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Abstract

Label-free mass spectrometry (MS) has developed into an important tool applied in various fields of biological and life
sciences. Several software exist to process the raw MS data into quantified protein abundances, including open source and
commercial solutions. Each software includes a set of unique algorithms for different tasks of the MS data processing
workflow. While many of these algorithms have been compared separately, a thorough and systematic evaluation of their
overall performance is missing. Moreover, systematic information is lacking about the amount of missing values produced
by the different proteomics software and the capabilities of different data imputation methods to account for them.
In this study, we evaluated the performance of five popular quantitative label-free proteomics software workflows using four
different spike-in data sets. Our extensive testing included the number of proteins quantified and the number of missing val-
ues produced by each workflow, the accuracy of detecting differential expression and logarithmic fold change and the effect
of different imputation and filtering methods on the differential expression results. We found that the Progenesis software
performed consistently well in the differential expression analysis and produced few missing values. The missing values pro-
duced by the other software decreased their performance, but this difference could be mitigated using proper data filtering or
imputation methods. Among the imputation methods, we found that the local least squares (lls) regression imputation con-
sistently increased the performance of the software in the differential expression analysis, and a combination of both data fil-
tering and local least squares imputation increased performance the most in the tested data sets.
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Introduction

Mass spectrometry (MS)-based proteomics has developed rap-
idly during the recent decades. High-resolution MS enables
modern-day proteomics to identify and quantify tens of thou-
sands of peptides and thousands of proteins in a single run [1].
MS-powered quantitative proteomics has emerged into an

important tool applied in various biosciences (e.g. biology, bio-
chemistry and medicine) [2] and is expected to further evolve
with regard to resolution, speed and cost-efficiency [1].

MS technologies can be coarsely divided into two categories:
label-based and label-free quantification methods [3]. Although
label-based quantification methods, such as SILAC (Stable
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isotope labeling with amino acids in cell culture) [4], provide
undisputable accuracy and robustness, they also have their
limitations when compared with the more simple label-free
methods. For example, SILAC requires the use of live cell cul-
tures, and compared with label-free methods, most of the label-
based methods require more steps in sample preparation and
higher sample concentration, are more expensive and can only
be performed for a limited number of samples [3, 5]. Label-free
methods can be used both in shotgun (discovery analysis of the
whole proteome) and in targeted (analysis of a specified set of
proteins) proteomics experiments [6] and can be applied even
when the metabolic labeling of samples is not possible [5]. So
far, the shotgun method has been more popular than the tar-
geted method [6]. In recent years, data-independent acquisition
(DIA) shotgun proteomics has emerged as a possible solution to
the low reproducibility of the traditional data-dependent acqui-
sition (DDA) shotgun proteomics [7–12].

Two main strategies for relative quantification by label-free
methods exist: peak intensity-based methods and spectral
counting [2, 3]. It has been shown that relative quantification by
peptide peak intensities provides more accurate relative quanti-
ties than spectral counting if the protein concentrations are high
or if the sample complexity changes drastically between samples
[13]. Therefore, in this study, we concentrate on relative quantifi-
cation using peptide peak intensities. After the actual MS meas-
urements, the raw data need to be processed appropriately for
accurate results. Label-free proteomics software workflows typic-
ally consist of multiple steps, including peptide peak picking,
peptide identification, feature finding, matching of the features
with peptide identities, alignment of the features between differ-
ent samples and possibly aggregation of the identified and quan-
tified peptides into protein quantifications [14].

The label-free proteomic software workflows can be divided
into two categories based on their structure: modular workflows
and non-modular complete workflows [15]. Both commercial
and nonprofit solutions exist [15]. Some excellent reviews on
existing software are available, such as [13–17]. For instance, in
[15], three different software platforms, Progenesis, MaxQuant
and Proteios (with and without feature alignment and with fea-
tures imported from MaxQuant or detected using MsInspect)
were compared for peptide-level quantification in shotgun
proteomics using a spike-in peptide data set with two different
spike-in peptide dilution series. The performance of the soft-
ware workflows was evaluated with different metrics, including
harmonic mean of precision and sensitivity, mean accuracy,
coverage and the number of unique peptides found [15]. The
comparison suggested that Progenesis performed best, but a
noncommercial combination of Proteios with imported features
from MaxQuant also performed well [15]. Algorithms, such as
peak picking and retention time alignment, usually included
within a quantitative shotgun proteomics label-free workflow,
have also been evaluated and compared separately [18–21].
While such separate comparisons are interesting and the evalu-
ation by [15] is informative, a thorough comparison of multiple
workflows on protein level is still missing, especially in terms of
differential expression analysis.

A common and pervasive problem in MS data are missing
values [22]. When using peptide peak intensities for relative
quantification, missing values are intensity values that are not
recorded for a peptide in a sample during the MS measurement
[22]. Because protein intensities are aggregated from peptide
intensities, enough missing values on peptide-level propagate
to missing values on protein level. Missing values can occur be-
cause of multiple reasons and are mainly divided into two main

categories: abundance-dependent missing values (e.g. the con-
centration of the peptide is below the detection limit of the in-
strument) or values missing completely at random (e.g. the
identification of the peptide is incorrect) and are discussed in
more detail in [22, 23]. Although missing values can severely
bias the results [22], so far, the number of missing values pro-
duced by different software and their impact on the results has
not been systematically examined. Data imputation has been
proposed as a solution to missing values in proteomics [22, 24,
25]. A variety of different data imputation methods exist
[24, 26], but their effect on performance, especially with regard
to differential expression, has not been comprehensively eval-
uated in proteomics.

