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Despite the large computational costs of molecular docking, the default scoring functions
are often unable to recognize the active hits from the inactive molecules in large-scale
virtual screening experiments. Thus, even though a correct binding pose might be
sampled during the docking, the active compound or its biologically relevant pose is
not necessarily given high enough score to arouse the attention. Various rescoring and
post-processing approaches have emerged for improving the docking performance.
Here, it is shown that the very early enrichment (number of actives scored higher
than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even
8.7-fold by comparing the docking-based ligand conformers directly against the target
protein’s cavity shape and electrostatics. The similarity comparison of the conformers
is performed without geometry optimization against the negative image of the target
protein’s ligand-binding cavity using the negative image-based (NIB) screening protocol.
The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with
11 target proteins using benchmark libraries. By focusing on the shape/electrostatics
complementarity of the ligand-receptor association, the R-NiB is able to improve the early
enrichment of docking essentially without adding to the computing cost. By implementing
consensus scoring, in which the R-NiB and the original docking scoring are weighted for
optimal outcome, the early enrichment is improved to a level that facilitates effective drug
discovery. Moreover, the use of equal weight from the original docking scoring and the
R-NiB scoring improves the yield in most cases.

Keywords: molecular docking, docking rescoring, negative image-based rescoring (R-NiB), benchmarking,
consensus scoring

INTRODUCTION

Molecular docking is an in silico technique that samples potential binding poses of ligands flexibly
against the ligand-binding cavities of receptor protein structures. This ability to mimic ligand-
receptor recognition at the atom level can yield valuable insight on complex and experimentally
difficult to approach phenomena such as enzyme reactionmechanics or ligand-receptor association
especially when it is coupled to atomistic simulations.

The main interest for docking comes from its use in computer-aided drug discovery and
virtual screening experiments that aim to discover novel drug compounds from vast compound
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libraries—a process that ideally lowers the amount of costly
experimental testing. On the one hand, the docking algorithms
reproduce experimentally verified ligand binding geometries
with remarkable accuracy (Kitchen et al., 2004; Warren et al.,
2006; Kolb and Irwin, 2009; Meng et al., 2011). On the
other hand, anybody who has used docking on routine
basis can confirm that these successes are case-specific and
the methodology often fails to produce sufficient enrichment
(Ferrara et al., 2004; Mohan et al., 2005; Sousa et al., 2006;
McGaughey et al., 2007; Plewczynski et al., 2011). In part, this
hit-or-miss nature of docking is caused by the lack of relevant
3D structure data on the target proteins (Schapira et al., 2003)
or inadequacies of the ligand conformer sampling (Sastry et al.,
2013), but the other fundamental problem is the failure in scoring
the sampled docking solutions (Wang et al., 2003; Warren et al.,
2006; Plewczynski et al., 2011; Pagadala et al., 2017).

In other words, although the conformational space of the
ligand binding might be sampled exhaustively, the best binding
poses or the most potent compounds are not necessarily put
to the top of the ranking lists by the default scoring functions
(Wang et al., 2003; Ferrara et al., 2004; Cross et al., 2009;
Plewczynski et al., 2011). An experienced researcher might be
able to select the best pose out of 10 different conformers, but
the situation becomes quickly unattainable when dealing with
hundreds or thousands of compounds. The docking scoring
functions put a certain weight on the specific ligand-receptor
interactions such as hydrogen bonding, halogen bonding and π-
π stacking but also the internal energies of the ligand conformers
are considered. Despite the undeniable merits, these binding
favorability or energy assessments do not always work (Chen
et al., 2006; Cross et al., 2009), which means that the best pose
or, more relevantly, the active compound is frequently ignored in
the docking screening.

The docking solutions can be rescored after the fact to
increase the yield. This is done by reassessing the favorability
of the solutions utilizing a set of empirical binding descriptors
that put weight on different binding characteristics. In the
consensus scoring, a set of different scoring functions are
employed and together they produce better enrichment than
any of the functions accomplish alone (Charifson et al., 1999;
Clark et al., 2002; Oda et al., 2006). Tasking more than one
scoring methodology should in theory cover all the bases and,
furthermore, a mix of dissimilar functions should facilitate the
discovery of active hits from vast compound pools. The inherent
problem with the consensus rescoring, however, is that the
optimal settings are specific for each target. Accordingly, their
successful use with novel targets lacking benchmark test sets is
difficult to ascertain beforehand (Cheng et al., 2009).

