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ABSTRACT 57 

Objective: To investigate associations between early-life diet trajectories and preclinical 58 

cardiovascular phenotypes and metabolic risk by age 12 years. 59 

Methods: Participants were 1 861 children (51% male) from the Longitudinal Study of 60 

Australian Children. At five biennial waves from 2-3 to 10-11 years: Every 2 years from 2006 61 

to 2014, diet quality scores were collected from brief 24-hour parent/self-reported dietary 62 

recalls and then classified using group-based trajectory modelling as ‘never healthy’ (7%), 63 

‘becoming less healthy’ (17%), ‘moderately healthy’ (21%) and ‘always healthy’ (56%). At 64 

11-12 years: During children’s 1.5 h to 3.5 h physical health Child Health CheckPoint (2015 65 

to 2016) we measured cardiovascular functional (resting heart rate, blood pressure, pulse 66 

wave velocity, carotid elasticity/distensibility) and structural (carotid intima-media thickness, 67 

retinal microvasculature) phenotypes; and metabolic risk score (composite of body mass 68 

index z-score, systolic blood pressure, high-density lipoproteins cholesterol, triglycerides and 69 

glucose). Associations were estimated using linear regression models (n = 1 100 to 1 800) 70 

adjusted for age, sex and socioeconomic position. 71 

Results: Compared to ‘always healthy’, the ‘never healthy’ trajectory had higher resting heart 72 

rate (2.6 bpm, 95% CI 0.4, 4.7) and metabolic risk score (0.23, 95% CI 0.01, 0.45), and lower 73 

arterial elasticity (-0.3% per 10mmHg, 95% CI -0.6, -0.1) and distensibility (-1.2%, 95% CI -74 

1.9, -0.5) (all effect sizes 0.3 to 0.4). Heart rate, distensibility and diastolic blood pressure 75 

were progressively poorer for less healthy diet trajectories (linear trends p≤0.02). Effects for 76 

systolic blood pressure, pulse wave velocity and structural phenotypes were less evident.  77 

Conclusions: Children following the least healthy diet trajectory had poorer functional 78 

cardiovascular phenotypes and metabolic syndrome risk, including higher resting heart rate, 79 

one of the strongest precursors of all-cause mortality. Structural phenotypes were not 80 
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associated with diet trajectories, suggesting the window to prevent permanent changes 81 

remains open to at least late childhood.   82 
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INTRODUCTION  83 

The Global Burden of Disease Study estimates that in 2017 dietary risk factors 84 

accounted for 11 million deaths and 255 million disability-adjusted life years, led by 85 

cardiovascular disease (CVD).1 CVD risk develops across the life course2 and, consistent 86 

with a life course accumulative model,3 childhood diet quality may influence emerging 87 

cardiovascular (CV) and metabolic phenotypes and be important to adult CVD. If such 88 

impacts are already evident in childhood, then motivation for public health promotion to 89 

improve poor diet quality very early in the life course will be heightened. 90 

Child and adolescent consumption of specific foods and food groups has repeatedly 91 

been linked with CVD risk factors. For example, higher long-chain omega-3 polyunsaturated 92 

fatty acid, fish and/or dairy food consumption have been associated with healthier adolescent 93 

microvasculature (wider retinal arterioles, narrower venules); with soft drinks and 94 

carbohydrate nutrition showing the reverse.4-6  When considering overall diet using 95 

questionnaire-derived scores, the few null studies are outweighed by studies indicating that 96 

less healthy diet scores predict poorer risk profiles.7-13 For example, children and adolescents 97 

with high consumption of fruits, vegetables, wholegrains and low consumption of total fat, 98 

saturated fat, cholesterol, sodium (the DASH diet) have lower blood pressure and reduced 99 

incidence of metabolic syndrome.9, 10, 12  100 

Several large longitudinal studies (e.g. The Avon Longitudinal Study of Parents and 101 