In this study, we present a thorough evaluation of five com-
monly used software workflows for quantitative shotgun label-
free proteomics with special attention to missing values. We
evaluated the software workflows on protein level using four
different spike-in data sets. As the common interest in many
proteomics studies is detecting differentially expressed proteins
between sample groups, we benchmarked the software in their
ability to correctly detect the truly differentially expressed pro-
teins in the spike-in data and in their ability to estimate the
known fold changes. Additionally, we measured the number of
missing values produced by each software workflow and eval-
uated the ability of different filtering and imputation methods
to counter the effect of missing values in the differential expres-
sion analysis.

Material and methods
Data sets

The UPS1 data set
The data set of Pursiheimo et al. [27] consists of 48 Universal
Proteomics Standard Set (UPS1) proteins spiked into a yeast
proteome digest in five different concentrations: 2, 4, 10, 25 and
50 fmol/ll. An LTQ Orbitrap Velos MS was used to analyze three
technical replicates of each concentration. The data set is avail-
able from the PRIDE Archive with the identifier PXD002099
(http://www.ebi.ac.uk/pride/archive/projects/PXD002099).

The CPTAC data set
The CPTAC (Study 6) data set [28] includes 48 UPS1 proteins
spiked into a yeast proteome digest in five different concentra-
tions: 0.25, 0.74, 2.2, 6.7 and 20 fmol/ll. An LTQ Orbitrap MS was
used to analyze three technical replicates of each concentration
(at test site 86). The data set is available from the CPTAC Portal
(https://cptac-data-portal.georgetown.edu/cptac/dataPublic/list/
LTQ-Orbitrap%4086?currentPath¼%2FPhase_I_Data%2FStudy6).

The UPS1B data set
The UPS1B data set of Ramus et al. [29] contains 48 UPS1 pro-
teins spiked into yeast proteome digest in nine different con-
centrations: 0.05, 0.125, 0.25, 0.5, 2.5, 5, 12.5, 25 and 50 fmol/ll.
An LTQ Orbitrap Velos MS was used to analyze three technical
replicates of each concentration. The data set is available from
the PRIDE Archive with the identifier PXD001819 (https://www.
ebi.ac.uk/pride/archive/projects/PXD001819).

The Shotgun Standard Set data set (SGSDS)
A profiling standard data set of Bruderer et al. [7] consists of 12
nonhuman proteins spiked into a constant human background
[human embryonic kidney (HEK-293)], including eight different
sample groups with known concentrations of spike-in proteins
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in three master mixes. A Q Exactive Orbitrap MS was used to
analyze three technical replicates of each sample group both in
DDA and DIA modes. In this study, the DDA shotgun proteomics
data (referred to here as shotgun standard set, SGSDS) was
used. The profiling standard is available from PeptideAtlas: No.
PASS00589 (username PASS00589, password WF6554orn).

Software workflows

All of the software workflows were run using the default set-
tings as much as possible. The proper level of instrument reso-
lution was selected (Orbitrap or high resolution in all data sets).
A FASTA database of the yeast Saccharomyces cerevisiae protein
sequences merged with the Sigma-Aldrich 48 UPS1 protein se-
quences was used for the UPS1, CPTAC and UPS1B data sets for
all software. A FASTA database of the human HEK-293 cell pro-
teins merged with the sequences of the nonhuman spike-in
proteins was used for the SGSDS data set for all software.
Cysteine carbamidomethylation was set as a fixed modification,
and methionine oxidation and acetylation at the N-terminus
were used as dynamic modifications. Peptides formed by tryp-
sin digestion were searched. Minimum peptide length to be
used was set to 6. Precursor mass tolerance was set to 20 ppm,
and fragment mass tolerance to 0.5 Da. Peptides belonging to
only one protein (i.e. nonconflicting unique peptides or equiva-
lent setting) were used to calculate protein-level relative abun-
dances in all software.

Progenesis workflow
The default peak-picking settings were used to process the raw
MS files in Progenesis QI version 2.0.5387.52102. Peptide identifi-
cations were performed using Mascot search engine via
Proteome Discoverer version 1.4.1.14. A Mascot score corres-
ponding to a false discovery rate (FDR) of 0.01 was set as a
threshold for peptide identifications. FDR of 0.01 was also used
for protein-level identifications. Progenesis was allowed to
automatically align the runs, and the retention time was
entered based on visual inspection of the retention time image.
Although Progenesis does not produce missing values per se, it
produces some zeros, which can be interpreted as protein abun-
dance being below detection capacity or protein not existing in
the sample. The zeros produced by Progenesis were trans-
formed into not available (NA) and treated as missing values in
this study.

