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Abstract 

Recent evidence suggests that early natural number knowledge is a 

predictor of later rational number conceptual knowledge, even though students’ 

difficulties with rational numbers have also been explained by the overuse of 

natural number concepts – often referred to as the natural number bias. Hannula 

and Lehtinen (2005) have shown that children’s tendency to spontaneously 

focus on numerosity (SFON) predicts the development of natural number and 

arithmetic skills. The present study follows 36 children from the age of six years 

to the age of twelve years in order to determine how preschool SFON tendency 

and number sequence skills are related to rational number conceptual 

knowledge at the age of twelve years. The results show that children’s SFON 

tendency before school age is a strong predictor of later rational numbers 

conceptual knowledge, even after controlling for preschool number sequence 

skills. This finding has implications for the understanding of how the transition 

from reasoning about natural number concepts to reasoning about rational 

numbers may be influenced by children’s self-initiated practice with numbers in 

everyday situations. 
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1 Introduction 

The difficulties students and many educated adults face with 

understanding rational numbers has been a subject of deep and extensive study 

within mathematics education and educational psychology research (Confrey et 

al. 2009; Jordan et al. 2013; Mazzocco and Devlin 2008; McMullen et al. 2014b; 

Merenluoto and Lehtinen 2004; Siegler et al. 2013; Vamvakoussi et al. 2012; 

Vamvakoussi and Vosniadou 2004, 2010; Van Hoof et al. 2015; Vosniadou 2014). 

One particularly difficult hurdle that must be overcome in understanding 

rational numbers is the inappropriate use of rules based on the natural number 

concept when reasoning about rational numbers (e.g. Vamvakoussi and 

Vosniadou 2004). This overuse of natural number concepts may be explained by 

a lack of inhibition of intuitive conceptions about numbers (Vamvakoussi et al. 

2012; Van Hoof et al. 2013a, 2015; Obersteiner et al. 2013). In this way, it is 

argued that reasoning about rational numbers is often negatively influenced by 

this so-called natural number bias, which has its roots in the privileged role 

natural numbers play in everyday situations. 

 Understanding rational numbers and the ability to use them in problem 

solving is not only a key contributor to later mathematical knowledge (Siegler et 

al. 2012), but also is key for the understanding of a wide range of aspects of 

everyday life (Reyna and Brainerd 2007). Despite this, few studies have 

investigated early predictors of rational number conceptual knowledge (Bailey 

et al. 2014; McMullen et al. 2014a; Vukovic et al. 2014). While rational number 

conceptual knowledge includes a wide range of dimensions (Hallett et al. 2010; 

Van Hoof et al. 2015), in the frames of this study we refer to rational number 

conceptual knowledge as covering particularly those aspects of the size and 

density of rational numbers which are incongruent with natural numbers. There 

is sufficient evidence that early spontaneous quantitative focusing tendencies 

play a role in the development of mathematical skills (e.g. Hannula and Lehtinen 

2005). Evidence suggests that the tendency of spontaneous focusing on 

numerosity (SFON) is a domain-specific predictor of natural number knowledge 

from the ages of six to eight (Hannula et al. 2010). However, while it is known 

that SFON tendency promotes the development of natural number knowledge, it 
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remains an important question whether this influence also causes difficulties 

when reasoning about rational numbers, or if those with a stronger early SFON 

tendency are more successful with reasoning about rational numbers, suggesting 

that they are more able to transition from reasoning about natural number 

concepts to rational number concepts.  

1.1 Natural number bias and the development of rational number 

conceptual knowledge 

The natural number bias has important implications for the development 

of rational number conceptual knowledge, and its impact on the reasoning and 

use of rational numbers may never fully disappear (Vosniadou 2014). Ni and 

Zhou (2005) presented an extensive review of the development and implications 

of the natural number bias. More recently, however, a number of studies have 

highlighted how the natural number bias affects even adults’ reasoning about, 

and activities with, rational numbers (Vamvakoussi et al. 2012; Van Hoof et al. 

2013a; Obersteiner et al. 2013). Specifically, a number of recent studies have 

highlighted the role inhibition may play in overcoming the natural number bias 

when reasoning about rational numbers (ibid.). Thus, it has been argued that in 

order to reason successfully about rational number concepts students, and even 

many adults, must actively halt intuitive reasoning that uses natural number 

concepts (e.g. bigger numbers indicates larger magnitude) before solving the 

task using mathematically correct concepts (e.g. magnitude is determined by 

relationship between numerator and denominator). 

The origins of the natural number bias are still open for debate, and it has 

been argued to arise from a number of environmental and biological sources (Ni 

and Zhou 2005). Innate capacities and cultural tools both seem to afford natural 

numbers a more privileged position in students’ reasoning. Some evidence 

suggests that individual numerical magnitudes may have a discrete 

representation on the mental number line, suggesting a more innate 

underpinning for the natural number bias (Gallistel and Gelman 1992; Feigenson 

et al. 2002). However, some features of the mental number line suggest 

otherwise (Dehaene et al. 2008). More concretely, the influence of cultural tools, 

including language, on the natural number bias is more obvious. Children’s and 
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even adults’ everyday experiences are more often seen through a lens of natural 

numbers; concepts related to rational numbers are rarely highlighted in cultural 

tools such as finger counting (Carey 2004; Greer 2004; Andres et al. 2008). 

