
International Conference on Computer Systems and Technologies - CompSysTech’17

A Comparison of Record and Play Honeypot Designs

[placeholder for review]

Abstract: Record and play -honeypots mimic the normal TCP traffic and fool the adversary with fake data
while simultaneously keeping the setting realistic. In this paper, we propose several designs for such honeypots.
Two important aspects of honeypot design are considered. First, we compare named entity recognition systems
in order to recognize the entities in the messages the honeypot modifies. Second, we consider methods to
fake these entities consistently. Pros and cons of each approach – varying from the better accuracy of the fake
responses to the possibility of causing side effects on the real services – are discussed.

Key words: honeypot, named entity recognition, proxy

INTRODUCTION
Cyber attacks and cyber intelligence have become common in computer networks.

Novel approaches to defend computer systems against sophisticated threats such as mali-
cious insiders and advanced persistent threats (APT) are needed [16]. One such approach
is deceiving the attacker by creating fake services that feed the attacker fabricated informa-
tion. At the same time, the deceptive service can also collect valuable information on the
attacker’s behavior in the system.

It appears a large part of research on fake services and fake entities they contain simply
aims to detect the malware and to get rid of the malicious attacker as soon as possible [13].
While this is understandable in many settings, our objective here is to find out how we can
keep deceiving and interacting with the attacker as long as possible in order to learn more
about malicious programs’ behavior and goals. Therefore, we keep giving the adversary fake
data in order to lure out the malicious program’s real intent. In other words, we concentrate
on high-interaction honeypots that typically interact with the malware in order to gain a better
understanding of the methods and technologies malicious adversaries use [11].

To accomplish this goal, a tool has to learn what the typical communication between a
client and a service (for example, the exchange of messages related to some public-facing
web service) looks like and then try to mimic it. We call this kind of honeypot design the
record and play -approach.

In this paper, we present different designs for record and play -honeypots. The discus-
sion is divided in two main parts. First, we consider named entity recognition (NER) systems
that automatically identify the entities to be replaced for the adversary. We discuss different
approaches presented in the literature and provide a comparison between them. Second,
once entities we want to fake are identified, we need to create believable and consistent fake
data that the real data is replaced with. We present different approaches to achieve this and
discuss their strengths and shortcomings.

ENTITY RECOGNITION
A named entity (NE) is an entity that refers to a real word object with a proper name, a

numerical expression or a temporal expression. The commonly used categories for NEs are
ORGANIZATION, PERSON, LOCATION, DATE, TIME, MONEY, PERCENT, FACILITY
(man-made artifacts such as monuments) and GPE (geo-political entities such as cities) [3],
but they are not limited to those either. Named entity recognition first tries to recognize



International Conference on Computer Systems and Technologies - CompSysTech’17

named entities and then classify them into groups. We start by looking into the most basic
record and play honeypot designs and move into the more advanced with more advanced
NER technologies.

Systems based on simple static rules
The first and simplest way is to implement an in-place honeypot system as a simple

proxy as shown in Figure 1. The proxy would modify the traffic in real time by following
manually created rules or already known list of entities. The rules can be created for example
by using regular expressions or even simple if statements.

Regular expressions can easily detect entities that have an easily detectable struc-
ture such as phone numbers, email addresses and web addresses and of course the pre-
determined words. Unknown names, locations and other entities that require semantic un-
derstanding are way harder to detect this way. Some heuristics and rules such as ”the first
letter of the word is capital if it is not appearing after the dot” can be made to detect that the
word is a named entity but the quality and amount of rules as well as the other information
available determines the final quality of the recognition. For example, in a study by Sekine
et al. [15] about 1400 manually created rules were used.

A process called named-entity recognition (NER) should yield better results. There are
two major different approaches for NER systems [10]: one that relies only on manually typed
grammar rules and another using rules alongside statistical, machine learning approach.
The grammar based approach needs a lot of manual work by professionals to create the
rules and as such, plain rule based systems are not common any more [10] even though the
systems having machine learning components use some grammatical rules as well.

The NER is a pipeline comprised of multiple components. One common pipeline used
by for example NLTK [3] is presented in Figure 2. We can see that the pipeline is much
more complex than plain regular expressions even though regular expressions, word lists
(gazetteers) and other manually created rules can be used with machine learning.