Children (ALSPAC); The Cardiovascular Risk in Young Finns Study) also demonstrate 102 

prospective associations between poor childhood diet quality and CVD risk factors in later 103 

childhood, adolescence, and adulthood.14-17 Most recently, ALSPAC investigators 104 

demonstrated that distinct eating behavior trajectories (e.g. overeating, fussy eating) 105 

throughout children’s first decade associate with their Body Mass Index (BMI) at age 11 106 

years.18 Specifically, compared to children following a low and stable trajectory of overeating 107 
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from age 15 months to 10 years, children following an early and increasing trajectory of 108 

overeating recorded much greater BMI at the age 11 follow up.18 From a public health 109 

perspective, trajectory analyses are more appealing than individual-level longitudinal 110 

analyses because one can pinpoint which typical trajectories of behavior are best (and worst) 111 

for population level health outcomes.19  112 

However, longitudinal studies employing diet quality scores are scarce. In those that 113 

exist, diet scores are often only measured at baseline or the focus centres on mean scores over 114 

time, follow-up is usually short (e.g. commonly 3-4 years),8, 12, 13 and piecemeal examination 115 

of isolated exposures and phenotypic outcomes precludes a more complete understanding of 116 

lifetime diet quality and emerging cardiometabolic phenotypes. In our small community 117 

sample (n=188), children following a consistently poor vs healthy diet trajectory from age 4-118 

15 years had a resting heart rate 11 beats per minute faster at age 15 years20 – an indicator 119 

highly predictive of all-cause mortality.21 However, few large cohort studies have repeated 120 

measurements of childhood diet quality over such a lengthy time-span.  121 

Here, we report on a much larger national cohort with previously-derived diet 122 

trajectories from ages 2-11 years22 and extensive phenotypic cardiovascular measures at age 123 

11-12 years.23 Specifically, we aimed to determine the extent to which childhood diet 124 

trajectories across the first decade of life are already associated with cardiovascular 125 

functional and structural phenotypes and metabolic syndrome risk by age 11-12. We expected 126 

the strongest relationships to emerge between the diet trajectories and vascular functional and 127 

metabolic changes, which usually manifest before structural changes. 128 

 129 

METHOD  130 

Participants & Procedure: Dietary exposure data were collected within the Birth (B) cohort 131 

of the nationally-representative Longitudinal Study of Australian Children (LSAC).24 In 132 
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2004, infants aged 0-1 years were sampled from Australia’s universal Medicare healthcare 133 

database using a two-stage clustered random sampling design24 and then followed biennially. 134 

Of the original 5 107 0-1-year olds (57% uptake), 3 764 (74%) were retained to Wave 6 in 135 

2014 at age 10-11 years. Cardiometabolic phenotypic outcomes relevant to non-136 

communicable diseases (NCD) were measured at age 11-12 years within the Child Health 137 

CheckPoint (CheckPoint), LSAC’s physical and biomarkers module nested between LSAC 138 

Waves 6 and 7.23 Of the LSAC families retained to Wave 6, 3 513 consented to be contacted 139 

for the CheckPoint, and 1 874 (53%) families ultimately participated across Australia 140 

(Supplementary Figure 1). 141 

The CheckPoint ran from February 2015 to March 2016, offering child-parent dyads a 142 

visit to its full Main Assessment Center (n=1 356) in one of Australia’s 7 largest cities 143 

(mostly state capitals), a condensed Mini Assessment Center (n=153) visit in 8 regional 144 

towns, or a shorter home visit (n=365). CheckPoint methods (described elsewhere23) 145 

comprised a comprehensive 1.5 to 3.5 hour assessment, divided into 15-minute physical 146 

health assessment “stations” that participants rotated through in a set sequence. Relevant to 147 

this study, stations included “Heart Lab”, “See Here”, “Measure Up” and “Young Bloods”, 148 

where trained researchers measured cardiovascular parameters and body composition, and 149 

took semi-fasting peripheral blood samples. 150 

CheckPoint protocols were approved by The Royal Children’s Hospital (Melbourne, 151 

Australia) Human Research Ethics Committee (33225D) and the Australian Institute of 152 

Family Studies Ethics Committee (14-26), which also approved LSAC. The attending parent 153 

provided written informed consent for their own and their child’s participation. 154 

 155 

Dietary exposure measure: As detailed in Table 1, every 2 years at each of Waves 2-6 (ages 156 

2-3 to 10-11 years), dietary data were collected via computer-assisted self-interviews in the 157 
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format of a food diary on the frequency of the child’s intake of 12-16 items over the previous 158 

24 hours or yesterday, transitioning from parent-proxy to child self-report from age 10 159 

years.22 Supplementary Figure 2 provides an example food diary. Food items focused on 160 

frequency (e.g. not at all, once, more than once), not the amount or serving size, of fruit, 161 

vegetables, water, fatty foods, sugary foods, sweetened drinks, milk products or alternatives. 162 