Furthermore, early educational experiences almost solely deal with whole 

numbers and their features. 

All of these features of the size of numbers and the use of number in most 

activities lead to a problematic transition from thinking of numbers as discrete, 

neatly ordered entities, to the continuous, densely ordered abstractions that 

constitute the rational numbers (e.g. Vamvakoussi and Vosniadou 2010). In fact, 

the adjustment from reasoning about natural numbers to rational numbers is so 

difficult that conceptual change processes may be necessary in order to fully 

grasp rational number concepts (Vamvakoussi and Vosniadou 2004; Vosniadou 

and Verschaffel 2004; Vamvakoussi et al 2011; Vosniadou 2014; McMullen et al. 

2014b). Indeed, a number of studies have shown that conceptual change theory 

suits the description of the development of rational number conceptual 

knowledge, of concepts surrounding the size and density of fractions and 

decimals (e.g. ibid.). As well, often some prior concepts may never completely 

disappear and remain either partially dormant or well suppressed when 

reasoning about related topics (Vamvakoussi et al. 2012; Van Hoof et al. 2013a; 

Obersteiner et al. 2013; Vosniadou 2014). 

Indeed, it appears that even after successfully developing a mathematically 

correct concept of the nature of number, less mathematically correct reasoning 

may never fully disappear and will occasionally peek out in intuitive judgments 

of, for example, the magnitude of fractions. This can be seen in studies of 

university students, who were no less accurate in comparing the magnitude of 

fractions that were incongruent with natural number features (e.g. 1/3 vs. 1/4), 

but took significantly longer to solve these tasks, than on congruent items (e.g. 

1/3 vs. 2/3) (Vamvakoussi et al. 2012). As well, these participants were less 

successful on incongruent items regarding density concepts, and slower at 

responding, though not significantly so. Surprisingly, some of these results can 

also be found in expert mathematicians, suggesting that even the most robust 
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mathematical concepts can be overrun by a natural number bias (Obersteiner et 

al. 2013).  

1.2 Spontaneous focusing on numerosity  

Spontaneous focusing on numerosity (SFON) is increasingly recognized as 

an important contributor to mathematical development (Edens and Potter 2013; 

Hannula and Lehtinen 2005; Hannula et al. 2010; Hannula-Sormunen 2014; 

Kucian et al. 2012; Potter 2009). SFON tendency is defined as the unguided 

recognition and use of numerosities in a situation that is not explicitly 

mathematical. Thus, SFON refers to the spontaneous focusing of attention on 

numerosity in a situation and not the spontaneous development of any skills or 

knowledge. It is important to note that individual differences in SFON tendency 

have been found to not be entirely explained by enumeration ability, suggesting 

that these differences are the result of attentional processes and not overall skill 

with enumeration. SFON tendency has been found to be a domain-specific 

contributor to mathematical development over a six-year period, from six to 

twelve years old (Hannula-Sormunen et al. submitted). SFON tendency is 

explained as impacting mathematical development through the promotion of 

children’s self-initiated practice with related mathematical aspects of their 

everyday environment (Hannula 2005; Lehtinen and Hannula 2006). Children’s 

everyday environment provides opportunities to practise with natural number 

concepts and this practice presumably has an influence on the natural number 

bias. The fact that there are individual differences in the tendency to recognize 

and utilize these mathematical aspects suggests that early SFON tendency might 

have an influence on the development of rational number conceptual knowledge. 

The question remains, however, is this a positive or negative relationship? 

SFON is positively related to the development of enumeration and number 

sequence skills before school age (Edens and Potter 2013; Hannula and Lehtinen 

2005; Hannula et al. 2007; Hannula 2005; Hannula-Sormunen et al. submitted; 

Potter 2009), and SFON tendency can be enhanced through social activities in 

preschool (Hannula et al. 2005; Mattinen 2006). The development of SFON and 

counting skills from three to six years of age has been shown to be reciprocal 

(Hannula and Lehtinen 2005). SFON tendency in Kindergarten is a domain-
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specific predictor of arithmetical, but not reading, skills assessed at the end of 

Grade 2 (Hannula et al. 2010). It is important to note that individual differences 

in SFON are not explained by a lack of enumeration skills or other cognitive skills 

(Hannula 2005; Hannula and Lehtinen 2005). Furthermore, the tendency to 

focus on other aspects of tasks, such as spatial locations, is a separate process 

which does not impact the relationship between SFON and counting skills 

(Hannula et al. 2010). Finally, children’s individual differences in SFON before 

school age have been found to predict mathematical skills six to seven years later 

in primary school (Hannula-Sormunen et al. submitted). However, the present 

study is the first to investigate whether early SFON tendency predicts rational 

number conceptual knowledge. 

