylvia Ratnasamy, and David Wetherall. Reducing

Network Energy Consumption via Sleeping and Rate-

adaptation. In Proceedings of the 5th USENIX Sym-

posium on Networked Systems Design and Implemen-

tation, NSDI’08, pages 323–336, Berkeley, CA, USA,

2008. USENIX Association. ISBN 111-999-5555-22-1.

Behailu Negash, Amir-Mohammad Rahmani, Tomi

Westerlund, Pasi Liljeberg, and Hannu Tenhunen.

Lisa: Lightweight internet of things service bus ar-

chitecture. Procedia Computer Science, 52:436 – 443,

2015. ISSN 1877-0509. The 6th International Con-

ference on Ambient Systems, Networks and Tech-

nologies (ANT-2015), the 5th International Confer-

ence on Sustainable Energy Information Technology

(SEIT-2015).

Xuan Nam Nguyen, Damien Saucez, and Thierry

Turletti. Providing CCN functionalities over Open-

Flow switches. Research report, August 2013. URL

https://hal.inria.fr/hal-00920554.

Erik Nordström, David Shue, Prem Gopalan, Rob

Kiefer, Matvey Arye, Steven Ko, Jennifer Rexford,

and Michael J. Freedman. Serval: An End-Host Stack

for Service-Centric Networking. In Presented as part

of the 9th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 12), pages

85–98, San Jose, CA, 2012. USENIX. ISBN 978-

931971-92-8.

A. Ooka, S. Atat, K. Inoue, and M. Murata. Design of

a high-speed content-centric-networking router using

content addressable memory. In Computer Commu-

nications Workshops (INFOCOM WKSHPS), 2014

IEEE Conference on, pages 458–463, April 2014.

K. Pentikousis, B. Ohlman, D. Corujo, G. Boggia,

G. Tyson, E. Davies, A. Molinaro, and S. Eum.

Information-Centric Networking: Baseline Scenarios.

RFC 7476, RFC Editor, March 2015.

Charith Perera, Prem Prakash Jayaraman, Arkady

Zaslavsky, Peter Christen, and Dimitrios Geor-

gakopoulos. Mosden: An internet of things mid-

dleware for resource constrained mobile devices.

In Proceedings of the 2014 47th Hawaii Inter-

national Conference on System Sciences, HICSS

’14, pages 1053–1062, Washington, DC, USA,

2014. IEEE Computer Society. ISBN 978-1-

4799-2504-9. doi: 10.1109/HICSS.2014.137. URL

http://dx.doi.org/10.1109/HICSS.2014.137.

Hauke Petersen, Emmanuel Baccelli, and Matthias

Wählisch. Interoperable Services on Constrained De-

vices in the Internet of Things. In W3C, editor, W3C

Workshop on the Web of Things, Berlin, Germany,

June 2014.

M.A. Razzaque, M. Milojevic-Jevric, A. Palade, and

S. Clarke. Middleware for internet of things: A sur-

vey. Internet of Things Journal, IEEE, 3(1):70–95,

Feb 2016. ISSN 2327-4662.

Lawrence G. Roberts and Barry D. Wessler. Computer

Network Development to Achieve Resource Sharing.

In Proceedings of the May 5-7, 1970, Spring Joint

Computer Conference, AFIPS ’70 (Spring), pages

543–549, New York, NY, USA, 1970. ACM.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end

Arguments in System Design. ACM Trans. Comput.

Syst., 2(4):277–288, November 1984. ISSN 0734-2071.

Poornachandra Sarang. SOA Approach to Integra-

tion: XML, Web Services, ESB, and BPEL in Real-

world SOA Projects. Packt Publishing, 2007. ISBN

1904811175, 9781904811176.

D. Singh, G. Tripathi, and A.J. Jara. A survey of

internet-of-things: Future vision, architecture, chal-

lenges and services. In Internet of Things (WF-IoT),

2014 IEEE World Forum on, pages 287–292, March

2014.

Lu Tan and Neng Wang. Future Internet: The Internet

of Things. In Advanced Computer Theory and Engi-

neering (ICACTE), 2010 3rd International Confer-

ence on, volume 5, pages V5–376–V5–380, Aug 2010.