As an example of the importance of other methods, in [3] a plain regular expression
-based parser was used in part-of-word (POS) tagging that is one of the pre-phases of NER
as it is shown in Figure 2. They evaluated different taggers against Brown gold standard
annotated corpus’ news category and calculated the accuracy by using the evaluation func-
tion. The evaluation function counts correctly identified tags out of all tags and calculates the
percentage. Correctly identified tags are previously manually annotated. The tests in [3] re-
sulted accuracy of 0.203264 in regular expression tagger and 0.844513 in backoff tagger that
combines multiple taggers such as default tagger that marks everything as nouns, unigram
tagger and a bigram tagger. As NER tagging requires POS tags, difference of 64,1 percent-
age points between the methods has a notable effect on the NER tagging performance.

Systems based on trained NER systems
As noted earlier, using plain manually created rules for faking NEs is inadequate or at

least a major workload. To overcome this limitation, we could simply replace the static rules
with modern named entity recognition as it is done in Figure 3. The statistical systems need
to be trained for them to work. The system in Figure 3 has been trained with a generic corpus
such as one created of news stories. The text domain and genre do affect the NER but the
effect varies across the domains and genres [7].

There are multiple libraries and programs with many annotated corpora to provide NER
support. There is Natural Language toolkit (NLTK) [3] for Python, General Architecture for
Text Engineering (GATE) [5] with Nearly-New Information Extraction System (ANNIE) [5] and
Stanford Named Entity Recognizer [6] to list a few.

We tested two common natural language tools to perform NER tagging with the de-



International Conference on Computer Systems and Technologies - CompSysTech’17

Figure 1: A simple proxy that contains static rules

Figure 2: An example of a named entity recognition/information extraction pipeline



International Conference on Computer Systems and Technologies - CompSysTech’17

Figure 3: A simple proxy that uses non-domain corpus to identify named entities

fault parsers and corpora to noisy HTML data to see how it performs with personal informa-
tion recognition. The tested tools were NLTK NER binary classifier and GATE with ANNIE
pipeline. Two kind of source materials were used: an extract from student registry admin-
istration web site and a plain HTML list of people with personal information. These pages
weremodified into templates, filled with fake information generated from database dump from
generatedata.com and later the natural language tools were evaluated against the manually
annotated version.

The database with the fake data had the following attributes with every entity: FNAME,
LNAME, BDATE, ADDRESS, ZIP, CITY, PHONE, EMAIL, NID (as in SSN), ORGNUM (as
in organizational number), SDATE (start date) and EDATE (end date). And these were used
on the templates. The templates did not include any other NEs itself. The true positives are
marked only if the system got the entity itself marked and not other noise inside. The entities
were not categorized in this test, it was enough that the system marked the entity as named.
The entities were the same for every system and test. Five different entities were used in
test rounds. Results for precision and recall are presented in Table 1.

Table 1: Comparison of precision and recall with and without pre-parsing using variable types of source material
Precision Recall

Unmodified HTML (NLTK) Student record 0.0942 0.1565
List of people 0.3696 0.2833

Pre-parsed HTML (NLTK) Student record 0.0468 0.0800
List of people 0.3617 0.2833

Unmodified HTML (GATE) Student record 0.0871 0.4348
List of people 0.8108 0.5000

Pre-parsed HTML (GATE) Student record 0.2370 0.3200
List of people 0.8529 0.4833

As can be seen from Table 1, the systems do not perform that well with noisy data
having no normal textual structure. There were some observations during the testing: The
NLTK NER tagger does not support numerical or temporal expressions as is and as such will
perform worse with data containing lots of dates. Moreover, removing HTML tags from the
data, making it less noisy, actually makes NLTK perform worse than without the operation.
GATE on the other hand increases its precision score with a small drop in recall. This can

generatedata.com


International Conference on Computer Systems and Technologies - CompSysTech’17

Figure 4: A fake service that gathers TCP data to have a domain specific corpus

be explained with smaller amount of false positives. NLTK appears to combine NEs with
non-NEs more when the HTML was stripped and as such failed more on true positives that
will affect both, recall and precision.It should be noted that NER systems are not designed
to be used this way and the modest results in many cases are partly caused by this. Still,
GATE manages to achieve promising results in some cases as the parsed list of people gets
the precision of 0.8529 with 0.4833 recall. Machine learning can be used to considerably
improve these results.

Systems based on machine learning
If the accuracy of entity recognition is not satisfactory in the model introduced in the

previous section, the system can be improved by monitoring and storing legit TCP traffic and
manually annotating it with POS and NER tags, using a more suitable gazetteer and also
using better pre-parser to clean the data. This annotated TCP data can be used to teach
the NER tagger to detect the domain and textual genre specific information better [7, 9, 12].
This kind of system is introduced in Figure 4.