MaxQuant workflow
The default peak-picking settings were used to process the raw
MS files in MaxQuant [30] version 1.5.3.30. Peptide identifica-
tions were performed within MaxQuant using its own
Andromeda search engine [31]. MaxLFQ was on. Match type was
‘match from and to’. ‘Advanced ratio estimation’, ‘stabilize large
LFQ ratios’ and ‘advanced site intensities’ were on. Match time
window size was by default 0.7 min, and alignment time win-
dow size was 20 min. ‘Require MS/MS for comparisons’ was on,
and decoy mode was ‘revert’. FDR of 0.01 was set as a threshold
for peptide and protein identifications. MaxQuant automatically
aligned the runs.

Proteios workflow
Files were first converted to mgf and mzML formats using
MSConvert of ProteoWizard 3.0.9322 with 64 bit binary encoding
without any compression. The converted files were imported
into a virtual server running Proteios Software Environment
version 2.20.0-dev [32]. Peptide identifications were performed

on the mgf files using the combined hits of XTandem [33] and
MS-GFþ [34] search engines. FDR of 0.01 was set as a threshold
for the combined peptide identifications. The native scoring al-
gorithm in XTandem was used for scoring the identifications.
The Dinosaur algorithm [35] was used for peptide feature detec-
tion on the mzML files. Features were matched with identifica-
tions using the default settings. After matching the peptide
identities with features, Proteios feature alignment algorithm
[36] was used to align the sample runs. Because using protein
quantification with nonconflicting peptides was not possible in
the Proteios software environment, peptide quantities were ex-
ported from Proteios and composed into protein quantities by
summing the nonconflicting peptides belonging to a protein in
the R statistical analysis programming environment version
3.3.1.

PEAKS workflow
Default settings were used with PEAKS studio proteomics soft-
ware version 7.5 [37] without merging the scans. Correct precur-
sor was detected using mass only. Peptide identifications were
performed within PEAKS using its own search engine PEAKS DB
combined with PEAKS de novo sequencing [38]. PEAKS PTM
search tool [39] was used to search for peptides with unspecified
modifications and mutations, and the SPIDER [40] search tool
was used for finding novel peptides that are homologous to
peptides in the protein database. The default maximum num-
ber of variable posttranslational modifications per peptide was
3, and the number of de novo dependencies was 16. The default
de novo score threshold for SPIDER was 15 and Peptide hit score
threshold 30. Retention time shift tolerance was 20 min. All the
search tools are included in the PEAKS studio software. FDR was
estimated with target decoy fusion and set to 0.01. Label-free
quantification with PEAKS Q was used. PEAKS was allowed to
autodetect the reference sample and automatically align the
sample runs. To allow the exporting of complete results, protein
significance filter was set to 0, protein fold change filter to 1 and
unique peptide filter to 1 in the export settings.

OpenMS workflow
Toppas [41] version 2.0.0 was used to create workflows in the
OpenMS [42] software environment. Files were first converted
to mzML format using MSConvert of ProteoWizard 3.0.9322 with
64 bit binary encoding without any compression. The converted
files were imported into Toppas. Peptide identifications were
performed using the combined hits of XTandem [33] and MS-
GFþ [34] search engines. The native scoring algorithm in
XTandem was used for scoring the identifications. FDR of 0.01
was set as a threshold for the combined peptide identifications
using the PeptideIndexer, FalseDiscoveryRate and IDFilter algo-
rithms. Reverse decoys were used to calculate the FDR for the
peptide identifications. The PeakPickerHiRes algorithm with
parameters for Orbitrap/high-resolution data combined with
BaselineFilter algorithm was used for peak picking. The
FeatureFinderCentroided algorithm with parameters for
Orbitrap/high-resolution data was used for peptide feature find-
ing. Peptide identifications were linked to peptide features
using the IDMapper algorithm, and the different sample runs
were aligned using the MapAlignerPoseClustering algorithm,
allowing the algorithm to automatically select the appropriate
reference run. The FeatureLinkerUnlabeledQT algorithm was
used to group the features before quantifying the protein abun-
dances with the ProteinQuantifier algorithm. Summing of the
peptide intensities belonging to a protein was used to compose
the protein-level intensities.
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Post-processing
Non-normalized protein intensities (peptide intensities for
Proteios) were extracted from all workflows and imported into
the R statistical programming software environment version
3.3.1 [43] for post-processing and analysis. All of the down-
stream data processing and analysis were done in the R
environment.

All data were normalized using the variance stabilization
normalization (vsn) [44] shown to perform consistently well
with proteomics spike-in data [45]. The justvsn function from
the vsn package [44] was used for normalization.

Missing values and imputation methods

All missing intensity values were transformed to a uniform NA
notation. All missing values were treated uniformly before im-
putation. No special class was assigned to missing values (e.g.
missing completely at random or missing because of being cen-
sored) rather they were considered missing because of an un-
known reason. Data imputation and filtering were done on
protein level after normalization as suggested by [22]. Seven im-
putation methods and two filtering approaches were tested as
detailed below.

Zero imputation (zero)
All missing values (NA) were replaced with zeros.

Background imputation (back)
All missing values were replaced with the lowest detected in-
tensity value of the data set. This imputation simulates the situ-
ation where protein values are missing because of having small
concentrations in the sample and thus cannot be detected dur-
ing the MS run. The lowest intensity value detected is therefore
imputed for the missing protein values as a representative of
the background.

Censored imputation (censor)
If only a single NA for a protein in a sample group was found, it
was considered as being ‘missing completely at random’, and
no value was imputed for it. If a protein contained more than
one missing value in a sample group (consisting of technical
replicates), they were considered missing because of being
below detection capacity, and the lowest intensity value in the
data set was imputed for them.

