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Abstract: The use of synthetic antibody libraries and phage displays provides an efficient and robust
method for the generation of antibodies against a wide range of targets with highly specific binding
properties. As the in vitro selection conditions can be easily controlled, these methods enable the
rapid generation of binders against difficult targets such as toxins and haptens. In this study, we
used deoxynivalenol mycotoxin as a target to generate anti-idiotype-antibodies with unique binding
properties from synthetic antibody libraries. The binding of the selected anti-idiotype antibodies
can be efficiently inhibited with the addition of free isoforms of deoxynivalenol. The antibody was
consecutively used to develop deoxynivalenol-specific ELISA and TRF-immunoassays, which can
detect deoxynivalenol and two of the most common metabolic isoforms in the range of 78–115 ng/mL.

Keywords: antibody library; phage display; mycotoxin; deoxynivalenol; immunoassay

Key Contribution: This study describes the development of an antibody with very unique binding
specificity towards the most prevalently occurring metabolic isoforms of deoxynivelanol.

1. Introduction

Synthetic antibody libraries have been proven to be a powerful tool for the develop-
ment of binders against low-molecular weight compounds [1]. Although immunization-
based methods are still considered to be the “golden standard” of antibody development,
the use of synthetic antibody libraries as a source of binders circumvents some of the
most common problems in the antibody generation process, mainly related to the toxicity
or lack of immunoresponse [2]. In addition, as the selection conditions of the antibody
generation process can be easily controlled, it provides a rapid method for the development
of antibodies with various binding properties. The intrinsic antigenicity of antibodies
makes it possible to generate binders which recognize regions of another antibody [3].
These anti-idiotype antibodies (anti-Id-Ab) are particularly useful when the anti-idiotypic
interaction is located in the proximity of the antigen-binding site. Anti-Id-Abs, which
either interfere or are dependent on the presence of the free antigen, have been applied for
the detection of various molecular interactions without the need of chemically modified
analytes [4–6].

As the interaction is primarily based on the binding of the two antibodies, anti-id-
Abs have been found to be especially useful in the detection of toxic compounds, such
as mycotoxins [7] and cyanotoxins [8]. In this study, deoxynivalenol (DON) was used
as a model antigen for the generation of anti-Id-Abs with phage display selections. De-
oxynivalenol belongs to a group of structurally diverse mycotoxins mainly produced
by Fusarium species molds (Figure 1). These mycotoxins, more specifically termed tri-
chothecenes, at high concentrations create a food safety hazard to humans and animals
as they are a common contaminate in field crops and dry food stuffs [9]. In addition to
the health hazards, mycotoxins decrease the overall yield and quality of crops, and as a
result create financial losses for the food producers [10]. The removal of trichothecenes
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from infected food products is difficult due to the small size and high stability of DON and
its metabolic derivatives 3-acetyldeoxynivalenol (3-AcDON) and 15-acetyldeoxynivalenol
(15-AcDON). This creates the need for a reliable and efficient detection method which is
suitable for field testing [11]. The development of such a simple and affordable assay for
the control of trichothecene levels in foodstuffs would create economic benefits for the food
manufacturers, and subsequently increase the overall quality of the affected food products.
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We describe the generation of anti-Id-Ab, which has specificity also towards the free
antigen. This broad-specificity antibody was used to develop an immunoassay using
two different detection methods and is capable of detecting DON and its most common
metabolic isoforms in the range of 78–115 ng/mL.

