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Abstract

Background: Detection of copy number variations (CNVs) from high-throughput next-generation whole-genome
sequencing (WGS) data has become a widely used research method during the recent years. However, only a little
is known about the applicability of the developed algorithms to ultra-low-coverage (0.0005–0.8×) data that is used
in various research and clinical applications, such as digital karyotyping and single-cell CNV detection.

Result: Here, the performance of six popular read-depth based CNV detection algorithms (BIC-seq2, Canvas,
CNVnator, FREEC, HMMcopy, and QDNAseq) was studied using ultra-low-coverage WGS data. Real-world array- and
karyotyping kit-based validation were used as a benchmark in the evaluation. Additionally, ultra-low-coverage WGS
data was simulated to investigate the ability of the algorithms to identify CNVs in the sex chromosomes and the
theoretical minimum coverage at which these tools can accurately function. Our results suggest that while all the
methods were able to detect large CNVs, many methods were susceptible to producing false positives when
smaller CNVs (< 2 Mbp) were detected. There was also significant variability in their ability to identify CNVs in the
sex chromosomes. Overall, BIC-seq2 was found to be the best method in terms of statistical performance. However,
its significant drawback was by far the slowest runtime among the methods (> 3 h) compared with FREEC (~ 3 min),
which we considered the second-best method.

Conclusions: Our comparative analysis demonstrates that CNV detection from ultra-low-coverage WGS data can be a
highly accurate method for the detection of large copy number variations when their length is in millions of base pairs.
These findings facilitate applications that utilize ultra-low-coverage CNV detection.
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Background
Copy number variation (CNV) is defined as deletion or
amplification of relatively large DNA segment (from 50
basepairs to several megabases) [1]. They contribute to
genetic diversity and have relevance both evolutionarily
and clinically. Massively parallel high-throughput DNA

sequencing-based methods enable a rapid, cost-effective
and flexible solution for the detection of genetic variants
including CNVs. The advances in DNA sample and se-
quencing library preparation allows studying various
sample types with limited amount of DNA-sample, e.g.
in noninvasive detection of fetal aneuploidies from ma-
ternal plasma [2, 3], and in low-coverage detection of
human genome variation [4, 5] as well as in the study of
cancer-associated changes in cell-free plasma DNA [6–
8]. In addition, the method provides a valuable tool to
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monitor chromosomal changes in in vitro cultured cells,
including human embryonic stem cells (hESCs), which
are known to accumulate genomic abnormalities during
maintenance and expansion [9, 10]. Low-coverage se-
quencing is a valuable alternative for the cost efficient
high-throughput monitoring of karyotypes of primary
cell lines, such as human pluripotent cell lines, and is a
necessity in order to karyotype formalin-fixed paraffin
embedded (FFPE) samples [11, 12]. Low-coverage high-
throughput single cell sequencing has also emerged in
recent years and has been applied to study e.g. low-level
mosaicism introduced by differing CNVs in cell subpop-
ulations in cultured hESC samples [13]. In addition to
the versatility of applications of low-coverage sequen-
cing, the advantages of this approach also include lower
costs and less computational resources and storage cap-
acity compared to high-coverage sequencing.
Detection of CNVs from low and ultra-low-coverage

sequencing data requires sensitive and reliable computa-
tional methods. Although many methods are available, their
performance has so far been validated mainly on relatively
high-coverage whole-genome sequencing (WGS) data (3–
90×)[14–17]. Recently, the applicability of the CNV detec-
tion methods for noninvasive prenatal testing samples with
read depth of 0.2–0.3× was assessed [18]. However, copy
number profiling has been conducted from FFPE tumor
samples with ultra-low read coverage 0.08× [12] and from
cell-free DNA from tumor samples with ultra-low read
coverage of 0.01× [19]. Presently, the ability of the methods
to detect CNVs from such ultra-low-coverage sequencing
data remains unclear.
To address this, we performed a systematic evaluation

of six read depth based CNV detection algorithms, namely
BIC-seq2 [20], Canvas [21], CNVnator [22], FREEC [23],
HMMcopy [24], and QDNAseq [25] using ultra-low-
coverage (0.0005–0.8×) WGS data. Read depth based
algorithms in general are most suited to detect large
CNVs also from low–coverage (≤ 10×) data, whereas other
methodological approaches for CNV detection tend to re-
quire higher coverage; read pair, split read and assembly
methods [18, 26]. We used both real-world WGS data
with array-based and karyotyping based validated CNVs
as well as simulated CNVs as benchmarking data. Com-
pared to array-based and karyotyping based benchmarking
data, simulated CNVs provide the most accurate ground
truth in respect to exact breakpoints of the CNVs. Simu-
lated data also allowed us to investigate multiple CNVs of
different sizes simultaneously and include benchmark
CNVs in the X and Y chromosomes. Sex chromosomes
have been shown to harbor CNVs of evolutionary and
clinical interest [27–29] and thus tools’ ability to call
CNVs in the sex chromosomes besides the autosomes
were evaluated. The computational demand was assessed
by running time, memory requirement and failure rate.

Results
In this section, we describe the results of the comparison
of six CNV detection tools (BIC-seq2, Canvas, CNVna-
tor, FREEC, HMMcopy, QDNAseq), which are summa-
rized in Table 1 and discussed further in Methods
section. In the first part of this section, we benchmark
the methods using simulated WGS data, which enables
us to study simultaneous deletions and duplications in
autosomal and sex chromosomes. In addition, we obtain
information about the optimal window size for each
method at different read coverages (0.0005–0.8×). We
utilize the optimal window size information in the sec-
ond part of this section, where we benchmark the
methods using real hESC cell line data and evaluate the
results using microarray and karyotyping kit-based data.
In both parts of the comparison, we measure the per-
formance using sensitivity, false discovery rate (FDR)
and F1 score. Finally, we also compare run times of the
methods. Figure 1 illustrates the mains steps of the com-
parison process.