1.3 Natural number skills 

Previously, both SFON and number sequence skills in six-year-olds have 

been found to be partially related to each other; as well, both have been found to 

predict general school mathematical ability (Hannula-Sormunen et al. 

submitted). Number sequence skills, for example counting forward and 

backward from given numbers, reflect the mental representation of the natural 

number line (Fuson 1988). Number sequence skills before school age are related 

to arithmetical skills in kindergarten (Secada et al. 1983; Fuson 1988; Johansson 

2005), and they predict later arithmetical skills at school age (Hannula 2005; 

Lepola et al. 2005; Koponen et al. 2007). In the study by Aunola and colleagues 

(2004), preschool number sequence and counting skills predicted the overall 

level and the developmental rate of arithmetical skills. Furthermore, verbal 

counting skills are key to the development of the natural number concept (Fuson 

1988; Gallistel and Gelman 1992). Recently, conceptual knowledge of natural 

numbers in six-year-olds has been found to be a predictor of conceptual 

knowledge of fractions in early adolescence (Jordan et al. 2013; Bailey et al. 

2014). Thus, the connection between number sequence skills and conceptual 

knowledge of natural number suggests that number sequence skills at an early 

age may also be a predictor of rational number conceptual knowledge. 
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1.4 Research questions and hypotheses 

The aim of the present study is to determine how preschool SFON tendency 

and number sequence skills are related to rational number conceptual 

knowledge at the age of twelve years. The increased practice with enumeration 

afforded by a higher SFON tendency is expected to strengthen the noticing and 

use of natural numbers. Thus, when first considering the relationship between 

the rational number conceptual knowledge and SFON tendency, an intuitive 

expectation is that the increase in the fluent use of natural numbers afforded by 

SFON would lead to greater use of natural number concepts when reasoning 

about rational numbers. Therefore SFON tendency in early years would be 

negatively related to rational number conceptual knowledge, especially those 

aspects which are incongruent with natural number concepts (Hypothesis 1). 

However, natural number knowledge in six-year-olds has been found to be 

a predictor of fraction knowledge in early adolescence, when using rational 

number items that were both congruent and incongruent with natural number 

knowledge (Bailey et al. 2014). SFON tendency has previously been found to 

share a great deal of variance with natural number knowledge (e.g. Hannula et al. 

2010). This would lead to the expectation that in fact early SFON tendency, as 

well as number sequence skills, would predict those aspects of rational number 

conceptual knowledge that are incongruent with natural numbers (Hypothesis 

2). 

Finally, SFON tendency has been argued to contribute to the development 

of mathematical skills through an increase in self-initiated practice with 

numbers in everyday situations (Hannula and Lehtinen 2005). SFON tendency 

has been found to correlate with the use of whole numbers in everyday 

situations in preschool children (Hannula et al. 2005). It is possible that a higher 

SFON tendency frequently leads children to situations in which natural numbers 

are recognized as insufficient for describing relevant numerical relationships, 

such as sharing two cookies among three friends. These everyday experiences 

may therefore lead to an increase in the awareness of the affordances and, more 

importantly, the limitations of the natural number system, in turn supporting a 

smoother and more consistent transition from natural to rational number 
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concepts. In contrast, typical measures of natural number skills, such as number 

sequence elaboration skills, capture skills learned in more well-defined 

activities, such as learning the counting sequence. Therefore, it is possible that 

the unique contribution of early SFON tendency is a stronger predictor of 

rational number conceptual knowledge than the unique contribution of number 

sequence skills (Hypothesis 3). 

2 Methods 

2.1 Participants 

Participants were 36 Finnish-speaking children in preschool who had no 

developmental delays (18 girls). Children were from the ages of 5 years and 9 

months to 6 years and 3 months old (M = 6 years, 0 months; SD = 1.3 months) 

when the data collection began. In Finland, children begin school in the fall of the 

year they turn seven. Parents’ education and income levels were representative 

of the urban Finnish population for the same age group. Before the study began 

parents gave informed consent for their children’s participation and, in addition, 

children gave informed assent at the age of twelve. Ethical guidelines of the 

University of Turku were followed and the school and daycare administration 

approved of the study before it began. 

2.2 Procedure 

Children’s SFON and number sequence elaboration skills were tested at the 

age of six years. Furthermore, six years later, at the age of twelve, their rational 

number conceptual knowledge was assessed. The tasks were given individually 

in a familiar room at the child’s kindergarten or school. Tasks were presented in 

the same order for all children. In order to make sure the mathematical nature of 

the study was not revealed to participants, SFON tasks were completed before 

any other numerical tasks. 
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2.3 Tasks 

2.3.1 SFON 

Detailed discussion of the nature of SFON measurements can also be found 

in a number of texts by the second and third authors (Hannula 2005; Hannula 

and Lehtinen 2005). In the present study, when presenting the SFON tasks, the 

experimenter sat next to the child, on the child’s right side at the table. She first 

made sure the participant’s attention was on the task. The experimenter did not 

use any phrases or other contextual hints that would suggest that the task was 

somehow mathematical or quantitative. Furthermore, no feedback about the 

child’s performance was given during the task situation. The number of items 

used in the task was always well within participants’ enumeration level, thus 

allowing differentiation of the variable of spontaneous focusing on numerosity 

from enumeration skills. All of a participant’s (a) utterances involving number 

words, (b) use of fingers to express numbers, (c) counting acts, like a whispered 

number word sequence and indicating acts by fingers and/or head, d) other 

comments referring either to quantities or counting (e.g. “Oh, I miscounted 

them”), or e) interpretation of the goal of the task as quantitative (e.g. “I stamped 

an accurate number of them”) were noted. The participant was scored as 

focusing on numerosity if she or he produced the correct number of items on 

that trial, and/or if she or he was observed doing any of the aforementioned (a–

e) quantifying acts. All SFON tasks included three separate trials, which were 

coded as SFON or not independently of each other. The maximum score for each 

task was three. Inter-rater reliability of two independent raters, who scored 30 

percent of the video recordings of the SFON tasks, varied from .96 to 1.00. 