2. Results and Discussion

This study describes an efficient method for the generation of anti-Id-Abs with novel
binding properties from the synthetic antibody repertoire. Surprisingly, the binding of
the found anti-Id-Abs can be inhibited with the use different isoforms of the antigen. An
existing monoclonal antibody (10B5) in a complex with the free antigen deoxynivalenol
was used as the target in phage display selections. The selection pressure was directed
towards the recognition of the antigen binding site of the 10B5 antibody with the use of
depletive steps prior the addition of free DON to the selections. The aim was to generate
specificity solely towards the regions involved in the antigen-binding interaction. After
three selection rounds, antigen-specific enrichment could be observed from the phage
stock in a TRF-immunoassay (Figure 2a). From the third-round antibody population, 95
individual clones were screened, of which 72 (76%) were target (antibody/DON)-specific.
In addition, with 19 (26%) of the target-specific clones, the binding interaction of the
primary (10B5) and the screened anti-Id-Ab was inhibited >75% in the presence of soluble
DON (500 ng/mL). We selected one antibody (cDON_1) with the most interesting binding
properties for further analysis (Figure 2b). Interestingly, the cDON_1 can recognize DON
and the two metabolic isoforms, 3-AcDON and 15-AcDON, within the same affinity range
of 78–115 ng/mL (Figure 2c,d, Table 1). However, there is no specificity for the structurally
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related trichothecenes compounds, such as nivalenol (NIV), T-2 or HT-2 toxin. Based on
the immunoassay data and the structures of the common type A and B trichothecenes,
the cDON_1 antibody interacts with the antigen around the position C-4 (R2 in Figure 1).
The binding of DON or its isoforms to the antibody induces conformational changes in
the structure of cDON_1, which prevent the interaction with 10B5. The DON-cDON_1
interaction can be confirmed by the cross-reactivity profiles of the two antibodies: 10B5
does not detect the 15-AcDON isoform, which in turn inhibits the binding of cDON_1
with equal efficiency compared to the structurally related compounds DON and 3-AcDON
(Figure 2c,d).
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Figure 2. (a) Immunoreactivity of the phage pools isolated after selection rounds 2 and 3. The y-axis depicts the ratio of the
TRF europium signal to streptavidin background (S/B) with and without the presence of free DON (500 ng). (b) Screening
of individual anti-Id-Abs with a competitive immunoassay on a 96-well plate. The inhibition (%) with free DON was used
to select the antibody cDON_1 (C09, highlighted). (c) Inhibition curves of competitive ELISA using 10B5 Mab as a capture
and the scFv-BALP (cDON_1) as a tracer. Variable concentrations of DON, 3-AcDON and 15-AcDON. (d) Inhibition curve
of a competitive TRF-IA, where cDON_1 was used as a capture and 10B5 Mab as a tracer with variable concentrations of
DON, 3-AcDON and 15-AcDON.

Table 1. Cross-reactivity profile of the 10B5 and cDON_1 antibodies used in sandwich immunoassays
(ELISA and TRF-IA).

cDON_1
10B5 *

ELISA TRF-IA

Target Reactivity IC50
(ng/mL) Reactivity IC50

(ng/mL) Reactivity IC50
(ng/mL)

DON X 77.7 x 128 x 107
3-AcDON X 111.5 x 168 x 123.8
15-AcDON X 114.9 x 135 - -

NIV - - - - - -
T-2 - - - - - -

HT-2 - - - - - -

* Values obtained by electrochemical immunosensor with monoclonal DON-specific antibodies.
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In related studies, the inhibition of the anti-idiotypic binding interaction has been
described to be based either on the blocking of the binding site [12], or on molecular
mimicry of the target antigen [13]. However, the inhibition of the 15-AcDON isoform
confirms the 10B5-cDON_1 interaction to be more complex, and both antibodies to be
antigen-specific. This creates an interesting possibility for the generation of antigen-specific
binders without the laborious chemical conjugation and purification of the small target
antigens. In addition, with the lack of chemical conjugation reactions, which are often
carried out in harsh conditions, this method preserves the native structure of the antigen
and is also suitable for chemically labile molecules. Furthermore, this method could enable
the development of antibodies also against epitopes that are unavailable due to, i.e., a lack
of conjugation sites. The carrier protein specificity, a well-recognized problem for low-
molecular weight compounds [14], does not seem to interfere with the binding interaction
of DON and cDON_1 in the assay described here.

Anti-Id-Abs have been proven to be highly useful in the development of immuno-
chemical application for the detection of low-molecular weight contaminants from envi-
ronmental and food samples. Anti-Id-Abs have also been applied to develop extremely
sensitive immunoassays for the detection of haptenic structures [15]. The toxicity and low-
molecular weight of trichothecenes makes them a challenging target for the development
of antibodies with immunization-based methods. Anti-Id-Abs are an interesting alternative
for the detection of such toxic, low-molecular weight targets. However, the generation of
anti-Id-Abs remains challenging, and often requires the direct conjugation of the antigen to
the target antibody.