CNV algorithm evaluation using simulated data
In total nine deletions and nine duplications of ≥ 1 Mbp
were generated as benchmark CNVs in the simulated
WGS data (Supplementary Table 1). The genomic map
in Fig. 2 visualizes the CNVs predicted by all six algo-
rithms along with the simulated ground truth CNVs in
all 24 main human chromosomes. With the coverage of
1×, FREEC and BIC-seq2 were able to accurately detect
all 14 CNV regions (seven duplications and seven dele-
tions) in autosomes without any false positive detections.
Canvas and QDNAseq also detected correctly all the
autosomal CNVs, but Canvas produced also some add-
itional false positives, whereas QDNAseq produced some
copy number neutral segments within some of the
CNVs. HMMcopy failed to identify a small 1 Mbp dupli-
cation in the chromosome 3. Two of the tools predicted
the correct location, but a false copy number for some
of the CNVs; CNVnator reported the duplication in the
chromosome 10 as deletion, and HMMcopy reported
the duplication in the chromosome 8 as deletion. In
addition, unlike the other methods, CNVnator was not
able to discard centromeres as problematic regions, and
it instead reported them as homozygous deletions.
The simulated benchmark data included two 5 Mbp

CNVs (one deletion and one duplication) in the X and Y
sex chromosomes. The results show that only BIC-seq2
was able to accurately detect all of the CNVs in both sex
chromosomes, whereas the other tools had more or less
difficulties in predicting them. BIC-seq2 was the only al-
gorithm that was able to accurately detect both of the
CNVs in the chromosome Y. While Canvas correctly
identified the duplication in the chromosome Y, it mislo-
cated the deletion. FREEC reported larger segments for
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the deletion and for the duplication without a copy
number neutral region between the two CNVs. All of
the algorithms, except HMMcopy, were able to detect
the duplication in the chromosome Y. BIC-seq2, Canvas
and FREEC were able to detect the CNVs in the
chromosome X correctly. HMMcopy was able to detect
the duplication correctly in the chromosome X, but
failed to detect the deletion, and it instead reported a
large deletion spanning almost the entire chromosome.

CNVnator did not report any CNVs in the chromosome
X, whereas QDNAseq predicted several small CNVs.
In order to assess how the coverage of the simulated

WGS data affects the performance, we used nine differ-
ent coverages (0.8×, 0.5×, 0.2×, 0.1×, 0.05×, 0.01×,
0.005×, 0.001×, and 0.0005×). The original simulated
dataset with coverage of 1× was downsampled to each of
the nine different coverages 20 times. The average sensi-
tivity, FDR and F1 score of the six CNV algorithms were

Table 1 Summary of features for the algorithms

Feature BIC-seq2 Canvas CNVnator FREEC HMMcopy QDNAseq

Language C++, Perl, R C# C++ C++, R C++, R R

Input format BAM BAM BAM BAM, many other BAM BAM

Control sample optional optional no optional optional yes

User-defined/built-in window size built-in built-in user both user user

Fixed window size yes no yes yes yes yes

GC-correction yes yes yes yes yes yes

Mappability correction yes no no yes yes yes

Sex-determination From XY CNVs From XY CNVs From XY CNVs User-specified From XY CNVs From XY CNVs. By default,
XY excluded.

Segmentation BIC1 Haar wavelet
(default), CBS2

Mean shift LASSO3 HMM4 CBS2

Version 0.2.4, 0.7.2 1.11.0 0.3.3 11.0 1.20.0 1.14.0

Reference [20] [21] [22] [23] [24] [25]
1Bayesian information criterion
2circular binary segmentation
3least absolute shrinkage and selection operator
4hidden Markov model

Fig. 1 Flowchart showing the main steps of our comparison, including preprocessing of the data, detection of copy number variations (CNVs)
with six different algorithms (BIC-seq2, Canvas, CNVnator, FREEC, HMMcopy, and QDNAseq) and evaluation and validation of the results. The
karyotyping results from the KaryoLiteTM BoBsTM assay are from an earlier study [9]
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calculated using stringent (≥ 80 % CNV segment overlap)
and loose (≥ 60 % CNV segment overlap and inclusion of
only ≥ 0.5 Mbp CNV segments) criteria, as shown in
Fig. 3 and Supplementary Fig. 1, respectively. Overall,
the choice of the evaluation criteria had no effect on the
order of the best and poor-performing tools, and there
was not considerable variation in the inferred CNVs for
any of the tools across the twenty subsets of the data.
In general, when using either the stringent or loose

criteria all of the tools performed poorly with extremely
low read coverages (0.0005× to 0.01×) and better with
higher coverages. All of the tools achieved ≥ 50 % sensi-
tivity with read coverages ≥ 0.01x. BIC-seq2 outper-
formed the other tools with the lowest FDR values and
the best sensitivity and F1 scores (≥ 0.05×), followed by

FREEC. BIC-seq2 worked well even with a read coverage
of as low as 0.005×, which corresponds to only 50 000
read pairs, achieving a relatively high F1 score of 0.75,
but failed to complete the analysis with the lower cover-
ages. CNVnator produced a lot of false positive detec-
tions, resulting in a lower than average general
performance (highest FDR in ≥ 0.001× read coverages
and lowest F1 score in ≥ 0.005× read coverages) (Figs. 2
and 3 and Supplementary Fig. 1). However, CNVnator
achieved high sensitivity with many of the window sizes
(Supplementary Fig. 2), when not considering the results
in the F1 score optimized way as in Fig. 2. The false pos-
itives are mainly attributable to the centromere regions
that CNVnator was not able to exclude. Canvas benefit-
ted from the looser criteria (Supplementary Fig. 1) and

Fig. 2 Genomic map visualization of the copy number variations (CNVs) detected in the simulated dataset using the six algorithms (rows 1–6)
along with the ground truth CNVs (row 7) in the respective chromosomal locations. Deletions are marked in red and duplications in blue. The
bottom part of the visualization depicts the depth of read coverage at each 50 kbp window. The read coverage of the data used in this
visualization was 1×