Using Australian Dietary Guidelines and other resources, we have previously calculated diet 163 

quality scores at each wave.22 For each category of food, we assigned a score depending on 164 

whether frequency of consumption did not meet (0), partially met (1) or fully met (2) the 165 

associated dietary guideline. Total scores ranged from 0-14, with 14 being the healthiest.  166 

As previously published,22 we conducted group-based trajectory modelling (‘traj’ 167 

plug-in in Stata/IC version 14.225) to classify longitudinal diet trajectories from ages 2-3 to 168 

10-11 years (LSAC Waves 2-6). Children’s diet quality score from each wave was specified 169 

as the dependent variable (to be summarized in the trajectory) and age at each wave as the 170 

independent (explanatory) variable. Children needed at least two diet scores across Waves 2 171 

to 6 to be included (88.2% of original sample). We fitted models with one to eight 172 

trajectories, and removed non-significant (p<.05) quadratic or cubic parameters until a model 173 

contained no non-significant parameters.26 We aimed to maximise model fit on the basis of 174 

Bayesian criterion values and the log Bayes Factor, and for each trajectory to contain enough 175 

children to support further analyses. A model including four trajectories was selected with 176 

children assigned to the trajectory for which their probability of membership was highest. 177 

The resulting trajectories demonstrate expected gradients with socioeconomic determinants27 178 

and parental health behaviours,28 and replicate in an older cohort of children and 179 

adolescents.22   180 

Although we hypothesize that the overall lifelong diet trajectory is of most importance 181 

to the developing phenotype, logically the quality of diet measures most closely in time to the 182 
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phenotypic outcomes would have the strongest point association. Therefore, a priori, to 183 

examine trends in outcomes according to worsening diet quality, we ordered trajectories from 184 

most to least healthy as at Wave 6 rather than an earlier Wave, as follows (see Figure 1, 185 

reproduced22): 186 

(1) always healthy (56% of the analytic sample),  187 

(2) moderately healthy (21%),  188 

(3) becoming less healthy (17%),  189 

(4) never healthy (7%).  190 

 191 

Cardiometabolic outcome measures 192 

Preclinical vascular phenotypes: We chose measures that are widely used in 193 

assessing adult CVD and relevant to pediatric populations.29 Table 1 outlines each protocol 194 

and measurement, with standalone methods available in our methodological publications.23, 195 

30-33 Note that sample sizes differ between the eight outcome measures because of equipment 196 

or logistical constraints at different testing sites (i.e. Main vs. Mini Assessment Centres vs. 197 

home visits) and due to missing data on some measures (e.g. bloods, retinal photography). 198 

We list the sample size for each outcome measure in Supplementary Figure 1.  199 

Resting heart rate, blood pressure and carotid-femoral pulse wave velocity (PWV) 200 

were captured using SphygmoCor XCEL (AtCor Medical, Sydney, Australia) at both Main 201 

and Mini Assessment Centres and at home visits after participants had several minutes rest. 202 

Carotid artery elasticity, distensibility and intima-media thickness were available only for 203 

children who attended a Main or Mini Assessment Center. These were measured following 204 

PWV, using standardized carotid artery ultrasound protocols with a portable ultrasound 205 

machine and 10MHz linear array probe (Vivid-I, GE Healthcare, Chicago, Illinois, USA) and 206 

scored with a semiautomatic edge-detection software program (Carotid Analyser, Medical 207 
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Imaging Applications, Coralville, IA, USA). For those attending a Main Assessment Center, 208 

optic disc-centred retinal photographs were obtained without mydriasis using a fundus 209 

camera (EOS 60D SLR). Images were scored using IVAN software (University of 210 

Wisconsin, Madison, USA) to estimate retinal vascular caliber. 211 

Metabolic syndrome risk (MetS): Semi-fasting (median 4.2 hours post-prandial) 212 

peripheral blood was collected at Main and Mini Assessment Centres and processed onsite 213 

within 4 hours. Serum total triglycerides, total cholesterol, high-density lipoprotein 214 

cholesterol, and glucose were quantified with high-throughput proton nuclear magnetic 215 

resonance spectrometry (AVANCE III 500 MHz spectrometer; Bruker Corporation, Billerica, 216 

MA). Z-scores were calculated34 from a formula derived from the National Health and 217 