We describe a method for the rapid development of anti-Id-Abs, as well as a novel
detection method of the deoxynivalenol-specific antibody, deoxynivalenol, and its most
common derivatives based on an anti-idiotype antibody derived from the synthetic binder
repertoire. The binding interaction of the two antibodies can be subsequently inhibited
with the addition of free isoforms of DON.

3. Materials and Methods
3.1. Materials and Reagents

DELFIA series buffers, streptavidin and rabbit anti-mouse-coated microtiter plates
were purchased from Kaivogen Diagnostics (Turku, Finland). All measurements were
done with a Victor 1420–fluorometer from Perkin-Elmer (Turku, Finland). The magnetic
nanoparticles and magnetic bead concentrator were purchased from Dynal (Norway). The
mycotoxins nivalenol (NIV), Deoxynivalenol (DON), 3-Acetyldeoxynivalenol (3-AcDON),
15-Acetyldeoxynivalenol (15-AcDON), T-2 toxin and HT-2 toxin were purchased from
Biopure Guntramsdorf, Austria). Hyperphages were obtained from Thermo Fisher Sci-
entific (Waltham, MA, USA). The E. coli cell lines used for the sorting and expression
of the antibody libraries were purchased from Stratagene (La Jolla, CA, USA): BL21 (F-,
dcm, ompT, hsdS[rB− mB−], gal [malB+], K-12[λS]) and XL1-Blue (recA1, endA1, gyrA96,
thi-1, hsdR17, relA1, lac [F‘, TetR]). All microbiological reagents were prepared as de-
scribed in Sambrook et al. [16]. The single-chain alkaline phosphatase (scFv-ALP) fu-
sion proteins were purified with HisPur Ni-NTA spin columns Thermo Fisher Scientific
(Waltham, MA, USA). The ELISA substrate para-nitrophenylphosphate (pNPP) was ob-
tained from Sigma-Aldrich (St. Louis, MO, USA).

3.2. Biotinylation of Antibodies

The capture antibodies used in the immunoassays, 10B5 (100 µg) and cDON_1 (500 µg),
were mixed with the EtOH (99.5%) solution containing a 50× molar excess of biotin
isothicyanate (BITC, University of Turku). The pH of the reaction was adjusted with
carbonate buffer (0.5 M, pH 9.8) and incubated for four hours at RT. The excess biotin
was removed with two consecutive purifications through the NAP-5 column (Amersham
Bioscience, Buckinghamshire, UK). The concentration of the protein was determined with
Bradford reagent (BioRad, Hercules, CA, USA).
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3.3. Phage Display Selections

The synthetic antibody libraries used for the phage display selections have been
described in previous studies by Brockmann et al. [17] and Huovinen et al. [18]. The mouse
monoclonal antibody, 10B5, specific to DON, was a kind gift from Professor Christopher
Elliot, Queens University, Belfast, United Kingdom. The binding properties of the 10B5 in
Fab format have previously been described in Romanazzo et al. [19]. The phage display
selections were carried out with the following conditions: The biotinylated 10B5 IgG (20 µg)
was bound to M280 Streptavidin beads supplemented with DON (0.1 µg) for 1 h in rotation.
The beads were washed three times with TBT-0.1 buffer and 1 × 1012 tfu of library phages
were mixed with beads. Soluble mouse IgG (100 µg) unspecific to DON was added to
the reaction to deplete all phages binding to regions irrelevant to the antigen binding.
The reaction was incubated for 3 h at RT. The beads were washed five times with TBT-0.1
buffer and once with TSAT before elution with 10 µg/mL of trypsin for 30 min at RT. The
eluate was used to infect XL1-Blue cells in the exponential growth phase. The phages were
repropagated from the cells collected from the output plate as described in Ref. [20]. A total
of three selection rounds were performed whereby the amount of antigen was reduced to
half after each round.