Imitation task. Materials included a post-box, which was on the table in 

front of the child, a set of ten, red, closed, blank envelopes placed to the left of the 

post-box, and a pile of ten, blue, closed, blank envelopes on the right, 10 cm from 

the red envelopes. 

The experimenter first pointed to the post-box and the piles of envelopes, 

and said: “This is a post-box, and there are red envelopes here and blue 

envelopes here. Watch carefully what I do, and then you do just like I did.” The 

experimenter then put, one at a time, two red envelopes and one blue envelope 
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into the post-box. Then the child was told: “Now you do exactly like I did.” On the 

second test item two red and three blue envelopes were used and on the third 

item, 3 blue and 2 red envelopes. 

Model task. Materials were A4-sized line-drawings of dinosaurs, and three 

stamps: a circular stamp called a “node” and two types of triangular stamps 

called “spikes”. Similar pictures of dinosaurs were in front of the experimenter 

and the child. The experimenter then explained that she would make her 

dinosaur into a model and then turn the model upside down so that the child 

could not see the model. Then the child was told to make his or her dinosaur look 

exactly the same as the model one. The experimenter then said: “Now, watch 

carefully, I am making this dinosaur into a model.” After stamping six nodes 

beginning at the head of the dinosaur, the experimenter turned her model upside 

down and gave the stamp to the child, and said: “Now, you make your dinosaur 

look exactly the same as the model dinosaur.” The procedure was repeated with 

a seven-spiked dinosaur as the second item and a five-spiked dinosaur as the 

third item. 

Finding task. Materials were 27 cone-shaped wooden hats (diameter 

16mm at the bottom, and height 16mm) placed side-by-side in a semicircle 

(28cm in diameter) on a mat, a small troll, and his gold ingot (4mm x 4mm x 

1mm). The experimenter introduced the materials and said: “Now you may 

watch while I hide this gold ingot under a hat. Then you can tell the troll where 

his gold ingot is hidden. Now watch under which hat I hide the gold ingot.” The 

experimenter lifted up the target hat and placed the gold ingot in its place. Then 

the experimenter counted silently to four, allowing the participant time to note 

the location of the gold ingot, and covered the gold ingot with the hat. To prevent 

the participant from visual marking the target hat, he/she was asked to look up 

at the right and left corners of the ceiling. The participant was also not allowed to 

use his/her finger to mark the target hat. Then the participant was asked to 

indicate which hat the gold ingot was under. If the participant did not find the 

gold ingot, the experimenter lifted the target hat, and removed the gold ingot in 

order to start the next trial. The ingot was hidden under the 6th hat from the 

right, under the 7th hat from the left, and finally under the 5th hat from the right. 
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The participant was interviewed after the task about the strategies she or 

he used to remember where the gold ingot was hidden, in order to determine 

whether the child had used numerical information of some kind to find the target 

hat. The SFON scoring of the task was based on analyses of video-recordings, the 

interview, and the hat pointed to by the child. The participant was not given a 

SFON score if the analyses of the child’s behaviour and the interview revealed 

that the participant had found the target hat by accident, irrespective of whether 

the target hat was found or not. 

SFON sum score. A SFON tendency sum score was created by applying item 

analysis with the aim of identifying a reliable uni-dimensional SFON score with 

as little random variance as possible (Metsämuuronen 2006). Observing the 

inter-total correlations for all items across the three tasks, three of the nine 

original items had low correlation coefficients (< .2) with the other items. 

Subsequently, the reliability was calculated as these three items were removed 

one-by-one, with each step leading to a higher reliability. In all, 6 items from the 

three SFON tasks were included in the final sum variable (Items 1 and 3 from the 

Imitation task, Item 1 from the Model task, and items 1, 2, and 3 from the Finding 

task). The maximum of the sum score was 6. The resulting reliability was 

acceptable (Cronbach’s alpha = .72).  

2.3.2 Number sequence elaboration skills  

Number sequence elaboration skills forwards and backwards. A modified 

version of the test of Salonen et al. (1994) was used to assess children’s number 

sequence elaboration skills (e.g. Fuson 1988). First the child was asked to count 

forwards from 3, 8, 12, 19, and 24 (at least 4 correct number words), and second 

from 2 to 7, from 6 to 11, from 14 to 19, and from 18 to 25, to assess his or her 

number sequence elaboration skills forwards. Correspondingly, the items for 

counting backwards were as follows: counting backwards from 4, 8, 12, 19, and 

24 (at least 4 correct number words), and counting backwards from 6 to 3, from 

13 to 8, from 19 to 15, and from 23 to 18. The child got a score for each trial in 

which he or she recited all required numbers correctly. Maximum of the task was 

18. Cronbach’s alpha for the measure in a robust sample reported by Salonen et 

al. (1994) was .88. 
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2.3.3 Rational number test  

The rational number test (RNT) consisted of 28 multiple choice and short 

answer items. Participants completed the test in a one-on-one situation. In order 

to capture the range of participants’ knowledge, the testing situation was 

modelled on the concept of engaging the participant’s zone of proximal 

development in their rational number conceptual knowledge (Brown 1992). 