In addition, performance enhancement might be produced
by docking the ligands with different software to improve the
sampling (Houston and Walkinshaw, 2013) or by optimizing
and estimating the binding poses using the Poisson–Boltzmann
or generalized Born and surface area continuum solvation
(MM/PBSA or MM/GBSA), free energy perturbation (FEP)
or solvated interaction energy (SIE) calculations (Bash et al.,
1987; Kollman et al., 2000; Onufriev et al., 2004; Naïm et al.,
2007; Guimarães and Cardozo, 2008; Sulea et al., 2011, 2012;

Genheden and Ryde, 2015; Virtanen et al., 2015; Juvonen et al.,
2016). Because these post-processing steps require a lot of
extra computing, it limits their applicability in the real-world
screening studies involving potentially hundreds of thousands of
compounds. In addition, the success-rates of the post-processing
methods vary on a case-by-case basis (Virtanen et al., 2015) and,
beforehand, there is no way to tell whether the extra investment
will pay out. In short, there is a genuine need for reliable rescoring
methodologies that do not require a lot of extra computing
resources or experiment-based tinkering.

The aim of the study was to demonstrate that by focusing
solely on the shape/electrostatics complementarity between the
docked ligand poses and the receptor protein’s ligand-binding
site, the yield of the small-molecule docking could be improved.

In the negative image-based (NIB) screening (Virtanen and
Pentikäinen, 2010; Niinivehmas et al., 2011, 2015), a negative
image or a NIB model is generated by inverting the shape
and electrostatics of a ligand-binding cavity using a specifically
tailored software PANTHER (Niinivehmas et al., 2015). The
resulting NIB model is used by similarity comparison algorithms
such as ShaEP (Vainio et al., 2009) the same way as ligand 3D
structures extracted from the X-ray crystal structures are used
in the ligand-based screening. The ligand 3D conformers, used
in the similarity comparison, are generated from scratch using
software such as BALLOON (Vainio and Johnson, 2007); but,
notably, the conformers could also originate from molecular
docking sampling.

To explore this idea further and to improve docking
enrichment, the NIB screening methodology was repurposed
for rescoring multiple explicit docking solutions output by
the docking software PLANTS (Korb et al., 2009). The main
difference between the establishedNIBmethodology and the here
introduced NIB rescoring or the R-NiB (Figure 1) is that it is
performed as is. The coordinates of the cavity-based negative
image and the docked ligand conformers are not superimposed
or optimized for a better match. The rescoring was performed
with 11 target proteins ranging from nuclear receptors such
as progesterone receptor (PR) to neuraminidase (NEU) using
established virtual screening benchmark libraries containing
both known active and inactive decoy ligands (Huang et al., 2006;
Mysinger et al., 2012). Altogether 22 different benchmark sets
were used to validate the new methodology (Table 1).

As a whole, the results show that the R-NiB producesmoderate
or excellent early enrichment improvements using the basic
settings in the NIB model generation and similarity screening. In
most cases, the early enrichment of the docking can be improved
also by consensus scoring, in which the original PLANTS docking
scoring and the PANTHER/ShaEP-based R-NiB scoring are given
an optimal weight ratio. What is more, the rescoring indicates
that the hit rate is typically enhanced even when both of these
scoring functions are bluntly given equal (50/50%) weight in the
consensus scoring.