Fig. 3 Performance evaluation of the six copy number variation (CNV) algorithms using the simulated data with the stringent criteria: at least
80 % overlap between the inferred and ground truth CNVs and no filtering by CNV length. a True positive rate (TPR), b False discovery rate (FDR),
and c F1 score of the CNV detections achieved by the different tools when the read coverage is varied. For each algorithm and coverage, the
data point values depict the performance values achieved using the window setting that provided the highest F1 score (Supplementary Figs. 2, 3,
4, 5, 6). Error bars denote the standard error of the results generated from the results of 20 different random subsets
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was then noticeably closer to the performances of FREE
C and BIC-seq with all the coverages.
Next, five different window sizes (100, 200, 500, 1000,

and 2000 kbp) were tested to investigate the relationship
between the coverage and the optimal choice of the win-
dow size. Canvas was not considered in the window size
comparison, as it works by a different approach based
on fixing the number of reads per window. The results
of these comparisons are shown in Supplementary
Figs. 2, 3, 4, 5, 6. The results suggested that with each
method the window size had a considerable effect on the
performance and the methods responded differently to
its adjustment. For example, changing the window size
from 100 to 2000 affected the performance of BIC-seq2
noticeably in higher coverages (0.05–0.8×), decreasing
the sensitivity and increasing the FDR. For CNVnator,
on the other hand, a smaller window size improved the
sensitivity, but increased the FDR. We used the F1
values of the window size comparison to select the opti-
mal window size for each method at coverage of 0.1×,
which we used in the cell line data benchmarking. It
should be noted that some of the larger windows sizes
(1 Mbp, 2 Mbp) were likely too large for the identifica-
tion of the smallest CNVs of 1 Mbp length. However,
this is not an issue that affects the method comparison,
as the same window size was optimized for each cover-
age and method before the comparison.

CNV algorithm evaluation using cell line data
The real WGS data were from karyotypically normal
(H9-NO) and abnormal (H9-AB) variants of the hESC
cell line H9, harvested for the analysis at different pas-
sages of 38 and 41 (H9-NO-p38 and H9-NO-p41) or
113 and 116 (H9-AB-p113 and H9-AB-p116); Supple-
mentary Table 2. The CNVs detected in the SNP array
validation data were used as benchmark CNVs; the
CNVs ≥ 500kbp are described in detail in Supplementary
Table 3. In normal cell line samples (H9-NO-p38 and
H9-NO-p41), only one gain (in chromosome 7) was de-
tected using the SNP array data. This same gain was also
present in the abnormal samples (H9-AB-p113 and H9-
AB-p116), with additional gains in the chromosomes 17
and 20. In the chromosome 12 there were two gains sep-
arated by a centromere in H9-AB-p116, whereas in H9-
AB-p113 the chromosome 12 gain was fragmented into
four segments (Supplementary Table 3).
Figure 4 a and b show genomic map visualizations for

the combined abnormal and normal samples, respect-
ively, which include the benchmark CNVs ≥ 500 kbp and
the predicted CNVs by each method. The same
visualization is available for the individual samples in
Supplementary Figs. 7, 8, 9, 10. For QDNAseq the CNV
detection is visualized using two different setups: inclu-
sion and exclusion of the sex chromosomes X and Y.

BIC-seq2, Canvas and FREEC are the only algorithms
that found the gains in chromosomes 7 and 20. How-
ever, none of the tools met the minimum overlap criter-
ion of > = 80 %. All of the algorithms found the large
chromosome 12 gain. The fragmented detection of
QDNAseq and Canvas for the chromosome 12 gain can
be explained by the exclusion of the blacklisted regions
that both algorithms use by default. In order to further
evaluate the tools’ performance, we examined the detec-
tion accuracy genome-wide, i.e. including all the chro-
mosomes for combined abnormal sample and combined
normal sample (Supplementary Figs. 11 and 12, respect-
ively) and for the individual samples separately (Supple-
mentary Figs. 13, 14, 15, 16). With these combined
samples all the tools report varying amount of false posi-
tive detections, with largest number of false positives re-
ported by HMMcopy.
We calculated the sensitivity, FDR and the F1 score

for the results of each algorithm using the real-world cell
line data and less stringent criteria compared to the sim-
ulated data: the CNV overlap was required to be ≥ 50 %
and no length requirement for the detected CNV was
set (Fig. 5). In this setting, most of the algorithms de-
tected the gain in the chromosomes 12 and 17 of the ab-
normal samples, and hence the sensitivity of the
algorithms was similar (Fig. 5 a). BIC-seq2 had clearly
the best sensitivity with both the abnormal and normal
data, because BIC-seq2 was able to identify also some of
the smaller gains in the chromosomes 7 and 20. How-
ever, the loose criteria increased drastically the number
false positive with all the methods, producing universally
high FDR values and low F1 scores. In general, the FDR
results for the six tools were in accordance with the re-
sults obtained from the simulated data. Here as well
BIC-seq2 and FREEC reported fewer false positives,
whereas CNVnator and QDNAseq had the highest aver-
age FDR. However, QDNAseq achieved without the sex
chromosomes the lowest average FDR for the abnormal
data.
In addition, we inspected the performance using more

stringent criteria of ≥ 80 % CNVoverlap and at least 500
kbp CNV length requirement for the detected CNVs.
With these stringent criteria none of the algorithms de-
tected the only gain in the normal samples (Supplemen-
tary Fig. 17). With the length requirement of at least 500
kbp we found QDNA-seq without the sex chromosomes
to be the best tool, achieving the lowest and highest
average FDR and F1 score, respectively, followed by
BIC-seq2 and Canvas.
All the algorithms were run with the sex chromosomes

included. Additionally, QDNAseq was run separately
without the sex chromosomes, because QDNAseq ex-
cludes the sex chromosomes by default. The analysis of
the simulated data showed that QDNAseq achieved one
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of the best sensitivities in the comparison (Fig. 1 and
Supplementary Fig. 1). However, with the real cell line
data the sensitivity or QDNAseq was considerably lower
when the sex chromosomes were included compared to
when they were not included.
The results that we discussed above were calculated

using rounded copy number values, i.e. no distinction
between homozygous and heterozygous CNVs was
made. Moreover, the small gains in the chromosome 7
and 20 might be spurious, and we wanted to focus on
the larger CNVs, which is why we also discarded the
normal samples and included only the abnormal samples
for the next step. We compared the methods further by
varying three evaluation parameters (Fig. 6): rounded
copy number value (yes or no), minimum overlap (50 or

80 %), and minimum CNV length (no restriction (0), ≥
0.5 Mbp or ≥ 2 Mbp). When evaluating the CNVs by
their exact copy number, no impact on the sensitivity,
FDR or the F1 score was observed for five of the six
tools, HMMcopy being the only exception. With the
loosest criteria (50 % overlap and ≥ 2 Mbp length), FREE
C and QDNAseq without the sex chromosomes were
the best-performing methods based on the F1 scores.
Unlike QDNAseq, FREEC was also able to achieve per-
fect average F1 score with the overlap of 80 %, which is
why we considered it the best method of the cell line
benchmarking. BIC-seq2 found some false positives,
which is why it was slightly worse than the two methods.
As in the simulation, CNVnator produced a high num-
ber of false positives, which is again mainly attributable