Therefore, the experimenter asked probing questions based on the participant’s 

responses after they completed certain items. At three points during the test 

participants were asked to explain their thinking behind their responses on the 

previously completed items. Questions were as follows: 1) “Why is this one 

[points to one fraction] smaller than that one [points to a neighbouring 

fraction]?”; 2) “How do you know that this is the correct order for these numbers 

[points to decimals on paper]?”; and 3) “How do you know which number is 

bigger [points to fraction and decimal]?” Out of 1008 trials, participants changed 

their answers on 6.5% of the tasks: in 23 trials the participant changed a correct 

answer to an incorrect answer, in 13 trials they changed an incorrect answer to 

another incorrect answer, and in 30 trials they changed an incorrect answer to a 

correct one. Participants’ final scores were based on both their final written 

responses and their verbal reasoning. 

The test consisted of three types of problems aimed at capturing 

participants’ knowledge of those rational number concepts which are most often 

conflated by natural number concepts, namely (a) the size of fractions and 

decimals and (b) the density of the set of fractions and decimals. The size 

concepts were covered by comparison items and ordering items. Density items 

were all open-ended questions. In all items the features of the rational numbers 

were incongruent with natural number features. 

Comparison items were multiple-choice including: 5 items comparing two 

fractions (e.g. “Circle the larger fraction. If the numbers are equal circle both”: 

5/8; 4/3); 7 items comparing two decimals (e.g. “Circle the larger decimal…”: 

0.36; 0.5); and 7 items comparing fractions and decimals (e.g. “Circle the larger 

number…”: 1/8; 0.8). Each item was scored as correct (1 point) or incorrect (0 
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points); the maximum for comparison items was 19. Cronbach’s alpha for 

comparison items was .88. 

Ordering items were short-answer responses including: 1 item ordering 

fractions (“Put the numbers in order from smallest to largest”: 5/6, 1, 1/7, and 

4/3); and 3 items ordering decimals (e.g. “Put the numbers in order from 

smallest to largest”: 6.79; 6.796; 6.4). For the fraction item, 2 points were given 

for a correct answer, 1 point given if the fractions were in the correct order but 

the “1” was at the beginning or end, and 0 points for an otherwise incorrect 

answer. For the decimal items, each item was scored as correct (1 point) or 

incorrect (0 points); the maximum score of the ordering items was 5. Cronbach’s 

alpha for ordering items was .72. 

Density items were short-answer responses including: 2 items on fraction 

density (e.g. “Are there other fractions between 3/5 and 4/5? If so, how many?”); 

and 3 items on decimal density (e.g. “Are there other decimal numbers between 

0.3 and 0.4? If so, how many?”). Each item was scored as incorrect (0 points), 

partially correct (1 point), or fully correct (2 points). Fully Correct responses 

were a mathematically correct concept of the density of rational numbers, 

stating that there are an infinite or indescribable number of numbers between 

any two rational numbers, or that it is not possible say how many there are (e.g. 

“There are an infinite number [of fractions between 3/5 and 4/5.]”). Partially 

correct responses had some basic understanding that there are some fractions or 

decimals in between any two fractions or decimals, but did not include notions of 

infinity (e.g. “10”, “many”, “a lot”, etc.). Incorrect responses stated that there are 

no numbers in between the two rational numbers (e.g. “There are no numbers 

[in between 0.3 and 0.4.]”). The maximum score for the density portion of the 

test was 10. Cronbach’s alpha for density items was .89. 

3 Results 

Table 1 presents the descriptive statistics for the variables measured at the 

ages of six and twelve years. As can be seen, there is substantial variation in 

SFON scores among the participants at the age of six years. 
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Correlations between the sum variables indicate that SFON (r = .55, p = 

.001) and number sequence elaboration skills (r = .58, p < .001) at the age of six 

years are related to rational number conceptual knowledge at the age of twelve. 

As well, number sequence elaboration skills are related to SFON (r = .50, p = 

.002).  

 
Table 1 Descriptive statistics for variables at age six and twelve years (N = 36) 

  Mean SD Skewness Kurtosis Range 

Number sequence 
elaboration at 6 

11.53 5.13 –0.68 –0.99 2–18 

SFON at 6 2.58 1.76 0.35 –0.88 0–6 
RNT at 12 19.61 7.29 0.00 –0.83 4–32 
Comparison 14.44 4.47 –0.70 –0.41 3–19 
Ordering 3.53 1.73 –0.71 –0.96 0–5 
Density 1.64 2.50 1.59 1.56 0–8 

 

With a relationship apparent between all three variables, we then aimed to 

determine exactly how SFON and number sequence elaboration skills at age six 

uniquely predict rational number conceptual knowledge at age twelve. Due the 

large amount of covariance between SFON and number sequence elaboration 

skills, standardized residual scores of SFON and number sequence elaboration 

were calculated. This provides a measure of SFON tendency without the variance 

that can be attributed to number sequence skills, and vice-versa (see Hallett et al. 