In summary, the success of the R-NiB approach in sorting out
the active ligands from the inactive molecules is directly related
to the fact that the shape/electrostatics complementarity between
the ligand and the receptor is an essential part of the complex
formation.
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FIGURE 1 | Negative image-based rescoring workflow. Firstly, the protein 3D structure (neuraminidase; gray cartoon; PDB: 1B9V) (Finley et al., 1999) and ligand 3D
structures for molecular docking are prepared (e.g., protonation). Secondly, the ligand-binding cavity is outlined using a detection radius for docking (yellow
transparent circle above) and NIB model generation (yellow transparent surface below). If there exist a bound ligand in the PDB entry (BANA206 as a stick model with
cyan backbone in the close-up below), it can be used in defining the cavity center and/or dimensions. Thirdly, the docking of ligands into the cavity is performed using
a standard docking software and multiple docking solutions or conformers are outputted for rescoring. Fourthly, a cavity-based NIB model, composed of explicit
cavity points (white neutral; blue positive; red negative) is generated with PANTHER (Niinivehmas et al., 2015) for the same cavity. Fifthly, the NIB model
shape/electrostatics (transparent surface with charge potential) are compared directly against the docking solutions using a similarity comparison algorithm ShaEP
(Vainio et al., 2009) without geometry optimization. Those solutions matching the cavity information are given higher scores than the ones that differ.

MATERIALS AND METHODS

Ligand Set Preparation
The ligand sets, including the active and inactive decoy
compounds, were acquired from the DUD (A Directory of
Useful Decoys) (Huang et al., 2006) and DUD-E (A Database
of Useful (Docking) Decoys -Enhanced) (Mysinger et al., 2012)
databases for the target proteins (Table 1). The initial 3D
coordinates for the DUD ligands were converted to the SMILES
(Simplified Molecular-Input Line-Entry System) format using
STRUCTCONVERT in MAESTRO 2017-1 (Schrödinger, LLC,
New York, NY, USA, 2017). LIGPREP in MAESTRO was used
to generate OPLS3 charges and tautomeric states for both the
DUD and DUD-E ligand sets at pH 7.4. Next, both of the
ligand sets were converted to the SYBYL MOL2 format using
MOL2CONVERT inMAESTRO. The back-and-forth conversion
between MOL2 and SMILES formats was done with the DUD
ligands to avoid potential bias of the original 3D conformations
for the molecular docking (Zoete et al., 2016).

Protein Preparation
The 3D structures of the target proteins, which were used in the
molecular docking and the NIB model generation, were acquired

from the Protein Data Bank (PDB) (Berman et al., 2000; Burley
et al., 2017). All of the used PDB entries are listed in Table 1. The
benchmarking was done mainly using the PDB entries listed for
the DUD and DUD-E datasets and, thus, both the docking and
rescoring could work better or worse using different structures.
The necessary PDB entry editing (Figure 1) such as the removal
of bound ligands from the active sites was done in the BODIL
Molecular Modeling Environment (Lehtonen et al., 2004). The
protein residues were protonated with the default settings in
REDUCE3.24 (Word et al., 1999). The X-ray crystal structure
waters were left in the deprotonated state for NIBmodel building.

Molecular Docking
The molecular docking of the DUD and DUD-E compound sets
(Figure 1) into the ligand-binding sites of the target proteins was
performed using PLANTS1.2 (Korb et al., 2009). The default
settings were used in the docking screenings. Accordingly, the
initial docking scoring was performed with the ChemPLP that
combines the PLP (Piecewise Linear Potential) with GOLD’s
Chemscore (Korb et al., 2009). The centroid coordinates of
ligands bound in the target protein structures were used as the
binding site centers in the docking. A relatively large binding
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TABLE 1 | Target protein 3D structures used in the virtual screening.