Bayesian principal component analysis imputation (bpca)
Bayesian principal component analysis (bpca) imputation was
first developed for microarray data [46]. It combines an expect-
ation maximization algorithm with principal component re-
gression and Bayesian estimation to calculate the likelihood of
an estimate for the missing value [46]. Bpca is based on vari-
ational Bayesian framework, which does not force orthogonality
between principal components [47]. The bpca imputation was
implemented with the principal component analysis function
of the pcaMethods package [47]. The number of principal com-
ponents k used for missing value estimation was set to n-1 as
suggested by [46], where n is the number of samples in the data.

Local least squares imputation (lls)
In the local least squares (lls) imputation, k most similar pro-
teins are first selected, and the missing values are then esti-
mated with least squares regression as a linear combination of
the values of these k proteins. Similarity is inferred based on
protein intensities of other samples than the one being imputed

for. A value of 150 for parameter k has been observed to be
enough in most cases [48–50] and was also used in this study.
The lls imputation was implemented with the llsImpute func-
tion of the pcaMethods package [47].

K-nearest neighbor imputation (knn)
The k-nearest neighbor (knn) imputation algorithm finds k most
similar proteins (k-nearest neighbors) and uses a weighted aver-
age over these k proteins to estimate the missing value [51]. More
weight is given to more similar proteins [51]. Similarity is inferred
based on intensities of other samples than the one being
imputed for. A number of k between 10 and 20 have been sug-
gested to be appropriate for the knn algorithm, and the perform-
ance of the algorithm has been observed to be uniform with
these values of k [51]. A k value of 10 was used in this study.

Singular value decomposition imputation (svd)
Singular value decomposition is applied to the data to obtain
sets of mutually orthogonal expression patterns of all proteins
in the data [51]. These expression patterns, which are identical
to the principal components of the data, are referred to as
eigenproteins following the terminology of [51]. The missing
values are estimated as a linear combination of the k most sig-
nificant eigenproteins by regressing the protein containing the
missing value against the eigenproteins [51]. It has been
observed that a suitable value for parameter k is 20% of the
most significant eigengenes [51], and a k value corresponding to
20% of the most significant eigenproteins was also used in this
study.

Basic filtering (filtered)
All proteins with more than one missing value per sample
group (consisting of three technical replicates in each data set)
were considered as ‘not missing at random’ [22, 52, 53], and
were filtered out to enable differential expression analysis be-
tween sample groups. Single missing values for a protein per
sample group were considered as being ‘missing completely at
random’, and no values were imputed for them.

Filtering 1 local least squares imputation (filtlls)
First, all proteins with more than one missing value per sample
group were filtered out as above, and then lls imputation was
used to impute values for the remaining missing values.

Evaluation of the software workflows and imputation
methods

Differential expression analysis
Differential expression analysis was performed between all pos-
sible combinations of two sample groups in each data set. The
reproducibility-optimized test statistic (ROTS) [54] has been
shown to perform well for label-free proteomics data [27, 45]
and was used in this study.

Receiver operating characteristic (ROC) curve analysis was
used to measure the performance of different software work-
flows and imputation methods in detecting the truly differen-
tially expressed spike-in proteins. In the ROC curve analysis, the
true-positive rate (or sensitivity) is plotted against the true-
negative rate (or specificity). The partial area under the ROC
curve (pAUC) was used to rank the software and imputation
methods. As generally the interest is in detecting the top differ-
entially expressed proteins for further validation, pAUCs be-
tween specificity values 1 and 0.9 were used to focus on the
most essential part of the ROC curve. The pAUCs were scaled so
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that they had a maximal value of 1.0 and a non-discriminant
value of 0.5 using the R package pROC [55]. If a P-value for the
differential expression of a protein between any two sample
groups could not be calculated because of missing values, the
protein was assigned a P-value of 1 in that two-group compari-
son to keep the number of proteins in the ROC analysis un-
changed between the different comparisons in each data set
and each software. The bootstrap method was used to calculate
the significance of the differences between the pAUCs using the
roc.test-function of the pROC package [55].

Ranks for each software were calculated in each two-sample
comparison; better ranks were assigned to software with higher
pAUCs. If pAUCs were equal, they received equal ranks. An
overall rank was calculated for each software using the mean
ranks of the software for each data set. The Satterthwaite ap-
proximation was used to calculate the associated standard
error. Similarly, ranks, mean ranks and overall ranks were also
calculated for each software after applying the different imput-
ation methods.

Evaluation of the logarithmic fold change
While the ability of a software to correctly detect true differen-
tial expression is pivotal, producing accurate estimates for the
logarithmic fold changes (LogFCs) can also be of interest. In the
spike-in data sets used, the expected LogFCs were known both
for the spike-in proteins and for the background proteins (for
which the expected LogFC is zero). We evaluated how close the
LogFCs estimated by the different software workflows were to
the expected LogFCs. For each two-group comparison of each
data set, we calculated the mean squared error (MSE) between
the estimated and expected LogFCs of proteins.