Nutrition Examination Survey (12-19 year olds), drawing on BMI z-score, systolic blood 218 

pressure, high-density lipoprotein cholesterol, triglycerides and glucose.35 219 

Adverse phenotypes are represented by higher resting heart rate, blood pressure 220 

and/or metabolic syndrome risk score; greater arterial stiffness (quicker/higher pulse wave 221 

velocity, less arterial elasticity, less distensibility); increased carotid intima-media thickness; 222 

and narrower arteriolar and/or wider venular vessels. 223 

 224 

Statistical Analyses: Analyses were conducted with Stata/IC version 14.2, using the svy 225 

package to account for multi-level sampling by postcode and to apply survey weights 226 

adjusting for non-response and loss to follow up from LSAC Wave 1.36 Participants were 227 

included if they had sufficient measures to be allocated to their diet trajectory group (i.e. ≥2 228 

diet scores, 88.2% of original sample) and at least one outcome measure (n=1 861; see 229 

Supplementary Figure 1). A priori potential confounders were Wave 1 socioeconomic 230 

position (SEP, a composite LSAC-derived z-score) and sex, and age at CheckPoint 231 

assessment.  232 
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In adjusted linear regression analyses, diet trajectories were entered as four 233 

categorical predictors (reference: always healthy) and CV phenotypes as continuous 234 

outcomes. We then examined linear trends by entering the categorical trajectory variables 235 

(ordered as above) into adjusted linear regression analyses to examine the trajectory’s 236 

strengths of association with the outcome. We did not formally adjust for multiple testing 237 

because our priority was to interpret replicable, rather than isolated, patterns within the data – 238 

to which p-values are a minor contributor.37 239 

Sensitivity analyses were conducted: (1) adjusted for BMI z-score (and puberty) in all 240 

models (except MetS), and for blood pressure in models for PWV, IMT, distensibility and 241 

microvasculature (Supplementary Table 2); (2) adjusted for physical activity and fitness, 242 

which, although potential confounders, were not included in the main models due to missing 243 

data (Supplementary Table 3); (3) stratified by sex (Supplementary Table 4); and (4) to be 244 

sure that the variance in our main models was not explained by concurrent diet quality, 245 

replaced the diet trajectory variables (Waves 2-6) with children’s most recent diet quality 246 

score at Wave 6 (Supplementary Table 5). 247 

 248 

RESULTS  249 

The mean age of the sample (n=1 861) was 11.5 years (SD 0.5), and girls (49%) and 250 

boys (51%) were roughly equally represented; mean BMI z-score (0.3, SD 1.0) was above 251 

historical norms, aligning with national data.38 The mean family SEP was 0.32 SD above the 252 

mean SEP of all families at LSAC Wave 1.39 253 

 254 

Main Analyses: Table 2 presents the adjusted associations between diet trajectories and CV 255 

outcomes. Children who followed the ‘never healthy’ diet trajectory showed worse resting 256 

heart rate, carotid artery elasticity and distensibility and metabolic syndrome risk than those 257 



Child diet and cardiovascular risk by 11-12 years 

 

12 
 

in the ‘always healthy’ trajectory (all effect sizes 0.3 to 0.4 standardized mean difference 258 

(SMD)). Their heart rate was on average 2.6 bpm faster (95% CI 0.4 to 4.7), arterial elasticity 259 

0.3% per 10mmHg lower (95% CI -0.6 to -0.1), distensibility 1.2% lower (95% CI -1.9 to -260 

0.5) and metabolic syndrome risk score 0.23 units higher (95% CI 0.01 to 0.45). Findings for 261 

blood pressure, pulse wave velocity and the structural large (carotid IMT) and small (retinal 262 

arteriolar and venular) vessels were less evident, with effect sizes of 0.1 to 0.2 (Table 2). All 263 

but retinal venular effects were in the hypothesized direction (i.e. poorer scores for ‘never 264 

healthy’ diet trajectory).  265 

Examining the trend across the series of worsening diet trajectories (from always 266 

healthy, to moderately healthy, to becoming less healthy, to never healthy), Table 3 shows 267 

that resting heart rate (p=.02), distensibility (p=.01) and diastolic blood pressure (p=.02) all 268 

deteriorated as diet quality worsened. Across poorer diet trajectories, heart rate rose by 0.6 269 

bpm (95% CI 0.1 to 1.2, SMD 0.07) per category, diastolic blood pressure rose by 0.4 mmHg 270 