Target proteina DUD DUD-E

PDB code Resolution (Å) Ligsb Decsc PDB code Resolution (Å) Ligsb Decsb

ER-agonist 1L2I 1.95 67 2,352 – – – –

ER-antagonist 3ERT 1.9 39 1,394 – – – –

ER-mixedc – – 106 3,746 1SJ0 1.9 383 20,663

AR 2AO6 1.89 74 2,628 2AM9 1.64 269 14,343

GR 1M2Z 2.5 78 2,797 3BQD 2.5 258 14,986

MR 2AA2 1.95 15 535 2AA2 1.95 94 5,146

PPARγ 1FM9 2.1 81 2,906 2GTK 2.1 484 25,256

RXRα 1MVC 1.9 20 706 1MV9 1.9 131 6,935

COX2 1CX2 3.0 348 12,462 3LN1 2.4 435 23,136

PDE5 1XP0 1.79 51 1,808 1UDT 2.3 398 27,520

1UDTd 2.3 – – 1XOZd 1.37 – –

PR 1SR7 1.46 27 967 3KBA 2.0 293 15,642

NEU – – – – 1B9V 2.35 98 6,197

CYP3A4 – – – – 3NXU 2.0 170 11,797

aAR, androgen receptor; COX2, cyclo-oxygenase 2; CYP3A4, cytochrome P450 3A4; ER, estrogen receptor alpha; GR, glucocorticoid receptor; MR, mineralocorticoid receptor; NEU,
neuraminidase; PPARγ, peroxisome proliferator activated receptor gamma; PR, progesterone receptor; RXRα, retinoid X receptor alpha; PDE5, phosphodiesterase type 5.
ER-agonist, ER-antagonist and ER-mixed refer to ligand sets containing ER-specific agonists, antagonists or both, respectively.
bNumber of active ligands (Ligs) and decoy (Decs) molecules after preprocessing with LIGPREP.
c In the DUD database, ER agonists and antagonists are separated into two separate datasets, but in the case of the DUD-E the ligands are mixed. For comparison, the ER datasets in
the DUD were also mixed.
dUsed in the NIB model generation.

site radius of 10 Å was generally used in the docking. The radius
was slightly reduced for glucocorticoid receptor (GR; 9 Å) based
on the size of the ligand-binding site. Altogether 10 docking
solutions were output for each compound for the purpose of
NIB rescoring. The idea is to provide enough different docking
solutions for the rescoring.

Negative Image-Based Model Generation
The negative images or the NIB models of the target proteins’
ligand-binding cavities (Figure 1) were prepared using the
default settings in PANTHER0.18.15 (Niinivehmas et al., 2015).
The centroids used in the NIB model generation were based on
the centroid coordinates of the ligand compounds bound in the
original protein 3D structures the same way as was done with
the docking. The NIB models were prepared in three different
ways: (1) the NIB model size and dimensions were adjusted
using the box radius option (6–10 Å); (2) the cavity size was
limited to a certain radius (1.5–3.0 Å) from the bound ligand in
the original structure using the ligand distance limit option; (3)
when available and producing better results, a model (referred
as PANTHER model) was taken also from a prior NIB screening
study (Niinivehmas et al., 2015). The NIB model coordinates for
all new NIB models are included in the Supplementary Material.

Negative Image-Based Rescoring
The NIB rescoring (or the R-NiB; Figure 1) of the original
docking solutions was performed using ShaEP1.0.7.915 (Vainio
et al., 2009). The shape and electrostatics of each docking
solution was compared directly against the template NIB models

without superimposing or optimizing their coordinates (–
noOptimization option). Both the shape and electrostatics were
given equal amount of weight (ESP= 0.5) in the ShaEP similarity
scoring (default option). Because altogether 10 conformers were
outputted for each docked compound, even those solutions
given lower scores by PLANTS (Korb et al., 2009) could be
later considered in the PANTHER/ShaEP-based (Virtanen and
Pentikäinen, 2010; Niinivehmas et al., 2011, 2015) NIB rescoring.

Rescoring With Alternative Methodologies
The docking poses initially scored by PLANTS using ChemPLP
scoring function were also rescored using an alternative scoring
function PLP in PLANTS. Otherwise, default options were
used in the PLANTS-based rescoring. In addition, the docking
solutions were also re-ranked using the default settings of
XSCORE1.2.1 (Wang et al., 2002) for comparison. The XSCORE
has three empirical scoring functions HPSCORE, HMSCORE
and HSSCORE that can be fine-tuned on case-by-case basis
to improve the docking yield. None of the scoring functions
produced markedly better early enrichment separately for the
docking results at least without special adjustments; thus, the
software’s default option of using X-CSCORE consensus scoring
with all three functions was utilized.