Fig. 4 Visualization of the CNVs detected in the cell line data with the six algorithms along with the array-based benchmark CNVsin the
respective chromosomal locations. a Karyotypically abnormal (H9-AB) and b normal (H9-NO) variants of the human embryonic stem cell line H9
were analysed. Deletions are marked in red and gains in blue. The bottom part of the visualization depicts the depth of read coverage at each 50
kbp window
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to the false homozygous deletions in the centromere re-
gions. Canvas achieved the lowest average sensitivity
among the methods and moderate FDR, explaining the
lower F1 scores.
The CNV detection methods have differences in how

they handle the centromeres, affecting the evaluation of
the large gain in the chromosome 12. The SNP array,
Canvas and QDNAseq predicted that there was a copy
number neutral gap in the centromere region, whereas
FREEC, BIC-seq2 and HMMcopy identified the gain as
one complete segment spanning across the centromere.
Our approach was to treat the SNP array as the ground
truth and no changes were made to its CNV list besides
the size filtering. The real CNV might actually follow the
whole CNV structure and not the segmented structure,
which is why the wrong methods might be penalized for
the centromere. However, this was not a significant issue
in our comparison due to the small size of the centromere
and our comparison approach that penalized for the re-
dundant segmentation based on the size of the gaps.

Finally, we compared our results to the previous
karyotyping experiment with KaryoLiteTM BoBsTM
assay [9]. That experiment found only a single large gain
in the chromosome 12 for the H9 cell line, which corre-
sponds to the same gain detected using both the SNP
array data and all six algorithms.

Running time, memory requirement and failure rate
A computer cluster node with 16 Intel(R) Xeon(R) CPU
E5-2670 at 2.60GHz cores and 64 GB of random-access
memory (RAM) was used to perform the analyses in this
study. All the algorithms were run using 20 GB of RAM.
If the algorithm workflow included transforming align-
ment BAM files into other formats (e.g. hits or wig),
then the time used for this was included in the total run-
ning time. We measured the running time for each algo-
rithm while running the four cell line samples (H9-AB-
p113, H9-AB-p116, H9-NO-p38 and H9-NO-p41) with
the same parameters as were used in the evaluation.

Fig. 5 Performance evaluation of the six algorithms using the cell line data with the criteria of ≥ 50 % overlap and no minimum length
requirement for the detected CNVs. a, d True positive rate (TPR), b, e False discovery rate (FDR), and c, f F1 score of the CNV detections. The red
and blue dots depict the abnormal and normal samples, respectively
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There were considerable differences in the running
times, HMMcopy being clearly the fastest algorithm and
BIC-seq2 the slowest (Table 2). The slowness of BIC-
seq2 is attributable to the computationally demanding
normalization step, accounting for 99.9 % of the run
time. In terms of the real maximum memory consump-
tion, FREEC and Canvas were the lowest and highest
memory consumers, respectively.
The failure rates at each coverage was estimated by

calculating the proportion of the runs in the simulation
experiment that failed to complete. All of the algorithms
had zero failure rate with read coverages ≥ 0.01x. With
lower coverages BIC-seq2 was the least stable algorithm,
followed by Canvas and then FREEC. (Supplementary
Table 4). We investigated the error messages to try to
discover what caused the failure of each method. BIC-
seq2 failed during fitting the Generalized Additive
Model using the mgvc R package, because there was
“not enough data to do anything meaningful”, suggesting

that it was not designed for coverages that low. For Can-
vas we were unable to find a potential cause, but the
issue was that it generated empty VCF files with only
headers. This is unusual behavior by Canvas, because
normally the VCF file includes also the copy number
neutral segments. Regarding FREEC, its error was related
to fitting the linear regression and the expectation-
maximization models.

Discussion
We have performed a comparative analysis to evaluate
the performance of six CNV detection algorithms (BIC-
seq2, Canvas, CNVnator, FREEC, HMMcopy, QDNA-
seq) using ultra-low-coverage (0.0005-0.8x) WGS data.
These tools were selected because they are commonly
used either based on the number of citations or the
number of downloads of the tool. We only selected one
tool as representative when several tools work under a
similar functioning principle, e.g. QDNAseq and CNA-
norm [30] both utilize circular binary segmentation in
window segmentation. Furthermore, we included only
the tools that do not require an external control sample
and thus did not include tools such as CNV-seq [31],
VarScan2 [32], TitanCNA [33] or WisecondorX [18].
From the selected tools BIC-seq2, FREEC, HMMcopy
and Canvas can be optionally used with a control sample
to produce a copy number ratio between the test and
control samples, whereas CNVnator only processes indi-
vidual samples against the reference genome and
QDNAseq automatically includes a general control sam-
ple (bin annotation).

Fig. 6 Performance evaluation of the six algorithms using the combined abnormal cell line samples while varying three evaluation parameters:
rounded copy number (CN) value (yes or no), minimum overlap (50 or 80 %) and minimum CNV length (no restriction (0), ≥ 0.5 Mbp or ≥ 2
Mbp). a True positive rate (TPR), b False discovery rate (FDR), and c F1 score of the CNV detections for each of the six tools

Table 2 Mean and standard deviation (SD) of the running times
in seconds and maximum memory consumption for each
algorithm

Algorithm Running time (s) Max RSS (MB)

BIC-seq2 8389 ± 1222 3753 ± 0

Canvas 764 ± 9 10,933 ± 16

CNVnator 543 ± 2 7288 ± 1

FREEC 168 ± 2 1 ± 0

HMMcopy 69 ± 5 99 ± 0

QDNAseq 105 ± 1 287 ± 50
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All of the selected tools were read depth based algo-
rithms. They all share a very similar workflow, consisting
of four main steps. In the first step read alignments were
counted within genomic windows (or bins) of a certain
size that were either selected by the user or dynamically-
determined by the algorithm. Some algorithms (here
only Canvas), however, fix the number of read align-
ments per window instead, meaning the window size it-
self varies. In the second step, systematic biases from the
counts are removed. The two principal causes of system-
atic biases in the read alignment efficiency are the local
GC-content and mappability of the different genomic re-
gions [34]. Some methods aim to account for these by
using the reference genome to determine how much
each window is likely to be affected by these factors and
then adjusting the window-wise count values accord-
ingly. In the third step, segmentation of the counts into
homogeneous regions with highly-similar copy numbers
is performed. Segmentation is typically performed by ad-
vanced machine learning, signal processing or statistical
methods that are used to infer which windows are part
of the same CNV. Additionally, Canvas and QDNAseq
used blacklisting to filter out problematic regions. In the
final step, a copy number value was assigned to each
segment. Some algorithms (e.g. Canvas) also generated a
confidence estimate or p-value for each CNV, typically
by testing whether mean read depth or ratio of a
segment differed from the genomic average. All the six
algorithms were also coupled with convenient
visualization functions that can be used in illustrating
the effect of bias correction or in the interpretation of
the results.
Based on our evaluation, BIC-seq2 and FREEC were

