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Abstract. In the current scientific age, the measurement technology has
considerably improved and diversified producing data in different rep-
resentations. Traditional machine learning and data mining algorithms
can handle data only in a single representation in their standard form.
In this contribution, we address an important challange encountered in
data analysis: what to do when the data to be analyzed are represented
differently with regards to the resolution? Specifically, in classification,
how to train a classifier when class labels are available only in one reso-
lution and missing in the other resolutions? The proposed methodology
learns a classifier in one data resolution and transfers it to learn the
class labels in a different resolution. Furthermore, the methodology intu-
itively works as a dimensionality reduction method. The methodology is
evaluated on a simulated dataset and finally used to classify cancers in
a real-world multiresolution chromosomal aberration dataset producing
plausible results.

1 Introduction

Over the years, the measurement technologies have improved considerably pro-
viding an opportunity to measure the finer details of the phenomenon [8]. Mul-
tiresolution data is generated when the same phenomenon is measured in dif-
ferent levels of detail [13]. The older generation technologies measure only the
coarser units of the phenomenon resulting in the data in the coarse resolution
while the newer generation technology can measure the finer units of the phe-
nomenon generating the data in the fine resolution. The fine resolution data
carries more information in the data sample compared to the coarse resolution
data but also has the larger data dimensionality than the coarse resolution data.
The importance of combining multiple data sources, and information within a
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Fig. 1. The research challenge considered in this contribution and the proposed solu-
tion.

single analysis and the availability of multiresolution data in different applica-
tion areas, such as, image processing, and time—series analysis have given major
impetus to the research in multiresolution data analysis [13].

In this contribution, we address an important challange that lies in between
supervised learning and learning from unlabeled data; which resembles the semi—
supervised learning [5] and the transfer learning [10]. The proposed methodol-
ogy learns the classifier in one resolution where the class labels are available
and transforms the classifier to other resolutions where the class labels are not
available. The methodology uses a combination of an unsupervised probabilistic
clustering and a supervised multiclass classification in a pipeline to address the
challenges in classifying the data in different resolutions when class labels are not
available in all the resolutions of the data. In this contribution, we do not propose
a new probabilistic modelling algorithm or a multiclass classification algorithm.
The novelty in the contribution comes from the design of the pipeline for classi-
fying the datasets in different resolutions by resolution transfer of the classifier
and intuitive dimensionality reduction achieved through the unsupervised prob-
abilistic clustering. While the clustering results have been used to improve the
classification results [7], such a methodological pipeline of resolution transfer has
not been proposed in the literature.

The Figure 1 shows that between the two high dimensional datasets in two
different resolutions, only the data in one resolution has the associated class la-
bels; while the class labels are missing in the data in other resolutions. Therefore,
the challenge to learn a classifier on the data in the resolution having the class
labels and use the same classifier to classify the samples in the data resolution
without the associated labels. A simplified approach of using projection methods
such as principal component analysis (PCA) would not produce expected results
because the representation of data would be lost.

As shown in the bottom panel of Figure 1, first, we vertically partition both
the datasets based on some predefined landmarks in such a way that the number
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of vertical partitions in each dataset in different resolutions are the same. Second,
we train the mixture models in each of the vertical partitions of the dataset with
the associated labels. Third, we transform the trained mixture models to another
resolution with missing class labels. The transformations are performed using the
apriori knowledge of the relationships among different resolutions of the data
from the domain ontology. Fourth, we retrain the mixture models with the data
partitions in data resolution not consisting of associated labels. The retrained
mixture model generates the cluster labels for the data partitions in the data
resolution with missing class labels. Fifth, we concatenate the obtained cluster
labels in both the data resolutions separately to regenerate the whole genome but
with a reduced dimensionality. Sixth, we learn a multiclass classifier for the whole
genome in the data resolution having the associated class labels. Finally, we can
use the same classifier to classify the data resolution not consisting of associated
labels. Since the clusters labels which are used as features are equivalent in both
the resolution, the classifier can be used for data in both resolution producing
comparable results in both resolutions.

2 Methodology of Multiresolution Multiclass
Classification

In our proposed methodology, we first set aside the class labels and vertically
partition the feature space in both the given high dimensional datasets on spe-
cific landmarks in such a way that specific relationship between different data
resolutions can be easily established. Furthermore, vertical partition should be
such that data in different resolutions will have equal number of partitions while
data dimensionality in each partition can be different. We then use unsuper-
vised probabilistic algorithm, i.e., mixture models, to cluster each partition of
the data separately. The number of clustering experiments is equal to the num-
ber of vertical partitions in the data. We use model selection to determine the
number of clusters in each of the partition of the data separately using ten—fold
cross—validation as in [12].