Consensus Scoring
The R-NiB relies heavily on the initial success of the docking
software used to generate the multiple docking poses for the
rescoring phase, because no coordinate optimization or extra
sampling is performed (Figure 1). Essentially, this means that
the used PLANTS scoring is intrinsically influencing the R-NiB
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yield in this study. The consensus scoring takes this aspect further
by directly incorporating the initial ChemPLP docking scoring
with the R-NiB scoring. All possible combinations, in which both
PLANTS- and ShaEP-based scoring were given different weights,
were considered with 5% interval and those consensus scoring
settings producing the highest early enrichment are discussed.
The scores for each docked conformer outputted by PLANTS and
ShaEP were normalized to fit into the scale from 1 to 0 and then
combined for a consensus score.

Table and Figure Preparation
Figures 1, 4, 5 were prepared using BODIL (Lehtonen et al.,
2004), MOLSCRIPT2.1.2 (Kraulis, 1991), RASTER3D3.0.2
(Merritt and Murphy, 1994), and VMD1.9.2 (Humphrey et al.,
1996). The area under curve (AUC) values (Tables 2, 3), the
early enrichment values (Tables 4, 5) were calculated with
ROCKER0.1.4 (Lätti et al., 2016). The enrichment factors were
calculated as true positive rate when 1 or 5% of the decoy
molecules have been found (EFn%DEC; see equation below)
in order to make future comparison reliable against other
methodologies (Lätti et al., 2016).

EFn%DEC =
Ligsn%DEC

Ligsall
× 100 (1)

In Equation (1), Ligsn%DEC is the number of ligands ranked
higher than n % of the decoys whereas Ligsall is the total number
of all ligands in the dataset. The receiver operating characteristics
(ROC) curves were plotted using ROCKER with the semi-log10
scale (only x axis logarithmic) in Figures 2, 3 to highlight the
very early enrichment of the actives. The standard deviation for
the AUC is acquired in ROCKER utilizing the derived error for
the Wilcoxon statistic (Hanley and McNeil, 1982). The Wilcoxon
statistic estimates the probability of ranking a random ligand
higher than a random decoy, which is equivalent to the value of
AUC; thus, making the errors also equal.

RESULTS

Negative Image-Based Rescoring of
Docking Solutions
The aim of the negative image-based rescoring or R-NiB
(Figure 1) is to rescore existing molecular docking solutions
and, by doing so, enrich active hits from a vast pool of
compounds. The enrichment is achieved by comparing the
shape/electrostatics similarity between the ligand conformers and
the negative image of the target protein’s ligand-binding cavity.
The established NIB methodology (Virtanen and Pentikäinen,
2010; Niinivehmas et al., 2011, 2015) is employed in building
the cavity-based NIB models of the target proteins’ ligand-
binding sites (PANTHER) and in comparing them against each
docking solution (ShaEP). The starting point of the R-NiB
workflow (Figure 1) is that the ligands are docked into the same
target protein’s cavity using a standard docking algorithm and,
preferably, multiple solutions that roughly fit into the cavity are
outputted for the rescoring.

Molecular Docking Produces Moderate or
High Enrichment in the Benchmarking
The AUC and early enrichment values (Tables 2, 3) show that
the molecular docking, performed with PLANTS (Korb et al.,
2009), worked relatively well with both the DUD and DUD-E
datasets (Huang et al., 2006; Mysinger et al., 2012). With the
DUD, the AUC values ranged from 0.60 to 0.95 indicating either
moderate or substantial enrichment of actives with a majority
of the targets (Tables 3). Markedly, the docking for the estrogen
receptor alpha agonists (ER-agonist; AUC = 0.81), PR (AUC =

0.63) and the peroxisome proliferator activated receptor gamma
(PPARγ; AUC = 0.95) worked so well that the AUC values
were not improved by the R-NiB (Table 2). A side note, the
DUD sets are small, containing 15–348 actives (Table 1) and,
accordingly, a difference of a few active ligands in the ranking can
sometimes have disproportionate effects on the AUC values. The
docking worked also with the more demanding DUD-E ligand
sets, containing a lot more of actives and decoys (Table 1), as the
AUC values were typically well above 0.50 (Table 3). The AUC
values could not be improved with the ER-mixed (AUC = 0.74),
PPARγ (AUC = 0.85), phosphodiesterase type 5 (PDE5; AUC =

0.78) and cytochrome P450 3A4 (CYP3A4; AUC= 0.61) DUD-E
sets using the R-NiB (Table 3).