Results
Missing values and the number of proteins quantified

Progenesis quantified a considerably smaller number of pro-
teins than the other software in all data sets except the SGSDS
data set (Table 1). In the SGSDS data set, Progenesis quantified
more proteins than OpenMS, while PEAKS and especially
MaxQuant and Proteios still quantified considerably larger
numbers of proteins.

In the UPS1, SGSDS and UPS1B data sets, all the software
detected most of the spike-in proteins. In the CPTAC data set,
Progenesis was able to discover only 67% of the spike-in pro-
teins, while the rest of the software workflows detected a sub-
stantially larger proportion of them (85–88%). This might be
related to Progenesis dropping out one technical replicate from
the 20 fmol sample group when performing the automatic align-
ment of the MS runs.

In general, the number of missing values was markedly
lower with Progenesis than with the other software, being near
zero in all data sets (Table 1). With the other software, the num-
ber of missing values in the detected spike-in proteins was low
in the UPS1 and SGSDS data sets (0–4.2%), but higher in the
CPTAC and UPS1B data sets (13.0–35.2%). For instance, in the
CPTAC data set, the proportion of missing values in the spike-in
proteins with Progenesis was zero, while it was as much as
29.4% with MaxQuant and 20.8–23.6% with the other software.
Overall, the number of missing values in the background pro-
teins was much higher with the other software than with
Progenesis, being highest in the CPTAC and UPS1 data sets
(Table 1). T
ab
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While the different software quantified different numbers of
proteins, the bulk of the protein quantifications was shared
(Figure 1). Nearly all proteins identified and quantified by
Progenesis in each data set were proteins identified and quanti-
fied also by the other software (Figure 1A–D). In the UPS1,
CPTAC and SGSDS data sets, MaxQuant had the largest number
of unique protein quantifications (Figure 1A–C), whereas
OpenMS had the largest number of unique protein quantifica-
tions in the UPS1B data set (Figure 1D).

Differential expression analysis

Progenesis performed systematically well in the differential ex-
pression analysis delivering high pAUCs in each data set (Figure
2). While the other software also performed well, Progenesis
clearly outperformed them in the CPTAC and UPS1B data sets
(Figure 2B, D, F and H). This difference in performance was
prominent, regardless of whether investigating the ROC curves
drawn over all the two-group comparisons (Figure 2B and D) or
the pAUCs of each two-group comparison separately (Figure 2F
and H). A closer investigation of the ROC curves revealed differ-
ences between the software depending on the data set
analyzed.

In the UPS1 data set, all software performed well. However,
when looking at the pAUCs of the two-group comparisons
(Figure 2E), MaxQuant, Progenesis and Proteios outperformed
PEAKS and OpenMS. Especially, MaxQuant performed well, de-
livering the highest pAUCs in most of the two-group compari-
sons, being significantly better than PEAKS or OpenMS in 9 of 10
of the two-group comparisons (P< 0.05).

In the CPTAC data set, Progenesis significantly outperformed
all the other software in all but two comparisons (0.25 versus
0.74 fmol and 2.2 versus 6.7 fmol) (P< 0.05) (Figure 2F). However,
as was already noted earlier, in this data set, Progenesis dis-
covered only 67% of the spike-in proteins, while the rest of the
software discovered 85–88% of the spike-in proteins. In four
comparisons (0.25 versus 0.74 fmol, 0.25 versus 2.2 fmol, 0.25
versus 6.7 fmol and 0.25 versus 20 fmol), MaxQuant performed
significantly worse than the other software (P< 0.05), whereas
in three comparisons (2.2 versus 6.7 fmol, 2.2 versus 20 fmol and
6.7 versus 20 fmol), OpenMS performed worst (P< 0.05). In the
other three comparisons, Proteios, PEAKS, OpenMS and
MaxQuant performed comparably.

In the SGSDS data set, Proteios and Progenesis performed
best delivering the highest pAUCs in most of the two-group
comparisons (Figure 2G). The differences in pAUCs between the
two software were significant in only one of the comparison
pairs (3 versus 7), where Progenesis performed significantly bet-
ter than Proteios (P¼ 0.039). PEAKS performed almost on par
with Progenesis and Proteios; the differences in pAUCS to
Proteios were not significant in any of the two-group compari-
sons, but Progenesis performed significantly better in two of the
comparisons (5 versus 6 and 5 versus 7, P< 0.04).

In the UPS1B data set, Progenesis systematically outper-
formed the other software in the two-group comparisons (Figure
2H). The differences were significant in 72–89% of all the 36 two-
group comparisons (P< 0.05). In this data set, there were many
comparisons with low concentrations of spike-in proteins in the
samples. When both sample groups had a low concentration of
spike-in proteins, and the differences in the concentrations were

Figure 1. Venn diagrams of quantified proteins by each software in the (A) UPS1, (B) CPTAC, (C) SGSDS and (D) UPS1B data set.
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small, all the software struggled in detecting the truly differen-
tially expressed proteins.

When ranked based on pAUCs of each two-group compari-
son in each data set, Progenesis received an overall rank of 1.49
with a standard error estimate of 0.35. Proteios was second with
an overall rank of 2.79 and a standard error of 0.34, followed by
MaxQuant (3.12 6 0.57), PEAKS (3.51 6 0.42) and OpenMS
(4.09 6 0.44).