2010 for a detailed explanation of the use of residual scores). The residualized 

SFON score represents the difference between an individual’s observed SFON 

score and the SFON score that is predicted by his/her number sequence 

elaboration score. Therefore a positive residual SFON score indicates a higher 

SFON score than would be expected based on the number sequence elaboration 

skill, and a negative indicates a SFON score lower than would be expected 

(Lehtinen et al. submitted).  

These so-called “pure” number sequence elaboration and early SFON 

scores were then entered step-wise as independent variables into a regression 

with rational number conceptual knowledge at age twelve as the dependent 

variable. Rational number conceptual knowledge score was calculated by taking 

the sum of the standardized scores for the comparison, ordering, and density 
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portions of the rational number test. “Pure” number sequence elaboration was 

entered in the first step and “pure” SFON was added in the second step. As can be 

seen in Table 2, overall 43% of the variance on the rational number test is 

explained by number sequence elaboration and SFON at six years. For the whole 

test, while number sequence elaboration skills explain some of the variance in 

rational number conceptual knowledge (change in R2 = .13; β = .68), SFON 

explains even more precisely this variance (change in R2 = .30; β = .64). In order 

to see in more detail the nature of how SFON and number sequence elaboration 

skills predict rational number conceptual knowledge, a standardized sum score 

of the comparison and ordering parts (referred to as size) and a sum score of the 

density part of the rational number test were also entered as dependent 

variables in similar regressions (Table 2). In total, number sequence skills and 

early SFON explained 40% of the variance on the size portion of the rational 

number test and 28% of the variance on the density portion. While for the items 

dealing with the size of rational numbers a similar pattern emerged, 

interestingly only SFON improved the explanation of density scores. 

 

Table 2 Stepwise regression analyses: specific effects of residualized number 

sequence elaboration skills and SFON at age six years on rational number 

conceptual knowledge at age twelve years 

 
RNT  Size   Density 

Variable 
entered by step 

β 
R2 
change 

 β 
R2 
change 

  β 
R2 
change 

1. Num Seq Elab .68*** .13*  .68*** .15*  .44** .03 

2. SFON .64*** .30***  .59** .26**  .51** .19** 

Total R2  .43   .40   .23 

Note: *p < .05, **p < .01, ***p < .001  

In order to more directly investigate whether SFON predicts rational 

number conceptual knowledge, we first investigated whether those with higher-

than-expected early SFON scores at the age of six are more likely to have higher 

rational number conceptual knowledge. Participants were grouped based on 

their rational number conceptual knowledge at twelve years and separately 

grouped based on their residualized SFON scores. Cross-tabulations were then 
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used to determine if SFON predicts rational number conceptual knowledge 

groupings.  

Participants were classified into one of four categories based on the 

patterns of their knowledge of rational number concepts. McMullen and 

colleagues (2014b) identified a four-class model as most appropriate for this age 

group for classifying students’ rational number conceptual knowledge of the size 

and density of fractions and decimals using a similar test. These groupings were 

used as a guide in classifying the participants of the present study into distinct 

rational number conceptual knowledge groupings. In the “Low” group (n = 15) 

were students who had below-average scores for all three problem types. 

“Average” students (n = 11) were those with at least one problem type above 

average but no problem types above one standard deviation above the mean. 

“Representation” students (n = 5) had a comparison and/or ordering item score 

above +1 SD, but a density item score below +1 SD. “High” students (n = 5) had a 

comparison and/or ordering item score above +1 SD and a density item score 

above +1 SD. Figure 1 shows the group means for the comparison, ordering, and 

density items on the rational number test, as well as residualized early SFON 

scores.  
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Fig. 1 Standardized rational number group means for rational number test items 

and residualized SFON (+/– 2 S.E.) 

 In order to determine if early SFON tendency had a direct impact on 

rational number group membership, participants were split into two SFON 

groups. Those with a positive SFON residual could be said to have a higher-than-

expected SFON score based on number sequence elaboration skills and were 

placed in the “High SFON” group. Those participants with a negative SFON 

residual score could be said to have a lower-than-expected SFON score and were 

placed in the “Low SFON” category. Table 3 presents the results of the cross-

tabulation. An Ordinal by Ordinal directional measure revealed that those 

students in the “High SFON” group were more likely to end up in higher rational 

number test groups than those in the “Low SFON” group (Somers’ d = .40, 

Approx. T = 2.39, p = .017). As can be seen, most of the High rational number 

conceptual knowledge group also had higher-than-expected SFON scores. 

Likewise, very few participants with lower-than-expected SFON scores were 

found outside of the Low or Average rational number conceptual knowledge 

groups. 