the two best-performing tools. With the cell line data
FREEC was the best algorithm with only a narrow mar-
ginal to the next best-performing tool (BIC-seq2). How-
ever, BIC-seq2 outperformed all other tools with the
simulated data and was the only algorithm that could ac-
curately detect CNVs in the sex chromosomes. Both
FREEC and BIC-seq2 performed well even on extremely
low coverages (0.01-0.1x) in the simulated data. The
varying window size affected BIC-seq2 performance
more than FREEC, but both tools performed better
when using short (100 bp to 200 kbp) rather than long
window sizes. Since BIC-seq2 is run in two steps, with
the normalization step being considerably slow, it was
clearly the slowest of the six tools.
Many methods produced strikingly large numbers of

false positive detections especially when smaller CNVs
were detected. On the other hand, both the sensitivity
and FDR improved when assessing the detection of large
CNVs (length being millions of base pairs). This is in
line with previous studies that have concluded that large
CNV detection from 1× coverage WGS data is an

efficient approach and even outperforms array-based
CNV analysis [35]. It should be noted that for some of
the methods, the number of false positives can be poten-
tially decreased by improving the filtering that excludes
problematic regions. CNVnator would considerably
benefit from blacklisting centromere regions, whereas
QDNAseq would benefit from disabling some of the fil-
ters that cause copy number neutral gaps to the CNVs
in the autosomes and false positives to the sex
chromosomes.
CNVs in sex chromosomes have many clinical implica-

tions. Surprisingly large variability was observed in the
algorithms’ ability to identify CNVs in the sex chromo-
somes X and Y. BIC-seq2 accurately detected the two
simulated CNVs in sex chromosomes and thus makes it
suitable for karyotyping and other applications where
the ability to detect CNV regions in chromosomes X
and Y is important.
HMMcopy performed well in a previous comparative

study, where somatic CNVs were detected from both
simulation and primary tumor data [15], ranking fourth
in the simulation data and first in the primary tumor
data. In our analysis, HMMcopy managed to detect the
two largest gains without producing excess false positive
detections. It was also the fastest to run among the com-
pared algorithms. However, HMMcopy did not separate
well between homozygote or heterozygote CNVs. An-
other study found CNVnator to perform best [36]. In
our analysis CNVnator was able to detect the two largest
array-validated duplications, but many additional unval-
idated deletions were simultaneously detected. When
using simulated data, the algorithm was among the
worst-performing tools due to the high number of false
positives. However, the sensitivity of CNVnator im-
proved with high-coverage data (0.8×). Both of the previ-
ous studies have used much higher coverage than was
used here and thus CNVnator may be more suitable for
high-coverage data. Canvas performed well in a previous
comparative analysis where data with much higher
coverage (40–80×) were used [21]. Here, Canvas started
to raise errors with the lower coverages. Canvas was ac-
curate with the simulated data when small CNVs were
filtered out (Supplementary Fig. 1), but with the cell line
data its performance was moderate.
We acknowledge that the simulated data we generated

was not perfectly realistic. This might cause issues in the
comparison, because many methods correct the data for
the local GC content and mappability. The varying
mappability is taken into account to some degree, which
is visible from the genomic map visualization where
regions with lower read depth are present near the cen-
tromeres (Fig. 2). However, the impact of these con-
founding factors decreases when we consider larger
CNVs with larger window sizes. It should also be noted
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that many of the methods that apply the corrections still
performed excellently with the simulated data, such as
FREEC and BIC-seq2. However, we cannot rule out the
possibility that some of the tools would benefit from
more optimally simulated data.
It is also important to mention that some of the

methods considered in this comparison were not origin-
ally designed for germline CNV detection. The results
suggested that the tools that were designed for tumor
samples (HMMcopy and QDNAseq) exhibited, on aver-
age, inferior performance. However, we included them
into our comparison, because they were designed for de-
tecting large CNVs and they can, according to the devel-
opers, still be used with other sample types as well.
Although QDNAseq achieved high sensitivity with the
simulated data, its sensitivity decreased for the real cell
line data when the sex chromosomes were included.
This could be attributable to the CGHcall component of
QDNAseq, which was originally designed for array data.
According to the developers, CGHcall also benefits from
analyzing multiple samples simultaneously, but this is
not always practical in CNV detection where experi-
ments with only one sample are not uncommon.
A common challenge in bioinformatics methods com-

parisons is that the methods have often many hyperpara-
meters, whose tuning can change the results. Here, we
compared the methods using their default parameters
and recommendations given by the developers, because
this is the most common approach by the users. We ob-
served that for most parameters there were no instruc-
tions on how to adjust them for a certain sequencing
read depth. However, the window size was considered
an important parameter in the present work, as it dir-
ectly affects the size of the CNVs that can be identified.
For this reason, we adjusted the window size for each
method that has no automated method for optimizing
the window size for a specific read depth. Although it
could potentially provide new interesting insights into
the methods, if their different parameters were opti-
mized in a comprehensive manner, addressing this was
beyond the scope of this study.
Furthermore, many of the tools were not readily usable

with our 2 × 150 bp sequencing setup (BIC-seq2, FREEC,
HMMcopy and QDNAseq). This required us to generate
a new mappability track using GEMtools, instead of be-
ing able to use the default tracks provided by the tools.
The user can also circumvent this by trimming the raw
reads shorter using tools like Trimmomatic, which is
what we did for QDNAseq, because its bin annotation
needs to be generated based on a set of multiple control
samples with the same read chemistry. However, the
drawback of this approach is that it decreases the accur-
acy of the read alignment, and hence it could decrease
the accuracy of the CNV detection.