Instead of the AUC values, it is often more practical to
concentrate on the early enrichment when estimating the success
of the virtual screening. That is to say, paradoxically, a high AUC
value does not necessarily guarantee that the very top results
contain active hits despite the fact that it is a good metric for
estimating the overall success-rate of the screening. By large, the
docking struggled in ranking the actives to the very top of the list,
when inspecting the EF1%DEC or EF5%DEC values with the DUD
and DUD-E datasets (Tables 4, 5). Accordingly, the very early
enrichment or EF1%DEC was improved by the R-NiB with all of
the DUD sets (Table 4). With the DUD-E, the R-NiB could not
produce improvement for the ER-mixed (EF1%DEC = 21.7%),
PPARγ (EF1%DEC = 24.2%), retinoid X receptor alpha (RXRα;
EF1%DEC = 11.5%), cyclo-oxygenase 2 (COX2; EF1%DEC =

5.7%), and PDE5 (EF1%DEC = 11.3%; Table 5), however, in
the remaining six datasets the early enrichment was improved
notably (discussed below). The ROC curves, which were plotted
using the semi-log10 scale to highlight the very early enrichment,
corroborate the numerical trends for both of the benchmark
datasets (Figures 2, 3).

Negative Image Generation for Rescoring
Is a Straightforward Process
The NIB model has to contain key features of the target
protein’s ligand-binding cavity in order to produce enrichment
by the R-NiB (Figure 1). Firstly, the shape and size of the
model should be limited to the cavity area that facilitates the
ligand binding. Secondly, if the cavity contains vital hydrogen
bond acceptor or donor groups, the NIB model must reflect
those features in its charge properties. Each data point in
the NIB model can be tested and adjusted iteratively using
validated ligand sets that include both active and inactive
compounds. This sort of “trial-and-error” refinement is generally
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TABLE 2 | The AUC values for the DUD datasets.

Docking Rescoring

Target protein PLANTS ChemPLP R-NiB: Ligand distancea R-NiB: Box radiusb R-NiB: prior modelsc XSCORE PLANTS PLP

ER-agonist 0.81 ± 0.03 0.78 ± 0.03 0.76 ± 0.03 0.79 ± 0.03 0.82 ± 0.03 0.78 ± 0.03

ER-antagonist 0.81 ± 0.04 0.85 ± 0.04 0.77 ± 0.04 0.82 ± 0.04 0.71 ± 0.05 0.83 ± 0.04

ER-mixed 0.64 ± 0.03 0.77 ± 0.03 0.70 ± 0.03 0.74 ± 0.03 0.66 ± 0.03 0.61 ± 0.03

AR 0.80 ± 0.03 0.84 ± 0.03 0.81 ± 0.03 – 0.79 ± 0.03 0.78 ± 0.03

GR 0.60 ± 0.03 0.80 ± 0.03 0.83 ± 0.03 0.84 ± 0.03 0.75 ± 0.03 0.53 ± 0.03

MR 0.80 ± 0.07 0.93 ± 0.05 0.91 ± 0.05 0.82 ± 0.07 0.92 ± 0.05 0.78 ± 0.07

PPARγ 0.95 ± 0.02 0.92 ± 0.02 0.87 ± 0.03 – 0.81 ± 0.03 0.94 ± 0.02

PR 0.63 ± 0.06 0.52 ± 0.06 0.50 ± 0.06 0.50 ± 0.06 0.51 ± 0.06 0.58 ± 0.06

RXRα 0.78 ± 0.06 0.89 ± 0.05 0.84 ± 0.06 0.90 ± 0.05 0.97 ± 0.02 0.76 ± 0.06

COX2 0.81 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 0.95 ± 0.01 0.65 ± 0.02 0.85 ± 0.01