 

Table 3 Cross-tabulation of SFON grouping at age six years and rational number 

conceptual knowledge group membership at age twelve years 

 Rational Number Conceptual Knowledge Group 

SFON at age 6 Group Low Average Rep High 

Low (n = 20) 11 6 2 1 

High (n = 16) 4 5 3 4 

Total (N = 36) 15 11 5 5 

4 Discussion 

The present study provides new evidence of the role of early SFON in the 

development of mathematical skills. For the first time, a connection between 

early SFON tendency and rational number conceptual knowledge in late primary 

school has been identified. Children’s SFON tendency is a strong predictor of 

later rational number conceptual knowledge, even after taking into account early 

number sequence skills. This finding has implications for the understanding of 
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how the transition from reasoning about natural number concepts to reasoning 

about rational numbers may be influenced by children’s self-initiated practice 

with numbers in everyday situations. 

An intuitive hypothesis was the first proposed in the present study: that a 

higher early SFON tendency, and the increased amount of practice with whole 

numbers that comes with it, would lead to a more substantial natural number 

bias causing more difficulties with learning rational number concepts 

(Hypothesis 1). However, the results of the present study indicate that there is a 

positive relationship between SFON tendency at the age of six and rational 

number conceptual knowledge at the age of twelve. This indicates that this 

intuitive hypothesis is not supported and that a more analytic hypothesis was 

supported, which stated that, due to its relationship to number sequence skills, 

which predict rational number conceptual knowledge, SFON would also predict 

this knowledge (Hypothesis 2).  

Despite evidence that early SFON tendency did predict rational number 

conceptual knowledge, it was still entirely possible that most of the variance 

explained by SFON was actually due to shared variance with number sequence 

skills (Bailey et al. 2014; Hannula et al. 2010). It was, however, expected that the 

unique contribution of SFON tendency could be even greater than that of number 

sequence skills (Hypothesis 3), due to the nature of the self-initiated practice in 

varying situations afforded by SFON. This hypothesis was not confirmed by the 

multiple regression analyses. However, these results indicated that SFON 

tendency explained more precisely and was similarly important in explaining the 

variance in rational number conceptual knowledge than number sequence skills. 

Furthermore, this result was replicated for both the size and density portions of 

the rational number test. Finally, those with a higher-than-expected SFON 

tendency were found to be more likely to end up with more advanced rational 

number conceptual knowledge groups. This indicates that those with a higher 

SFON tendency at six years old may be more likely to overcome the natural 

number bias when reasoning about rational numbers at twelve years old. 

For those students with a lower early SFON tendency, the vast majority of 

experiences dealing with natural numbers may solely come from typical school 
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mathematics tasks. In these tasks there is rarely an instance where natural 

numbers do not suffice, until rational numbers are explicitly introduced in the 

curriculum. This may encourage a more disjointed view of the number system, 

with natural and rational numbers cleanly separated and only used with like 

numbers, or when the problem explicitly calls for their use. This may lead to a 

proficiency in dealing with typical school math tasks, a sort of routine expertise 

with the number system. However, a student with a higher SFON tendency may 

instead see natural and rational numbers as a part of a more well-connected 

number system, allowing for a more adaptive expertise, in which previous skills 

and knowledge can be flexibly applied to new situations (Baroody 2003; Heinze 

et al. 2009; Threlfall 2009; Hatano and Oura 2012).  

One possibility is that a higher early SFON tendency increases 

opportunities to recognize numerical possibilities in everyday situations which 

are not clearly defined nor clearly mathematical. These situations provide novel 

experiences with reasoning about mathematical aspects, in contrast to typical 

school math tasks, which almost always have a clear question, given numbers to 

calculate with, and come to a well-defined solution. More experiences with the 

messy mathematics that can be found in everyday situations, as afforded by 

SFON, may particularly prepare students for recognizing that, in some situations, 

natural number features are not sufficient for finding a solution. Indeed, in many 

everyday situations whole number solutions are inadequate, such as trying to 

split two cookies between three people, and those with a higher SFON tendency 

may be more likely to encounter these situations than those with a lower SFON 

tendency.  

The present study includes no direct measure of the inhibition of the 

natural number bias (e.g. reaction time paradigm), and thus, the link between 

inhibition and SFON cannot be explicitly made. However, it is possible to 

speculate on the nature of this relationship based on the substantial relationship 

between SFON and rational number conceptual knowledge revealed in the 

present study. The increased awareness or sensitivity to novel, convoluted, and 

“messy” aspects of the number system facilitated by a higher SFON tendency may 

be particularly relevant for the inhibition of intuitive conceptions related to the 
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natural number bias when reasoning about rational numbers. Inhibition can be 

seen from a broader perspective beyond typical reaction-time measures. 

Merenluoto and Lehtinen (2004) identified a model for the inhibition of 

mathematically incorrect concepts of number leading to conceptual change. In 

this instance, inhibiting less-mathematically correct concepts, such as using 

incongruent natural number features to reason about rational numbers, occurs 

when a student is able to overcome this natural number bias and use 

mathematically correct concepts in their reasoning.  

A starting point for the path towards this inhibition, they argued, lies with 

an experience of conflict between prior-held concepts and an experienced 

phenomenon. The personal attributes which lead to experiencing this conflict 

include the sensitivity to new aspects of a phenomenon, as well as cognitive and 

motivational contributors to this sensitivity. In this way, a higher tendency to 

notice specific features of a situation, such as features of natural or rational 

numbers which are incongruent with a held concept or experienced 

phenomenon, may more often lead to the inhibition of intuitive 

conceptualizations, such as a longer decimal number means a larger magnitude. 