In addition to the detection of large CNVs in hESCs,
accurate detection of large CNVs from ultra-low-
coverage WGS data can have many other potential
applications, e.g. in prenatal diagnostics. However, the
suitability and performance of the CNV detection
methods coupled with ultra-low-coverage WGS in the
other application fields, such as identifying sex chromo-
some anomalies, requires further studies.

Methods
The main steps of our comparison approach are shown
in Fig. 1 and described here in more detail.

Data sets
In this work, we used simulated WGS data as well as
WGS data from hESC samples to evaluate the perform-
ance of the CNV detection tools.

Simulated data
To investigate the ability of the algorithms to identify
CNVs in sex chromosomes, and to also acquire a more
genuine ground truth for the purpose of benchmarking,
we created simulated WGS data. The RSVSim v1.18.0
was used to create a FASTA reference (Hg19) with the
CNVs, followed by wgsim v1.6 to generate 2 × 150
length short reads using the reference. We generated
10 million read pairs with wgsim, which equals to 1x
depth of coverage (before filtering). We aligned the reads
to the simulated FASTA reference using BWA-mem
v0.7.16a and extracted reads mapped in proper pairs and
with mapping quality of at least 30. We included all
autosomal and sex chromosomes into this simulated
dataset. We did not differentiate between homozygous
and heterozygous CNVs, but considered only two types
of CNVs, deletions and duplications, in our evaluation
(Supplementary Table 1).

Human pluripotent embryonic stem cell line H9 sample
preparation
Karyotypically normal (H9.N) and abnormal (H9.AB)
sublines of human pluripotent embryonic stem cell line
H9 from WiCell Research Institute, Inc [37] were used
in this study. These hESC lines were expanded for the
experiments on Matrigel-coated cell culture plates in
mTeSR1 medium (Stem Cell Technologies) as previously
described [38, 39]. The H9 cells with normal karyotype
were harvested for the analysis at passages 38 and 41
and karyotypically-abnormal cells at passages 113 and
116. The cells were lysed in Qiagen RLT buffer by pass-
ing through syringe and 21G needle for five times. The
genomic DNA was isolated with Qiagen Allprep
miRNA/RNA/DNA Universal kit according to manufac-
turer’s instructions. The quality and quantity of the
DNA was analyzed with Nanodrop and Qubit 2.0, and
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fragment size determined with 2 % SYBR Safe E-gel (all
from Thermo Fisher Scientific).

Library preparation and low-coverage sequencing
The samples were prepared for sequencing in two tech-
nical replicates. One nanogram of genomic DNA was
used as a starting material for the library preparation.
The libraries were prepared with Illumina Nextera XT
DNA kit according to manufacturer’s instructions. The
quality of the libraries was determined with Agilent 2100
Bioanalyzer. The libraries were sequenced in one flow
cell with Illumina MiSeq Next-Generation Sequencer
with 2 × 150 bp chemistry.

Sequencing data processing
Quality control of the raw sequence data was performed
using FastQC v0.11.4 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Alignment of the reads
was done with BWA-mem v0.7.16a [40] against the
human reference genome hg19. We used the older refer-
ence, because it is more commonly supported by CNV
detection tools (e.g. QDNAseq). The uniquely-aligned
reads were extracted for the downstream analysis with
SAMtools v1.6 [41].
The replicate samples (four replicate samples for the

abnormal samples H9-AB-p113 and H9-AB-p116, and
two replicate samples for normal H9-NO-p38 and H9-
NO-p41) were analyzed both individually and as com-
bined. In the combined samples the BAM files were
merged as follows: replicates 1 and 2 were merged
resulting in four samples H9-AB-p113, H9-AB-p116,
H9-NO-p38 and H9-NO-p41. Finally, all the eight repli-
cate samples for H9-AB and four replicate samples for
H9-NO were combined as one sample, respectively
(Supplementary Table 2). Read coverages were calcu-
lated according to the Lander/Waterman equation [42]
based on the number of bases, which yielded 0.67x
coverage for the abnormal sample and 0.36x coverage
for the normal sample (Supplementary Table 2).

Karyotyping and SNP microarray-based validation
The number and shape of chromosomes of the samples
were determined, i.e. karyotyped, using G-banding and
KaryoLiteTM BoBsTM (Perkin Elmer) methods [9]. The
karyotypes were validated with Illumina Infinium
CoreExome-24 v1.1 BeadChip according to the manu-
facturer’s instructions.
The genotyping data were analyzed using Illumina’s

GenomeStudio v2.0 software and its CNV Analysis Plu-
gin was used to detect the CNVs for each sample separ-
ately. The software detects the CNVs based on the
relative intensity shifts between breakpoints along the
chromosomal segments, and the cnvPartition algorithm
is used to calculate the copy numbers and their

associated confidence scores [43]. The CNVs of ≥ 500 kb
were included in a benchmarking dataset (Supplemen-
tary Table 3).

CNV detection algorithms
We selected six popular CNV detection algorithms for
our comparison, namely BIC-seq2, Canvas, CNVnator,
FREEC, HMMcopy, and QDNAsEq. Below, we give a
brief overview of each CNV detection algorithm used in
this study, with key features summarized in Table 1.
BIC-seq2 has two main parts that are ran separately,

namely BIC-seq2-norm and BIC-seq2-sEq. BIC-seq2-
norm performs the mappability and GC-content correc-
tions at single base level. In the BIC-seq2-seq part, the
Bayesian information criterion (BIC)-based segmentation
is performed where similar neighboring bin pairs are
merged in an iterative fashion. The default bin size is
100 bp and can be adjusted by the user.
Canvas is developed by the sequencing instrument

manufacturer Illumina, Inc. and it is included in the
company’s Isaac whole-genome sequencing workflow. In
addition to the germline WGS workflow that we
employed, the tool also supports three other modes:
somatic CNV analysis based on WGS data and tumor/
normal sample pair analysis of targeted sequencing data.
Both GC-content correction and mappability correction
are supported. Instead of selecting a fixed window size,
the windows are generated based on a number of read
alignments per window (default is 100), which leads to
variable-sized windows. Haar wavelet segmentation is
used by default, but circular binary segmentation (CBS)
is also supported. Loss of heterozygosity (LOH) regions
are reported along with CNVs.
CNVnator functions without control sample. GC-

correction is available, while mappability correction is
not supported. The window size is determined by the
user and segmentation is based on the mean-shift
technique.
FREEC is a tool that can be used to detect CNVs, but