The annotated TCP data can be learned by the system. Currently supervised learning
is the dominant technique that includes machine learning algorithms such as Hidden Markov
Models [2], Decision Trees [14], Maximum Entropy Models [4], Support Vector Machines [1]
and Conditional Random Fields [8]. In addition to the supervised learning, semi-supervised
learning and unsupervised learning techniques are being researched.

While the accuracy of NER can be improved, there is one major flaw in the design in-
troduced in Figures 1, 3 and 4: there is an active link to the real service. Proxying request
to the real service to get back authentic responses guarantees that the information is some-
what sane. At the same time however, it might have some undesired side-effects in the real
system. For example, in context of HTTP, malicious client might send POST request to the
server and while the server would respond accordingly, it could also change the state of the
server application.

There are different ways to approach this problem. First, we could see whether the real
service supports a simulation mode where the requests are processed but no permanent
changes aremade. This approachwould be the easiest to use but would require such support
from the service, which is unlikely. Also, such support would mean that the real service in



International Conference on Computer Systems and Technologies - CompSysTech’17

Figure 5: Generating the response by finding nearest match from the history and using NER to fake information

question should save the simulated actions to remember the state it offers to the fake service
provider. Implementing such support in a real service would render the honeypot functionality
non-universal and nullify the idea behind the record and play -system.

Other way to approach this problem would be to modify the requests in the proxy so
that no harmful requests are passed to the service. This would require a lot of knowledge
in the real service itself and also would not guarantee that the real service is fully protected
from the malicious client. In Figure 5, a model without direct two-way communication to the
real service is introduced. The idea is that the TCP monitor would collect TCP data into the
database and the fake service would later search the TCP dump database for the best match
for the request and modify it accordingly.

FAKING INFORMATION CONSISTENTLY
In the previous section, we discussed the technical designs and implementations of

entity recognition systems. However, a system still needs the fake data that the real data is
replaced with. Next we will look into some of the possible options as well as their advantages
and shortcomings.

Randomly selected fake entities
The simplest way to generate fake data is to replace the recognized entities with a ran-

domly selected entity from the fake entity database. This approach would not require any
understanding of the relations between entities nor would it need storing of the entity map-
pings. Also, it would not reveal the relations present in the real service. This approach also
has some severe shortcomings, however: For example, the entities and their relations would
not have any consistency in the text. As the record and play -approach requires consistency
between messages to deceive the adversary, this approach is not an option here.

One to One mapping
In one to one mapping every time a new entity is encountered, a new entity mapping is

created. When an already known entity is encountered, the mapped country is recalled from
the data storage using hash mapping or similar technique.

The one to one mapping is a fairly easy and robust way to achieve consistent relations



International Conference on Computer Systems and Technologies - CompSysTech’17

between fake entities. Every entity that is recognized in NER phase can be mapped to a
different entity while keeping the relations sane. The problem with one to one mapping is
that while the relations are sane, they are also exactly the same as in the real service. In
practice, this means that even though a malicious user could not tell that John and Bill are
working in Texas, he or she would know that they are working in the same location. To
overcome this, relations between entities should be extracted from the real service.

n-to-n mapping with relation detection
In one to one mapping, every entity had their corresponding fake entity. In n to n entity

mapping, every tuple of entities has its fake counterpart where n is the length of a tuple
(amount of entities). For example, a double (John, Texas) will resolve into (Peter, Minnesota)
but (Bill, Texas) into (Ross, Alabama). Notice how the mapping is consistent between every
instance of tuples but different between single entities.

The n-to-n mapping has its problems though. First, the relation extraction systems do
not always detect relations and even if they would, not all relations are visible from every
context. In an ideal situation where relation extraction would work perfectly and find every
relation and there would be only isolated simple identities with attributes (a tree), the sys-
tem would also work. Secondly, it is possible to change only NEs with methods previously
presented. This will introduce a problem into our system: If the text concludes that entity a
and entity b are both related via common entity that is not named, a contradiction follows. As
an example, the text might imply that entities a and b both live in the same area but when
queried by name, the system would give them different locations.

CONCLUSIONS AND FUTURE WORK
This paper has discussed technical design of record and play -honeypot systems, in-

cluding named entity recognition systems, as well as consistently creating the fake data the
recognized entities are replaced with.