PDE5 0.71 ± 0.04 0.67 ± 0.04 0.67 ± 0.04 0.72 ± 0.04 0.54 ± 0.04 0.66 ± 0.04

If the rescoring produced higher AUC value in comparison to the initial docking (no overlapping standard error ranges), those numbers are shown in bold.
aThe ligand distance limit used in PANTHER varied between the targets due to the size/shape differences of the binding cavities and the screened ligand sets. Limits included 1.5 Å (ER,
AR, MR, PPARγ, PR RXRα, and COX2), 2.0 Å (GR), and 3.0 Å (PDE5).
bThe box radius varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. The radiuses included 6.0 Å (GR, PR and COX2), 7.0 Å
(ER-mixed, MR and RXRα), and 8.0 Å (ER-agonist, ER-antagonist, AR, PPARγ and PDE5).
cThe previously published PANTHER models, optimized for regular NIB screening, were taken from a prior study (Niinivehmas et al., 2015).

TABLE 3 | The AUC values for the DUD-E datasets.

Docking Rescoring

Target protein PLANTS ChemPLP R-NiB: Ligand distancea R-NiB: Box radiusb R-NiB: Prior modelsc XSCORE PLANTS PLP

ER-mixed 0.74 ± 0.01 0.66 ± 0.02 0.65 ± 0.02 – 0.71 ± 0.01 0.70 ± 0.02

AR 0.54 ± 0.02 0.76 ± 0.02 0.73 ± 0.02 0.75 ± 0.02 0.65 ± 0.02 0.53 ± 0.02

GR 0.54 ± 0.02 0.74 ± 0.02 0.76 ± 0.02 0.70 ± 0.02 0.69 ± 0.02 0.51 ± 0.02

MR 0.55 ± 0.03 0.74 ± 0.03 0.76 ± 0.03 0.68 ± 0.03 0.69 ± 0.03 0.53 ± 0.03

PPARγ 0.85 ± 0.01 0.77 ± 0.01 0.75 ± 0.01 – 0.66 ± 0.01 0.84 ± 0.01

PR 0.63 ± 0.02 0.74 ± 0.02 0.75 ± 0.02 0.63 ± 0.02 0.67 ± 0.02 0.61 ± 0.02

RXRα 0.77 ± 0.02 0.83 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.85 ± 0.02 0.70 ± 0.03

COX2 0.66 ± 0.01 0.75 ± 0.01 0.65 ± 0.01 – 0.62 ± 0.01 0.67 ± 0.01

PDE5 0.78 ± 0.01 0.72 ± 0.02 0.70 ± 0.02 – 0.58 ± 0.02 0.74 ± 0.01

NEU 0.85 ± 0.02 0.89 ± 0.02 0.89 ± 0.02 – 0.68 ± 0.03 0.56 ± 0.03

CYP3A4 0.61 ± 0.02 0.60 ± 0.02 0.60 ± 0.02 – 0.53 ± 0.02 0.60 ± 0.02

If the rescoring produced higher AUC value in comparison to the initial docking (no overlapping standard error ranges), those numbers are shown in bold.
aThe ligand distance limit used in PANTHER varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. Limits included 1.5 Å (ER-
mixed, AR, PPARγ, PR, and COX2), 2.0 Å (MR, RXRα, NEU, PDE5, and CYP3A4) and 3.0 Å (GR).
bThe box radius varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. The radiuses included 6.0 Å (AR, GR, MR, COX2, NEU,
and PR), 7.0 Å (PDE5, RXRα, and CYP3A4) and 9.0 Å (PPARγ) and 10.0 Å (ER-mixed).
cThe previously published PANTHER models, optimized for regular NIB screening, were taken from a prior study (Niinivehmas et al., 2015).

not feasible and, accordingly, the R-NiB methodology was
applied here using default easy-to-replicate PANTHER/ShaEP
settings (Vainio et al., 2009; Niinivehmas et al., 2015).
Effective models were acquired by simply adjusting the cavity
detection box radius or by limiting the cavity dimensions
with the ligand distance limit in PANTHER (Niinivehmas
et al., 2015). The model generation relied solely on the
PDB entry used also in the docking and generally the first-
tried basic settings were enough to improve the enrichment
(Tables 2–5; Figures 2, 3). For comparison, the rescoring was
also performed with prior PANTHER models (Tables 2–5)

optimized for the standard NIB screening (Niinivehmas et al.,
2015).