also LOH regions from whole-genome sequencing
(WGS) or whole-exome sequencing (WES) data. A con-
trol sample is required for WES data, but is optional for
WGS data. GC-content and mappability correction are
recommended when no control sample is used. Window
size can be set by the user or determined dynamically by
the algorithm. A least absolute shrinkage and selection
operator (LASSO)-based algorithm is used for the
segmentation.
HMMcopy supports CNV analysis with and without

control sample and the window size needs to be set by
the user. Both GC-content and mappability correction
are supported, but not strictly required. A hidden Mar-
kov model (HMM) based approach is used for the seg-
mentation and copy number assignment. HMMcopy is
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described as a CNA detection tool for tumour samples,
but it is also applicable to other sample types.
QDNAseq is different compared to the others in the

sense that it requires control data. The control data are
used to generate the bin annotation, which is specific to
certain window size, read length and reference genome.
The bin annotations are used to correct for errors in the
GC content and the mappability. The user can either
download already available bin annotations that were
generated based on a a set of control samples or gener-
ated own. CBS algorithm is applied for segmentation
and the identification of the abnormal copy number re-
gions. The performance of the method has been previ-
ously demonstrated on low-coverage data (0.1x) [25].
We used the default parameters for all the algorithms

with two exceptions. First, since QDNAseq does not in-
clude sex chromosomes by default, we ran it with and
without sex chromosomes. The analysis with sex chro-
mosomes was performed as instructed in the R package
manual of QDNA-sEq. Second, since half of the algo-
rithms (CNVnator, QDNAseq, HMMcopy) have no de-
fault value for the window size and since the window
size can be altered for all the tools except for Canvas, we
investigated how the choice of the window size affected
the performance. We tested five different window sizes
(100, 200, 500, 1000, and 2000 kbp) when analyzing the
simulated data. However, for QDNAseq we tested differ-
ent window sizes that were avaible in the bin annotation
of the R package (50, 100, 500 and 1000 kbp). Addition-
ally, since FREEC can also adjust the window size auto-
matically based on the coverage, and BIC-seq2 has a
default value (100 bp), we also included their results into
our comparison.

Algorithm evaluation
In benchmarking, we used three statistical measures:
sensitivity, i.e. TPR, false discovery rate (FDR) and F1
score. The true positive (TP) and false negative (FN)
CNV detections were defined by comparing the ground
truth CNVs against the inferred CNVs. First, for every
CNV in the ground truth we searched all CNVs with the
same copy number in the inferred CNV list that over-
lapped the ground truth CNV by at least one base. Next,
we calculated the ratio of how many bases the two gen-
omic region sets overlapped to the length of the ground
truth CNV. A threshold was set for this quantity to clas-
sify the CNV as either TP or FN, which was set to 60
and 80 % for loose and stringent criteria, respectively, for
the simulated data. Every inferred CNV that did not
overlap with any of the ground truth CNVs were
counted as false positive (FP). In addition to the require-
ment for minimum overlap we filtered CNVs based on
their length. CVNs that were shorter than 0.5 Mbp
(rounded) were not considered. The results for each

algorithm were visualized in a genome map to see how
well the inferred and ground truth CNVs are in agree-
ment. To generate the read-depth-per-window counts
for the visualizations, we used BEDTools v2.17.0 [44].
To investigate how the coverage in combination with

the different window sizes affected the results, we tested
nine different coverages (0.8x, 0.5x, 0.2x, 0.1x, 0.05x,
0.01x, 0.005x, 0.001x, and 0.0005x) by downsampling
simulated BAM file with Picard’s DownSampleSam func-
tion [45]. To account for randomness in downsampling
we generated 20 different random subsets for each
coverage. For each algorithm and combination of cover-
age and window size the sensitivity, FDR and F1 score
were calculated.
When the mappability tracks matching to our read

chemistry (2 × 150 bp) were not publicly available, the
tracks were generated with the GEMtools program
v1.7.1 [46]. In addition, because the bin annotations that
are included in the QDNAseq R package are based on
50 bp sequencing chemistry, we trimmed the 150 bp
reads to 50 bp length using the crop utility of Trimmo-
matic v0.39 [47].