(95% CI 0.1 to 0.8, SMD 0.07), and distensibility dropped by 0.3% (95% CI -0.5 to -0.1, 271 

SMD -0.08). In Figure 2 we illustrate the standardized effect sizes (i.e. mean differences) 272 

across the trajectories for all functional phenotypic measures from Table 2. Trends for all 273 

other outcome variables were similar but, aside from systolic blood pressure (p=.09), were 274 

very weak (p>.15; SMD<0.05, Table 3).  275 

 276 

Sensitivity Analyses: All main conclusions remained essentially unchanged in sensitivity 277 

analyses adjusting for puberty, BMI z-score and blood pressure (where appropriate) in the 278 

first instance (Supplementary Table 2), and then fitness and physical activity (Supplementary 279 

Table 3). However, some effects weakened for the linear trend analyses (Supplementary 280 

Tables 2 and 3). When stratified by sex, most effects for the functional artery measurements 281 

and metabolic syndrome risk were higher amongst girls and lower for boys (Supplementary 282 
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Table 4). Last, to ensure that the variance explained in our main models was not accounted 283 

for by concurrent diet quality, we replaced the longitudinal childhood diet trajectory exposure 284 

(Waves 2-6) with Wave 6 diet quality score alone. As expected, all effect sizes reduced 285 

substantially in this analysis (Supplementary Table 5). 286 

 287 

DISCUSSION  288 

Statement of principal findings: In this large population-based cohort of 11-12-year-old 289 

children, those who had consistently followed a ‘never healthy’ diet trajectory since 290 

toddlerhood demonstrated worse cardiovascular function (higher resting heart rate, lower 291 

carotid artery elasticity and distensibility) and poorer metabolic health than children 292 

consistently following a ‘healthy’ diet. If causal, the size of these effects (0.3 to 0.4 SMD) 293 

would likely be important at the population level. Adverse effects for blood pressure, pulse 294 

wave velocity and structural changes of the large and small arteries (carotid intima-media 295 

thickness, retinal arterioles) were less evident. Most findings were robust in sensitivity 296 

analyses and strongest in girls, and they were not explained by BMI or concurrent diet 297 

exposure.  298 

 299 

Strengths and limitations: Our study is strengthened by its longitudinal design, repeated 300 

diet quality reporting throughout the whole of childhood, and the breadth of objective 301 

outcome measures. The positive (heart rate, vascular stiffness) and null findings (structural 302 

phenotypes) were congruent with our earlier preliminary analysis in a smaller cohort.20 This 303 

replication suggests that these relationships may be generalizable and not chance findings.  304 

While parent and self-reported diet quality measures are subject to measurement error, the 305 

use of latent variables across multiple time points more reliably identifies patterns over 306 

time.40 As supported by a recent systematic review,41 we sought to capture and interpret 307 
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overall behavioral dietary patterns rather than quantity of individual foods or nutrients. 308 

However, there remains an urgent unmet need for accurate and objective diet tools suited to 309 

repeated measurements in population research. Furthermore, given the high percentage of 310 

children following the healthiest trajectory and low percentage of children following the 311 

unhealthiest trajectory, we acknowledge that parents (and children) in our cohort may have 312 

reported, or their child may have been following, a healthier diet than is reported in other 313 

Australian cohorts.42, 43 Together with our loss to follow up (Supplementary Figure 1), these 314 

limitations imply that findings should be cautiously generalized to the population. It is also 315 

noteworthy that children from disadvantaged families are more likely to have poor diets,43 316 

have at-risk vascular phenotypes,44 and later in their life course be more likely to develop 317 

CVD.45 Because these children were under-represented in this cohort, we may have 318 

underestimated true cardiovascular and metabolic differences between trajectories for this 319 

group and the population as a whole. Last, with the intent to best capture children’s evolving 320 

phenotype, we included multiple outcomes, many of which contained missing data points due 321 

to equipment or logistical constraints. It is therefore possible that some of our results are 322 

chance findings, but given the consistent patterns obtained across outcome measures and 323 

cohorts,20 we are confident that our results are meaningful. 324 

 325 

Comparison with prior literature: The recent Global Burden of Disease Study confirmed 326 

that a suboptimal diet during adulthood is associated with a massively higher burden of 327 