The cluster labels generated by the clustering algorithms are then vertically
concatenated forming a new dataset with reduced dimensionality for classifi-
cation. The newly formed dataset obtaied by concatenating the cluster labels
emulates the original data but results in the reduced data dimensionality. This
is because a cluster label comprise multiple data dimensionality in the vertical
partitions of the data thus ameliorating the problem of curse of dimensional-
ity [4].

In our previous research, we have shown that the mixture models learned in
a resolution can be transformed to a different resolution provided there exists a
well-defined relationship among the different data resolutions [2]. We can use the
domain ontology to determine the relationship between the model parameters in
different resolutions of data and exploit that to transform the mixture models
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across different resolutions.
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We can re-sample the number of parameters required in the fine resolution from
a normal distribution with the mean () equal to the parameter value in the
coarse resolution and a small standard deviation (o); 0.01 in our experiments.
Mathematically, we can represent the transformations as in Equation 1, where
0., and 0 denote the parameters of the mixture components 6 in the coarse and
the fine resolution. We can also further ensure that the re-sampled parameters
obey the laws of probability in such a way that the value of the parameter in
the fine resolution is between 0 and 1, i.e., 0 < 6 < 1. If the re—sampled value of
0 is outside the given range, we replace it with the value of the parameter, 6, in
the coarse resolution such that 0y = 6.. Finally, the transformed mixture model
is then retrained on the fine resolution data.

We represent the categorical cluster labels as binary features as discussed
in [6]. The number of bits in binary features is equal to the number of components
in the mixture model for that data partition, i.e., the clusters in the data. For
example, if the number of components is four then the clusters one, two, three,
and four are represented as: 1000, 0100, 0010, and 0001. We then vertically
concatenate the cluster labels in binary representation to represent an entire
dataset. This clustering labels can be assumed to be the summary of the patterns
present in the data. Finally, a multiclass classifier, e.g., support vector machines,

can be trained using on the dataset generated by concatenating the clustering
labels.

3 Experiments on Multiresolution Chromosomal
Aberrations Dataset

Two chromosomal amplification datasets were available in two different resolu-
tions for our experiments. The data in coarse resolution describing the DNA
amplification patterns of 4590 cancer patients were available from [9]. Similarly,
data describing the DNA amplification patterns in fine resolution were available
from [3]. The coarse resolution data describes the chromosomal amplifications
dividing genome in 393 different parts as described in [11]. In contrast, the fine
resolution data describes the chromosomal amplifications dividing the genome
in 862 different parts. In addition to resolution, another important difference be-
tween the datasets is that the coarse resolution data have associated class labels,
i.e., the 4590 patients were associated with 73 different cancer types whereas the
data in the fine resolution do not have the associated cancer types (class labels).

Data Preprocessing The number of cancer types in the coarse resolution
dataset (73) were too high to learn any credible cancer classifier. Some of the
cancers had less than 10 samples making it difficult to learn a classifier that
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generalizes better on the unseen data [5]. Therefore, we only experimented with
top 34 cancer types. The top 34 cancer types were chosen because they cov-
ers 90% of the data. This simplification reduces the number of samples in the
data to 4104. The cancer with the highest number of samples is Neuroepithelial
tumors with 544 samples. In contrast, the cancer with the minimum number
of samples is Pulmonary sarcoma with only 30 samples. The simplified data is
then processed chromosome—wise, i.e., the data describing the genome is verti-
cally partitioned into 24 different chromosomes. When the data is divided into
chromosomes, some samples in some chromosome do not show any amplifica-
tion. We remove those samples without amplifications (vectors with all zeros)
because they carry no information about the cancer and also further simplify
the experimental procedure.

Chromosome—wise Mixture Modelling After the data have been vertically
partitioned into the different chromosomes, we learn the mixture models based
on a model selection procedure in a ten—fold cross—validation setting as discussed
in [12]. The model selection procedure selects different number of components
in the mixture model to fit the data in different chromosomes. Mixture models
are generally used to represent the probability distribution of the data. Never-
theless, it can also be used to cluster the data into hard partitions. The number
of partitions is equal to the number of components in the mixture model. The
cluster labels are then transformed to binary format and chromosomes are con-
catenated to form the whole genome. We do not use model selection algorithm
on Chromosome Y because of lack of data samples. In chromosome Y, the cluster
label is 1 if any of the chromosomal regions is amplified; otherwise 0.