We have seen the problems the NER systems have with noisy and uncommonly struc-
tured text. We have concluded that simple regular expression parsers work fine for entities
with easily detectable syntax such as e-mail addresses. Based on the comparison of the de-
signs, combination of pre-parser cleaning the data, simple regular expression based parser
and advanced NER parser with proxy based model would provide best reliability for our
record and play -honeypot scheme. At the same time, this setup would not require as much
manual work as self-tagged TCP-data.

We believe that of the alternatives presented, most consistent deception will be achieved
with one to one mapping. Relation extraction would work by not exposing the relations in real
data but as the system can only replace named entities without further understanding of the
language, the system would introduce contradictions.

Future work will focus on building an implementation of record and play -honeypot with
the presented techniques and performing practical experiments with it. Different pre-parsers
for NER-systems, other consistent deception methods and methods to send responses for
requests based on collected TCP data instead of relaying the requests to external server are
also possible research topics.

REFERENCES
[1] Asahara, M., and Matsumoto, Y. Japanese Named Entity Extraction with Redun-

dant Morphological Analysis. In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics on Human Language
Technology - Volume 1 (2003), Association for Computational Linguistics, pp. 8–
15.



International Conference on Computer Systems and Technologies - CompSysTech’17

[2] Bikel, D. M., Miller, S., Schwartz, R., and Weischedel, R. Nymble: A High-
performance Learning Name-finder. In Proceedings of the Fifth Conference on
Applied Natural Language Processing (1997), ANLC ’97, Association for Compu-
tational Linguistics, pp. 194–201.

[3] Bird, S., Klein, E., and Loper, E. Natural Language Processing with Python.
O’Reilly Media, 2009.

[4] Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. NYU: Description of the
MENE Named Entity System as Used in MUC-7. In Proceedings of the Seventh
Message Understanding Conference (1998).

[5] Cunningham, et al. Developing Language Processing Components with GATE
Version 8. University of Sheffield Department of Computer Science, 11 2014.

[6] Finkel, J. R., Grenager, T., and Manning, C. Incorporating non-local information
into information extraction systems by gibbs sampling. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics (2005), ACL ’05, As-
sociation for Computational Linguistics, pp. 363–370.

[7] Maynard, D., Tablan, V., Ursu, C., Cunningham, H., and Wilks, Y. Named en-
tity recognition from diverse text types. In Recent Advances in Natural Language
Processing 2001 Conference (2001), pp. 257–274.

[8] McCallum, A., and Li, W. Early Results for Named Entity Recognition with Condi-
tional RandomFields, Feature Induction andWeb-enhanced Lexicons. InProceed-
ings of the 7th Conference on Natural Language Learning at HLT-NAACL 2003 -
Volume 4 (2003), Association for Computational Linguistics, pp. 188–191.

[9] Minkov, E., Wang, R. C., and Cohen, W.W. [extracting personal names from email:
Applying named entity recognition to informal text.

[10] Nadeau, D., and Sekine, S. A survey of named entity recognition and classification.
Lingvisticae Investigationes 30, 1 (2007), 3–26.

[11] Nawrocki, M., Wahlisch, M., Schmidt, T., Keil, C., and Schonfelder, J. A Survey on
Honeypot Software and Data Analysis, 2016. arXiv preprint (2016).

[12] Poibeau, T., and Kosseim, L. Proper name extraction from non-journalistic texts.
Language and computers 37, 1 (2001), 144–157.

[13] Rauti, S., and Leppänen, V. A survey on fake entities as a method to detect and
monitor malicious activity. In 25th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (2017).

[14] Sekine, S., et al. NYU: Description of the Japanese NE system used for MET-2.
In Proceedings of Message Understanding Conference (1998).

[15] Sekine, S., andNobata, C. Definition, Dictionaries and Tagger for ExtendedNamed
Entity Hierarchy. In LREC (2004), pp. 1977–1980.

[16] Virvilis, N., and Gritzalis, D. The Big Four – What we did wrong in Advanced
Persistent Threat detection? In Proceedings of Eighth International Conference
on Availability, Reliability and Security (ARES) (2013), IEEE, pp. 248–254.

ABOUT THE AUTHORS
[placeholder for review]

ACKNOWLEDGEMENTS
[placeholder for review]


	Introduction
	Entity Recognition
	Systems based on simple static rules
	Systems based on trained NER systems
	Systems based on machine learning

	Faking Information Consistently
	Randomly selected fake entities
	One to One mapping
	n-to-n mapping with relation detection

	Conclusions and Future Work
	About the authors
	Acknowledgements