NCDs worldwide.1 For CVD, our results suggest that this burden may begin in childhood, 328 

even before adolescence. The direction of obtained effects is in line with our own20 and other 329 

previous studies examining child and adolescent diet quality scores and phenotypic 330 

outcomes.7-13 However, past research has obtained positive associations between dietary 331 

measures (though not trajectories) and some phenotypic measures for which we obtained 332 
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small or null associations (e.g. blood pressure, retinal microvasculature). It is conceivable that 333 

methodological differences between ours and past studies are too great to draw meaningful 334 

comparisons, as we employed a data reduction technique (i.e. group-based trajectory 335 

modelling) to answer a different ‘life-long’ research question. That is, we cannot generalize 336 

or make direct comparisons with the majority of past literature because many such studies 337 

were cross-sectional and/or examined different research questions using isolated nutrients or 338 

food groups (e.g. sugar-sweetened beverages, dairy foods), rather than decade-long diet 339 

quality scores.4-6 Future research may look at developing trajectories for these food groups, 340 

rather than using trajectories of whole diet scores. It is conceivable that lifetime consumption 341 

of particular foods or nutrients has distinct effects on different aspects of children’s 342 

developing phenotype that we did not detect.46  343 

 344 

Implications:  Overall, the small linear trends across worsening diet trajectories (statistically 345 

significant or not) may signal higher risk for poor cardiovascular and metabolic health later in 346 

the lifecourse.47 Even though the sample means for resting heart rate are well within the 347 

normal range,48, 49 the differences between the ‘always healthy’ (M=73.8 bpm, 25th 348 

percentile) and ‘never healthy’ (M=76.4 bpm, >50th percentile) groups are substantive. In the 349 

UK’s National Child Development Study, heart rate was one of the strongest predictors of 350 

all-cause mortality among mid-life adults, outperforming more traditional markers such as 351 

triglycerides.21 In midlife, every additional 5 bpm above a heart rate of 60 has been shown to 352 

increase mortality risk by around 12% over 28-year follow up.50 Metabolic syndrome in 353 

adulthood predicts type 2 diabetes, premature CVD and all-cause mortality, and having even 354 

one or two MetS risk factors doubles the risk of CVD mortality.51 Similar risks are associated 355 

with decreased carotid artery elasticity and distensibility.52, 53  356 
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Functional impairment of the arterial wall (such as vascular stiffness) becomes 357 

evident early in the atherosclerotic process, before structural wall changes and clinical 358 

symptoms of CVD develop. Consistent with this, we saw larger effect sizes with unhealthy 359 

diet trajectories of 0.3 to 0.4 for the functional outcomes than for the 0.1 to 0.2 SMDs toward 360 

narrower arterioles and increased IMT. Functional changes often track from childhood to 361 

adulthood,54 triggering sympathetic over-activity or increased cardiac stress55 and go on to 362 

predict structural organ damage, and cardiovascular and all-cause mortality. If these diet 363 

trajectories and preclinical phenotypic changes track through the lifecourse,54 the population 364 

health implications could be considerable, especially if structural phenotypic changes also 365 

develop. Our absence of robust associations with vascular structural phenotypes therefore 366 

presents a window of opportunity. If children following an unhealthy diet trajectory at age 367 

11-12 years shifted to a healthy diet trajectory, this could potentially avert later structural 368 

vascular damage. 369 

 370 

Conclusion: In this population-derived cohort, following a suboptimal diet trajectory through 371 

childhood was associated by age 12 years with higher resting heart rate, lower carotid artery 372 

elasticity/distensibility and poorer metabolic health, but not micro- or macro-vascular 373 

changes. Because adverse functional arterial changes (such as reduced elasticity) are 374 

reversible, especially at younger ages,56-58 dietary intervention at least up to adolescence 375 

could reduce long term CVD risk.59-62  376 
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Figure Legends 

Figure 1: Diet trajectories for LSAC’s B-Cohort, age 2-11 years. Reprinted with permission 

from Cambridge University Press (originally printed as Figure 2a22). Proportions of children 

in each trajectory differ from previous publication because we use only the CheckPoint 

subsample of the full LSAC B-Cohort. Key: dotted line = 95% confidence interval. 

Figure 2: Standardised mean differences (i.e. effect size) for preclinical cardiovascular 

functional phenotypes (from Table 2) by diet trajectory, compared to reference group 

‘Always Healthy’ (dotted line). *linear trend p<.05 