As the number of proteins identified and quantified in a data
set was different for each software workflow, we also examined
to which extent this affected the results in the differential ex-
pression analysis. To investigate this, we composed union data
sets, which contained all the proteins identified and quantified
by at least one software in that data set. Proteins not originally
quantified by a software were treated as missing values in the
differential expression analysis. Using the union data sets did
not have a major effect; the performance of Progenesis in the
CPTAC data set was lowered, but it still outperformed the other
software (Supplementary Figure S1). Otherwise, the results of
the differential expression analysis using the union data sets
were similar to those of the original data sets (Supplementary
Figure S1, Supplementary Table S1) and were thus excluded
from the main results.

Estimates of LogFC

There were clear differences between the accuracy of the LogFC
estimates calculated from the protein intensities produced by
the different software workflows. MaxQuant consistently

produced low MSEs between the observed LogFCs compared
with the expected LogFCs (Figure 3).

For the spike-in proteins, MaxQuant had systematically low
median MSE compared with the other software in each data set
(Figure 3A–D), being the lowest in the UPS1 and UPS1B data sets.
Over all the two-group comparisons, MaxQuant had an overall
mean MSE of 3.3 with a standard error of 0.4, followed by
Proteios (mean MSE 5.3 6 0.64), PEAKS (mean MSE 7.36 6 0.88),
Progenesis (mean MSE 8.57 6 1.32) and OpenMS (mean MSE
8.96 6 1.45). Also, the distribution of MSEs for the spike-in pro-
teins was generally more compact with MaxQuant than with
the other software; MaxQuant had fewer large MSEs than the
other software (Figure 3A–D).

While Progenesis produced intensity values that resulted in
relatively high MSEs for the spike-in proteins, it estimated the
LogFCs of the background proteins most accurately in each data
set (Figure 3E–H). Overall, all the software had rather compact
distributions of MSEs and low median MSEs in the background
proteins. Over all the two-group comparisons, Progenesis had
an overall mean MSE of 0.31 with a standard error of 0.01, fol-
lowed by MaxQuant (mean MSE 0.36 6 0.06), Proteios (mean MSE
0.61 6 0.07), OpenMS (mean MSE 0.63 6 0.08) and PEAKS (mean
MSE 0.64 6 0.08).

As LogFC has been observed to depend also on the normal-
ization method chosen [45], for a comprehensive evaluation of
LogFC, we examined whether normalizing the data differently
had an effect on the results. We normalized the data from each
software workflow using five different normalization methods
(vsn, median, quantile, fast LOESS using a reference array and

Figure 2. Results of the differential expression analysis using different software. ROC curves over all the two-group comparisons in the (A) UPS1 data, (B) CPTAC data

(C) SGSD data and (D) UPS1B data, and the pAUCs of each two-group comparison in the (E) UPS1 data, (F) CPTAC data (G) SGSD data and (H) UPS1B data. In A–D, the di-

agonal grey line represents the identity (no discrimination) line. In E–H, the x-axes denote the two-group comparisons of the sample groups.
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robust linear regression using a reference array) and recalcu-
lated the MSEs of the LogFCs. However, the different normaliza-
tion methods had no major impact on the order or magnitude
of the results and were thus excluded from the main results
(Supplementary Figure S2).

Effect of imputation on performance

Finally, we examined the effect of filtering and imputation on
the performance of the different software workflows (Table 2,
Supplementary Table S2, Figure 4, Supplementary Figures S3–5).
When missing values were abundant, filtering and imputation im-
proved pAUCs in the differential expression analysis. This effect was
most prominent in the CPTAC and UPS1B data sets with MaxQuant,
OpenMS, Proteios and PEAKS (Figure 4B, D, F and H, Supplementary
Figure S3B, D, F and H). In general, imputation or filtering improved
the performance of MaxQuant in the differential expression analysis
the most (Supplementary Figure S5, Supplementary Table S2). As
expected, imputation or filtering did not have a major effect on
the performance of Progenesis, which had only a small number of
missing values (Table 2, Supplementary Table S2).

The combination of filtering and imputation (filtlls) im-
proved the performances of the software the most (Table2,
Supplementary Table S2, Figure 4). Among the pure imputation
methods, the lls imputation consistently produced the highest
improvement in the pAUCs of the software in different data
sets (Table 2, Supplementary Table S2, Supplementary Figure
S3). The basic filtering method (filtered) received an equal rank
to the lls imputation and consistently improved the perform-
ance of the software in the differential expression analysis.

In the SGSDS data set, Progenesis always performed best
despite the imputation or filtering method used. Notably, how-
ever, when using the filtlls method, MaxQuant performed best
in the differential expression analysis in the UPS1, CPTAC and
UPS1B data sets (Table 2, Figure 4). The same was true, when
using the basic filtering; MaxQuant performed best in the UPS1,
CPTAC and UPS1B data sets (Table 2). Accordingly, when using

the filtlls or filtered methods, MaxQuant performed best in the
differential expression analysis based on the mean ranks of all
the two-group comparisons (Supplementary Table S2). Proteios
also performed generally well and consistently outperformed
PEAKS and OpenMS after filtering or imputation (Figure 4,
Supplementary Figure S3, Supplementary Figure S4).