Abbreviations
BAMBAM: Binary alignment map; BIC: Bayesian information criterion;
CBS: Circular binary segmentation; CNV: Copy number variation; FDR: False
discovery rate; FFPE: Formalin-fixed paraffin embedded; hESC: Human
embryonic stem cell; HMM: Hidden Markov model; LASSO: Least absolute
shrinkage and selection operator; LOH: Loss of heterozygosity; TPR: True
positive rate; WES: Whole-exome sequencing; WGS: Whole-genome
sequencing
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Additional file 1: Supplementary Figure 1. Performance evaluation of
the six copy number variation (CNV) algorithms using the simulated data
with the loose criteria: at least 60% overlap between the inferred and
ground truth CNV segments and inclusion of ≥ 0.5Mbp CNV segments.
A) True positive rate(TPR), B) False discovery rate (FDR), and C) F1 score of
the CNV detections achieved by the different tools when the read
coverage is varied. The data points are based on the window size
comparison results (Supplementary Figures 2-6), from which we
selected the window settings that provided the highest F1 scores by the
algorithms at each read coverage. Error bars denote the standard error of
the results produced with 20 different random subsets. Supplementary
Figure 2. Analysis of how the window size affects the performance of
CNVnator at different read coverages with simulated data. A) True
positive rate (TPR), B) False discovery rate (FDR), and C) F1 score. The hard
criteria (minimum overlap of 0.8 and no filtering by size) were used in
the analysis. Supplementary Figure 3. Analysis of how the window size
affects the performance of BICseq2 at different read coverages with
simulated data. A) True positive rate (TPR), B) False discovery rate (FDR),
and C) F1 score. Default window size is 0.1 kbp. The hard criteria
(minimum overlap of 0.8 and no filtering by size) were used in the
analysis. Supplementary Figure 4. Analysis of how the window size
affects the performance of FREEC at different read coverages with
simulated data. A) True positive rate (TPR), B) False discovery rate (FDR),
and C) F1 score. The coefficient of variation of 0.05 is the default value of
the built-in method of FREEC for selecting the window size based on the
coverage. The hard criteria (minimum overlap of 0.8 and no filtering by
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size) were used in the analysis. Supplementary Figure 5. Analysis of
how the window size affects the performance of HMMcopy at different
read coverages with simulated data. A) True positive rate (TPR), B) False
discovery rate (FDR), and C) F1 score. The hard criteria (minimum overlap
of 0.8 and no filtering by size) were used in the analysis. Supplementary
Figure 6. Analysis of how the window size affects the performance of
QDNAseq at different read coverages with simulated data. A) True posi-
tive rate (TPR), B) False discovery rate (FDR), and C) F1 score. The hard cri-
teria (minimum overlap of 0.8 and no filtering by size) were used in the
analysis. Supplementary Figure 7. Visualization of the CNVs detected in
the H9-AB-p116 dataset using the six algorithms along with the array-
based benchmark CNV segments in the respective chromosomal loca-
tions. Deletions are marked in red and gains in blue. The bottom part of
the visualization depicts the depth of read coverage at each 50 kbp win-
dow. The visualization includes every CNV found with each tool using
the window size that yielded the best performance for the simulated
data at coverage of 0.1x (see Supplementary Figures. 2-6). Supple-
mentary Figure 8. Visualization of the CNVs detected in the H9-AB-p113
dataset using the six algorithms along with the array-based benchmark
CNV segments in the respective chromosomal locations. Deletions are
marked in red and gains in blue. The bottom part of the visualization de-
picts the depth of read coverage at each 50 kbp window. The
visualization includes every CNV found with each tool using the window
size that yielded the best performance for the simulated data at coverage
of 0.1x (see Supplementary Figures. 2-6). Supplementary Figure 9.
Visualization of the CNVs detected in the H9-p38 dataset using the six al-
gorithms along with the array-based benchmark CNV segments in the re-
spective chromosomal locations. Deletions are marked in red and gains
in blue. The bottom part of the visualization depicts the depth of read
coverage at each 50 kbp window. The visualization includes every CNV
found with each tool using the window size that yielded the best per-
formance for the simulated data at coverage of 0.1x (see Supplemen-
tary Figures. 2-6). Supplementary Figure 10. Visualization of the CNVs
detected in the H9-p41 dataset using the six algorithms along with the
array-based benchmark CNV segments in the respective chromosomal lo-
cations. Deletions are marked in red and gains in blue. The bottom part
of the visualization depicts the depth of read coverage at each 50 kbp
window. The visualization includes every CNV found with each tool using
the window size that yielded the best performance for the simulated
data at coverage of 0.1x (see Supplementary Figures. 2-6). Supple-
mentary Figure 11. Visualization of the CNVs detected in all the chro-
mosomes in the combined sample H9-AB by the six algorithms along
with the array-based benchmark CNV segments in the respective
chromosomal locations. Deletions are marked in red and gains in blue.
The bottompart of the visualization depicts the depth of read coverage
at each 50 kbp window. The visualizationincludes every CNV found with
each tool using the window size that yielded the best performancefor
the simulated data at coverage of 0.1x (see Supplementary Figures. 2-
6). Supplementary Figure 12. Visualization of the CNVs detected in all
the chromosomes in the combined sample H9-NO by the six algorithms
along with the array-based benchmark CNV segments in the respective
chromosomal locations. Deletions are marked in red and gains in blue.
The bottom part of the visualization depicts the depth of read coverage
at each 50 kbp window. The visualization includes every CNV found with
each tool using the window size that yielded the best performance for
the simulated data at coverage of 0.1x (see Supplementary Figs. 2-6).
Supplementary Figure 13. Visualization of the CNVs detected in all
the chromosomes in the combined sample H9-AB-p116 by the six algo-
rithms along with the array-based benchmark CNV segments in the re-
spective chromosomal locations. Deletions are marked in red and gains
in blue. The bottom part of the visualization depicts the depth of read
coverage at each 50 kbp window. The visualization includes every CNV
found with each tool using the window size that yielded the best per-
formance for the simulated data at coverage of 0.1x. Supplementary
Figure 14. Visualization of the CNVs detected in all the chromosomes in
the combined sample H9-AB-p113 by the six algorithms along with the
array-based benchmark CNV segments in the respective chromosomal lo-
cations. Deletions are marked in red and gains in blue. The bottom part
of the visualization depicts the depth of read coverage at each 50 kbp
window. The visualization includes every CNV found with each tool using

the window size that yielded the best performance for the simulated
data at coverage of 0.1x (see Supplementary Figs. 2-6). Supplemen-
tary Figure 15. Visualization of the CNVs detected in all the chromo-
somes in the combined sample H9-NO-p41 by the six algorithms along
with the array-based benchmark CNV segments in the respective
chromosomal locations. Deletions are marked in red and gains in blue.
The bottom part of the visualization depicts the depth of read coverage
at each 50 kbp window. The visualization includes every CNV found with
each tool using the window size that yielded the best performance for
the simulated data at coverage of 0.1x (see Supplementary Figs. 2-6).
Supplementary Figure 16. Visualization of the CNVs detected in all the
chromosomes in the combined sample H9-NO-p38 by the six algorithms
along with the array-based benchmark CNV segments in the respective
chromosomal locations. Deletions are marked in red and gains in blue.
The bottom part of the visualization depicts the depth of read coverage
at each 50 kbp window. All chromosomes included. Combined sample
H9-NO-p38. The visualization includes every CNV found with each tool
using the window size that yielded the best performance for the simu-
lated data at coverage of 0.1x (see Supplementary Figs. 2-6). Supple-
mentary Figure 17. Performance evaluation of the six algorithms using
the cell line data with the stringent criteria: at least 80% overlap between
the inferred and array-validated CNV segments and ≥0.5Mbp CNV length
requirement for the detected CNV segment. A,D) True positive rate, B,E)
False discovery rate and C,F) F1 score of the CNV detections. The red and
blue dots depict the abnormal and normal samples, respectively. With
each tool we used the the window size that yielded the best perform-
ance for the simulated data at coverage of 0.1x (see Supplementary
Figs. 2-6). Supplementary Table 1. Simulated CNV segments that were
used to evaluate the tools. Supplementary Table 2. Number of bases
and read coverage of the cell line samples for each sample individually
and for the combined samples. Supplementary Table 3. Array-based
CNV segments ≥500 kbp used to evaluate the tools. Supplementary
Table 4. Failure rates for different read coverages with varying window
size settings and 20 different down samplings using simulated data.
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