3.4. Antibody Screening and Characterization

The screening of individual antigen-specific antibodies was done in single-chain
fragment variable (scFv) format, where the scFv was displayed on the surface of the
M13 bacteriophages. Individual colonies (n = 95) were picked from the output plate of
the third selection round. The cells were grown on a 96-well tissue microtiter plate in a
150 µL volume of Super Broth (SB) supplemented with 25 µg/mL of chloramphenicol,
10 µg/mL tetracycline and 0.1% glucose at +37 ◦C, 900 rpm for 6 h. After the incubation,
1 × 1010 tfu/mL of hyperphages were used to infect the cells for 30 min at 37 ◦C without
shaking. The overnight production of the phage-antibodies was done in a plate shaker set
at 900 rpm at +26 ◦C. The cells were removed with 4000 rpm centrifugation for 15 min at
+4 ◦C and 5 µL of the culture supernatant was used in the primary screening immunoassay.
The phagemid vector (pEB32x) was isolated from the antibodies showing the desired
binding properties with a Qiagen DNA miniprep kit according to the manufacturer’s
protocol. The isolated scFv-genes were cloned to the pLK06H and pLK04 [18] vectors for
the soluble expression of scFv-BALP (single-chain fragment variable fused to bacterial
alkaline phosphatase) and scFv proteins. The antibodies were produced in a 100 mL
culture of Bl21 cells as described previously [21]. The scFv fragment of the cDON_1
clone was produced in a larger scale fermentation in 4 L of SB and purified as described
previously [22].

3.5. Immunoassays

The immunoassay steps were carried out in 100 µL volume with slow shaking for 1 h
at room temperature and with four washes between each step. All samples were taken
in duplicates and the time-resolved fluorescence europium signal was measured with a
Victor 1420–fluorometer.

Immunoreactivity: The follow-ups on the enrichment of the antigen-specific phage
populations were performed on streptavidin plates with 20 ng/well of biotinylated 10B5-
Mab. After washes, the scFv-displaying phages were added in three replicas of
1 × 108 tfu/well with (500 ng) and without free DON. The bound phages were detected
with europium-labeled anti-VCSM13 antibody (5 ng/well).

Screening: The individual antibodies (scFv) displayed on phages were analyzed with
a competitive immunoassay. First, streptavidin-coated microtiter wells were coated with
20 ng of biotinylated 10B5-Mab. After washes, 10 µL of overnight-produced phage culture
was mixed with 90 µL of assay buffer containing either 0 ng or 500 ng of DON. From the
signal level difference, the inhibition (%) was determined for all individual clones. Based
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on the results we selected one clone (cDON_1) which had an inhibition of 96% in the
presence of DON for further studies.

ELISA: The competitive immunoassay for the characterization of the cDON_1 antibody
was performed as follows: biotinylated 10B5 (20 ng/well) was bound to streptavidin-
coated microtiter strips. After the washes five different concentrations ranging from 10 to
5000 ng/mL of soluble antigen (DON, 3-AcDON, 15-AcDON, NIV, T-2 and HT-2) were
added to the wells in combination with the reporter antibody. After the final washes,
the colorimetric reaction of BALP activity was carried out with the use of pNPP and the
absorbance at 405 was measured with a Victor 1420–fluorometer.

TRF-IA: The characterization of the cDON_1 antibody with TRF-IA was done as
follows: biotinylated cDON_1 (10 ng/well) was bound to streptavidin-coated microtiter
strips. After the washes five different concentration points ranging from 1 to 10000 ng/mL
of soluble antigen (DON, 3-AcDON, 15-AcDON, NIV, T-2 and HT-2) were added to the
wells in combination with the DON-specific monoclonal antibody 10B5. The bound 10B5
was detected with the use of europium-labeled rabbit anti-mouse (RAM, 10 ng/well) IgG.
The TRF europium signal was measured with a Victor 1420–fluorometer.

3.6. Data Management

The enrichment of the antigen specific phage-antibodies between each selection round
was inferred from the signal to background levels of the TRF-assay. The IC50 values for the
assays were determined with the use of Graphpad Prism 7 (GraphPad Software Inc., San
Diego, CA, USA).
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