Discussion

In the four spike-in data sets tested in this study, Progenesis
performed systematically well in the differential expression
analysis. It performed well even in the most challenging CPTAC
and UPS1B data sets, in which it clearly outperformed the other
software before filtering or imputation. Without filtering or im-
putation, Proteios performed second best; however, there were
no large differences in the performances of OpenMS, PEAKS and
Proteios (Figure 2). MaxQuant performed best in the UPS1 data
set and almost on par with PEAKS and Proteios in SGSDS data
set but was clearly worst in the CPTAC and UPS1B data sets.
These results are in agreement with the prior results of [15] on
peptide level. However, after basic filtering or combining filter-
ing with the lls imputation, MaxQuant performed best in three
of the four tested data sets (Table 2, Supplementary Table S2).

In this study, Progenesis produced a significantly lower num-
ber of missing values than the other software in each data set
examined (Table 1). We speculate that this is essentially because
of the efficient co-detection algorithm, which uses an aggregate
ion map for the detection of peaks from each sample. While all
the other software perform similar alignment, the feature ions
are generally detected separately in each sample run before align-
ing the runs conversely to the co-detection solution used by
Progenesis. However, as was noted in the case of the CPTAC data
set, Progenesis is not always successful in aligning all the sample
runs, which may be problematic in the case of a large and com-
plex data set with many samples. The fact that Progenesis was
unable to automatically align all the runs in the CPTAC data set

Figure 3. The MSE of the LogFC estimates in the two-group comparisons produced by the software workflows compared with the known expected LogFCs. MSEs of

LogFC of the spike-in proteins in the (A) UPS1 data set, (B) CPTAC data set, (C) SGSDS data set and (D) UPS1B data set. MSEs of LogFCs of the background proteins in the

(E) UPS1 data set, (F) CPTAC data set, (G) SGSDS data set and (H) UPS1B data set.
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might have partly contributed to the smaller number of quanti-
fied proteins compared with the other software in that data set,
including �10 fewer spike-in proteins (Table 1).

In addition to the ‘matching between the runs’ alignment al-
gorithm used in this study [56], MaxQuant includes another algo-
rithm, MaxLFQ [5], which is especially useful in studies of large,
complex proteomes, where the samples have been fractionated
before the MS analysis. While we did not examine every possible
algorithm and parameter combination of each software, we
decided to explore the effect of MaxLFQ, as it can possibly essen-
tially affect the number of missing values produced by
MaxQuant. In the data sets where MaxQuant was previously
found to struggle (CPTAC and UPS1B data sets in particular), using
MaxLFQ decreased the performance of MaxQuant in the differen-
tial expression analysis, whereas no noticeable effect was found
with the other data sets (Supplementary Figure S6).

The number of proteins quantified by different software
workflows differed greatly in the tested data sets (Table 1).
While the use of different search engines understandably cre-
ates variation in the number of proteins discovered and quanti-
fied, even using the same search engines with the exact same
settings in different software workflows can still lead to differ-
ent quantified proteins, as was the case with OpenMS and
Proteios (Table 1). The number of proteins quantified by each
software workflow depends on the peptides and proteins identi-
fied by the search engine used but also on the successful match-
ing of peptide identifications with the detected features, the
alignment of different sample runs and grouping of peptides
into proteins by the software. It is hard to estimate the impact
of the different search engines on the performance of the soft-
ware workflows in the differential expressions analysis.
However, in most cases, a similar number of spike-in proteins
were detected by the different software workflows in each data
set (Table 1), indicating that the differences seen in the

performance were not necessarily because of differences in
identification but rather because of differences in successful
quantification of the proteins. This is perhaps even more high-
lighted with Progenesis detecting only 67% of the spike-in pro-
teins in the CPTAC data set compared with the 85–88% with the
other software and still outperforming the other software in
that data set (Figure 2, Supplementary Figure S1).

LogFC is a popular measure in proteomics studies to deter-
mine the degree of differential expression in detected differen-
tially expressed proteins [27, 57, 58]. Notably in our tests,
MaxQuant estimated the LogFCs of the spike-in proteins most
accurately having the most compact distribution of MSEs.
However, all software estimated the LogFCs of the background
proteins fairly accurately.

Finally, we examined the effect of two filtering and seven im-
putation methods on the performance of the software in the dif-
ferential expression analysis. Importantly, filtering and
imputation had a major impact on increasing the performance of
all other software than Progenesis in the differential expression
analysis (Figure 4, Supplementary Figure S5, Table 2). Among the
imputation methods tested, lls performed best, consistently im-
proving the performance of the software in the differential ex-
pression analysis the most in the spike-in data sets tested. Also,
bpca ranked well and was able to systematically increase the per-
formance of all other software than Progenesis. These results are
in agreement with prior results from DNA microarrays [26, 59]
where simple imputation methods such as zero imputation or
row average have not performed as well as more advanced meth-
ods such as bpca. However, it has recently been suggested that
the more simple imputation methods might be more suitable
than the advanced methods, when most of the missing values in
a data set are among the low-abundance peptides because of the
detection limit of the instrument [25]. Furthermore, [25] sug-
gested that performing imputation already on the peptide level
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UPS1 0.613 0.879 0.584 0.893 0.896 0.686 0.872 0.753 0.517