Cancer Classification Using SVMs The cluster labels are transformed to
binary format and the chromosomes are concatenated to regenerate the whole
genome. In the cancer samples showing no amplifications in specific chromo-
somes that were ignored duriing mixture modeling are replaced by all zeros in
the binary features. The example, of four clusters discussed in Section 2, it would
be represented as 0000. We then learn multiclass support vector machines using
open—source libsvim software package [6]. The kernel type selected is radial basis
function. The parameters of the support vector machines are v and C' which
also learned in a ten—fold cross—validation setting by a grid search. The support
vector machines are initially learned on the original data with full set of fea-
tures and also on the vertical concatenation of cluster labels. The original data
dimensionality is 393 whereas vertical concatenation of cluster labels results in
data dimensionality of 112. The concatenation of features result in reduction of
data dimensionality that is less than one third of the features in original data
dimension. Naturally, when the data dimension is reduced, the accuracy of clas-
sification decreases. Figure 2 shows that decrease in accuracy is negligible when
the partitions of data is represented by the cluster labels. The computational
and memory efficiency of reduced data dimensionality surpasses the decrease in
the classification accuracy.
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Fig. 2. Comparative study of the accuracy of SVM in different modes of the classifi-
cation settings.

Resolution transfer of the classifier The crux of this contribution is the
resolution transfer of the classifier. We use the knowledge of domain ontology
relations to transform the parameters of the mixture model learned in the res-
olution having the associated class labels to the data resolution not having the
associated class labels as in [2]. The transformed model is retrained on the data
in other resolution in such a way that the components are not much different
than the model in the original resolution. This requirement is enforced because
the clustering algorithm should produce same labels for similar data vectors as
we are using the cluster labels as data features for classification. Since the algo-
rithm is trained on the data in other resolution, the features in the concerned
resolution must be the same as the features in original resolution. Finally, the
data in concerned resolution is classified using the classifier trained in original
data resolution.

The data in fine resolution obtained from [3] does not have associated can-
cer types, i.e., class labels. Therefore, we can use the same classifier to classify
cancers but we cannot access the performance of the classification algorithm.
Therefore, we transform the data to another resolution using deterministic meth-
ods similar to the one suggested in [1]. The data in fine resolution can then be
classified using the classifier learned in the resolution having associated cancer
labels. Furthermore, the performance can be accessed because the transformed
data have labels from the coarse resolution.
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Figure 2 depicts the classification accuracy of the classifier in different set-
tings. As expected the classification accuracy is best on the original data. The
figure shows that the performance of the classifier degrades in resolution transfer.
The decrease in performance is expected because the classifier is learned on data
in different resolution. The results obtained are promising because resolution
transfer provides additional facilities to classify data in different resolution for
which the class labels are not available. Furthermore, the negligible decrease in
performance can also be attributed to curse of dimensionality [4]. In addition, the
performance of multiclass classification is less than 40% which is comparatively
less but considering that there are 34 classes, the accuracy is plausible because
random classifier would generate accuracy of less than 10%. If all samples are
classified as the cancer with the highest number of samples, i.e., Neuroepithelial
tumors, the accuracy would be approximately 13%. Therefore, the performance
achieved by our methodology is plausible and provides a novel methodology to
classify cancers across different resolutions.

3.1 Simulated Data

We also evaluated our methodology on a simulated data set. The simulated
dataset was simple with 1000 data samples and 5 dimensions. We randomly
sampled a number between 1 and 4, and generate row for the data sample where
each element in the sample is equal to the randomly sampled number. For ex-
ample, if we sample number 3, all the elements in the row are 3. We continue
this process until 1000 data samples have been achieved. We then consider first
variable as the class and remaining 4 variables as the features. We convert the
four variables to binary using decimal to binary conversion system with 3 bits
such that 4 dimensional data are transformed into 12 dimensional 0-1 vectors.
We then randomly flip the bits of 1200 (10%) data elements to add noise to
the dataset. Similarly, we vertically concatenated the 12 dimensional data each
dimension one by one to generate 24 dimensional data.

We then group each digit separately again into four groups to run the clus-
tering experiments. Since, we know the number of clusters in the data, i.e., 4,
we do not run model selection algorithm in this case. We then evaluate our
methodology on this simulated multiresolution data in the similar vein as in
Section 3. In this experiment, there was larger discrepancy in classification ac-
curacy in multiclass classification. The original algorithm as well as the clusters
labels used as class labels produced accuracy nearing 97% while the resolution
transfer produced classification accuracy nearing 75%. Despite the addition of
noise, the data is overly simple and in such simple datasets, classifiers often
overfit. In one vs one and one vs the rest experiments all the methods produced
plausible accuracy of 98.5%.

4 Summary and Conclusions

In this contribution, we were interested in transferring the classifier learning
across different resolutions. In our setting, we had access to class labels only in
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one resolution while the class labels were missing in other resolutions. We learn
the classifier in the resolution with the class labels and transfer the learned clas-
sifier to classify the data in resolutions with missing class labels. Furthermore,
our proposed methodology intrinsically reduces the data dimensionality to less
than one—third in the coarse resolution and to less than one—eighth in the fine
resolution as an added advantage of the proposed resolution transfer. We exper-
imented our methodology on a simulated dataset, and chromosomal aberrations
patterns to classify cancers with plausible results.
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