In other words, a tendency to recognize that a conception of numbers is 

conflicting with an aspect of a given task may support the inhibition of this prior 

conception, possibly in favour of a mathematically correct conception. This 

process may be one way that SFON tendency leads to greater success on the 

rational number test. 

It should be noted that the results of the present study represent a first 

step in determining the role of early SFON tendency in the development of 

rational number conceptual knowledge. Due to the small sample size the 

statistical analyses reported here should be taken as exploratory, and the results 

as tentative. These results are especially threatened by a lack of power, leading 

to the possibility that some effects were substantial but not statistically 

significant. That said, the strength of the relationships found here, even over 

such a long period of time, suggest that it is possible to be cautiously optimistic 

of the veracity of the conclusions drawn within this study. Further investigations 

with a larger sample would be necessary to confirm the results. As well, the 
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investigation of the role of inhibition in SFON tendency would clarify whether 

inhibitory processes are involved in both SFON tendency and rational number 

conceptual knowledge, leading to the relation found in the present study. 

There are other issues that should be taken into account in future studies 

on this topic. First, there is the possibility of confounding variables which may 

have inflated the relationships found between early SFON and rational number 

conceptual knowledge. A number of predictors of rational number conceptual 

knowledge have recently been identified (Bailey et al. 2014; Jordan et al. 2013). 

Therefore, including more measures of, for example, whole number arithmetic 

and magnitude estimation, would be valuable to determine SFON tendency’s 

exact role in rational number development. Furthermore, confounding variables 

at the age of twelve may also explain some of the variance that SFON tendency 

seems to explain, and more measures at this age, such as non-verbal reasoning, 

arithmetic skills, and procedural knowledge of rational numbers (Lehtinen et al. 

submitted), would also be appropriate. As well, the rational number test 

instrument only includes items in which there is incongruence between natural 

number features and rational number features; it would be important to have a 

more comprehensive measure that includes both types of items (see Van Hoof et 

al. 2013b).  

One more problematic feature of the present study (and any study 

measuring density knowledge in students of this age) is the relative instability of 

the “High” rational number conceptual knowledge grouping in previous research 

(McMullen et al. 2014b), indicating that sustaining mathematically correct 

knowledge of the density of the set of rational numbers is particularly difficult, 

even among those who at one time or another display a more mathematically 

correct conception of rational number density. This finding is in line with 

conceptual change theory and reaction time research (Vamvakoussi et al. 2012; 

Van Hoof et al. 2013a; Obersteiner et al. 2013; Vosniadou 2014). This suggests 

that those who are in the “High” group in the present study may not have been so 

a few months before or after this, and not all those who have at least some 

mathematically correct understanding of the density of the rational number set 

were in the “High” group in this study. This suggests that multiple measurements 
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could prove valuable for the more valid capturing of rational number conceptual 

understanding. It is worth noting, however, that even after taking with a grain of 

salt the finding that higher-than-expected early SFON leads to higher rational 

number conceptual knowledge, the present study still identified that lower-than-

expected SFON tendency more often leads to the “Low” rational number 

conceptual knowledge category, which itself was shown to be worryingly stable 

(McMullen et al. 2014b). 

Despite all of these limitations, there remain important implications of the 

finding that early SFON tendency predicts rational number conceptual 

knowledge over a six-year period. The tentative result that SFON tendency 

predicts rational number conceptual knowledge even after six years suggests 

that individual differences in SFON may have a long-reaching impact on 

differences in mathematical development. Previously, the tendency of 

spontaneous focusing on quantitative relations (SFOR), defined as the 

spontaneous (i.e. undirected) focusing of attention on quantitative relations and 

the use of these relations in situations that are not explicitly mathematical, has 

been identified as a predictor of rational number conceptual development 

(Lehtinen et al. submitted; McMullen et al. 2014a; McMullen 2014). SFOR in 

seven-year-olds was found to predict fraction knowledge at the age of ten 

(McMullen et al. 2014a). As well, SFOR predicted the development of rational 

number conceptual knowledge over two school years in late primary school 

(Lehtinen et al. submitted). That both SFON and SFOR predict rational number 

conceptual knowledge suggests that further study of the relationship between 

SFON and SFOR tendency in early years is important for the understanding both 

of the nature of spontaneous quantitative focusing tendencies in general, and of 

how SFON and SFOR are related to each other.  

These results have important implications for the teaching of rational 

numbers and early mathematical skills. First, they suggest that SFON tendency 

may be important for a broader range of mathematical development than 

previously thought. The early encouragement of SFON may have a long-lasting 

impact on some of the most difficult topics in mathematics. Previous research 

suggests that already at an early age SFON tendency can be enhanced through 



 
 

24 
 
 

social interaction (Hannula et al. 2005). This increase in SFON tendency led to 

gains in enumeration skills as well. More research into the effects of SFON 

training could prove promising for the later development of rational number 

conceptual knowledge. In any case, teachers and maths educators should take 

into account the limitations of typical classroom maths from a broader 

perspective. The results of the present study suggest that it is possible that 

working with “messy” maths may provide long-term benefits for overcoming 

inappropriate intuitions about the nature of numbers. 
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