UPS1B 0.776 0.821 0.755 0.859 0.859 0.819 0.845 0.769 0.735

zero
So�ware 

mean rank

MaxQuant 2.17±0.16

OpenMS 4.69±0.1

So�ware Dataset back bpca censor filtered filtlls knn lls svd

Peaks 3.78±0.13

Progenesis 1.28±0.09

Proteios 3.06±0.15

4.65±0.33 2.85±0.27 4.65±0.48 8.3±0.4
Imputa�on Method 

mean ranks
5.75±0.45 3.65±0.41 7.1±0.49 2.85±0.42 1.85±0.29

Table 2. Rankings of the software and imputation method combinations based on partial areas under the ROC-curves (pAUC) of the differential expression analysis

Note: The best imputation method for each dataset with each software is highlighted in grey and the value is bolded. Since imputation had little to none
effect on the performance of Progenesis, no best imputation method for Progenesis could be selected. The best software in each dataset with each
imputation method (found on each column) is colored according to the colors of datasets. The best mean ranking for the imputation methods and software
is highlighted in yellow and the value is bolded. The pAUCs were calculated from the ROC-curves over all the two-group comparisons in a dataset.
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improves the performances of the imputation methods in most
cases. Be that as it may, as most of the software workflows used
in this study aggregate peptide quantities into protein quantities
using specialized methods, examining peptide-level imputation
was beyond the scope of this study.

For the other software than Progenesis, the best perform-
ance in the differential expression analysis was achieved, when
data filtering was followed by imputation with the lls method
(Table 2). Among the tested software, MaxQuant benefitted
most from filtering or imputation. While filtering seemed to be
an effective way to increase the performance of a software to
detect the truly differentially expressed proteins, it might have
resulted in losing some possibly interesting proteins when
missing values were abundant. The best approach and method
most likely depend on the data and on whether more emphasis
is put on finding as many differentially expressed proteins as
possible or in finding the most differentially expressed proteins
as accurately as possible.

Even though suggestive, with the current setting of our
study, our results cannot be generalized to represent absolute
differences between the tested software. We tested the software
workflows using spike-in data sets, where the number of truly
differentially expressed proteins is rather small. While this is
representative of many real experimental settings, it might be
insufficient in some cases where there might be a considerable
number of proteins changing between sample groups.
Furthermore, we tested the different software using the default
and automated settings as much as possible, which may favor

some software workflows and not be optimal in all research set-
tings. The performance of each software depends on the data
set, but it also depends on the instrument used and on the com-
plex combination of different software parameters. Each soft-
ware workflow contains a multitude of parameters that can be
altered and which potentially affect the performance.

The effect of parameters or modules on the performance is
especially true for modular workflows, such as OpenMS and
Proteios, in which even different algorithms can be chosen for a
given task, which may change the performance of the workflow
completely. An experienced user can possibly optimize the per-
formance of any software workflow by choosing the correct al-
gorithms and parameters based on the data set and prior expert
knowledge. In this comparison, based on the default settings of
each software, as uniform settings as possible were used, and
the software were not optimized for best possible performance.
Instead of aiming to compare absolute differences between the
tested software, our comparison rather corresponds to the cir-
cumstances where the different software workflows are used
with more limited amount of prior knowledge about the soft-
ware algorithms. This setting likely reflects the situation in
which many researchers and research groups stand with a
more intense focus on the experimental side than data analysis.
While selecting the appropriate software can be a demanding
task for the average user, careful consideration should be
applied to the amount of prior knowledge and the available re-
sources for mastering the attainable software. Most of the com-
plete solutions are easily set up and are ready to be used in just

Figure 4. Results of the differential expression analysis of different software after using the best ranking filtlls method. ROC curves over all the two-group comparisons

in the (A) UPS1 data, (B) CPTAC data (C) SGSD data and (D) UPS1B data, and the pAUCs of each two-group comparison in the (E) UPS1 data, (F) CPTAC data (G) SGSD data

and (H) UPS1B data. In A–D, the diagonal gray line represents the identity (no discrimination) line. In E–H, the x-axes denote the two-group comparisons of the sample

groups.
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a few steps with good results, whereas the modular solutions
generally require more time to familiarize with, while offering
extra control (i.e. algorithm selection, the inclusion of multiple
search engines) and adjustability for the experienced user. In
addition to the software workflows tested in this comparison, a
broad range of other software for the analysis of MS data exist,
such as The Transproteomic Pipeline [60] or Skyline [61]. The re-
sults from this comparison cannot be generalized to different
types of MS techniques (such as DIA, targeted MS, labeling-
based MS, etc.), which would require testing and evaluation of
their own.

Key Points

• The performance of five software workflows,
MaxQuant, OpenMS, PEAKS, Progenesis and Proteios,
in detecting true differential expression was exam-
ined, including the number of missing values pro-
duced and the effect of seven imputation and two fil-
tering methods on the performance.

• Progenesis performed consistently well in the differen-
tial expression analysis in every data set tested.

• Filtering and proper imputation increased the per-
formance of MaxQuant, OpenMS, PEAKS and Proteios.
The combination of filtering and imputation improved
the performances the most.

• After filtering or using the combination of filtering and
imputation, MaxQuant performed best in the differen-
tial expression analysis.

• The LogFCs of the spike-in proteins were estimated
most accurately by MaxQuant. The LogFCs of the
background proteins were estimated most accurately
by Progenesis.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/
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