Negative Image-Based Rescoring
Improves the Early Enrichment With Most
Targets
The R-NiB (Figure 1) does not rely on superimposing or
geometry optimization prior to the similarity comparison of the
docking solutions against the cavity-based NIB models. In a
nutshell, either the docked ligand poses outputted by the docking
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TABLE 4 | The enrichment given as true positive rates for the DUD datasets.

Docking Rescoring

Target protein EF %DEC PLANTS ChemPLP R-NiB: ligand distancea R-NiB: box radiusb R-NiB: prior modelsc XSCORE PLANTS PLP

ER-agonist 1% 17.9 37.3 31.3 23.9 19.4 10.4

5% 44.8 52.2 58.2 59.7 52.2 26.9

ER-antagonist 1% 15.4 28.2 7.7 12.8 15.4 12.8

5% 33.3 43.6 25.6 38.5 25.6 35.9

ER-mixed 1% 0.0 11.3 1.9 2.8 2.8 0.0

5% 20.8 23.6 5.7 8.5 6.6 7.5

AR 1% 17.6 27.0 12.2 – 9.5 14.9

5% 40.5 45.9 45.9 – 31.1 39.2

GR 1% 6.4 11.5 16.7 12.8 29.5 3.8

5% 15.4 28.2 28.2 29.5 50.0 14.1

MR 1% 26.7 33.3 13.3 0.0 0.0 33.3

5% 60.0 73.3 40.0 26.7 40.0 60.0

PPARγ 1% 69.1 79.0 22.2 – 21.0 66.7

5% 84.0 86.4 65.4 – 48.1 85.2

PR 1% 3.7 33.3 33.3 29.6 18.5 3.7

5% 11.1 40.7 40.7 40.7 22.2 7.4

RXRα 1% 5.0 35.0 20.0 20.0 70.0 0.0

5% 30.0 80.0 45.0 80.0 85.0 30.0

COX2 1% 13.5 43.7 40.5 62.6 9.2 20.1

5% 35.3 70.4 64.1 83.0 20.1 44.8

PDE5 1% 13.7 31.4 31.4 13.7 3.9 9.8

5% 25.5 37.3 39.2 23.5 5.9 25.5

Those EF%DEC values that are at least 1.5-fold compared to the initial docking are shown in bold.
aThe ligand distance limit used in PANTHER varied between the targets due to the size/shape differences of the binding cavities and the screened ligand sets. Limits included 1.5 Å
(ER-agonist, ER-mixed, AR, MR, PPARγ, RXRα, and COX2) and 2.0 Å (GR and PR), 3.0 Å (ER-antagonist) and 4.0 Å (PDE5).
bThe box radius varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. The radiuses included 6.0 Å (MR and COX2), 7.0 Å (AR
and PR) and 8.0 Å (ER’s, GR, PPARγ and RXRα) and 9.0 Å (PDE5).
c The previously published PANTHER models, optimized for regular NIB screening, were taken from a prior study (Niinivehmas et al., 2015).

software match the cavity-based NIB models or they do not—
the similarity score (from 1 to 0) of ShaEP reflects this reality.
Therefore, it is crucial that the initial docking has sampled the
ligand conformers thoroughly and produces “correct” ligand
poses that can be discovered by the R-NiB. Understandably, the
rescoring cannot enrich active compounds, if they are docked
completely outside the cavity space that was used in the NIB
model generation.

With the DUD datasets (Huang et al., 2006), the AUC values
from docking were improved somewhat or greatly with most
of the target proteins using the R-NiB (Table 2). The AUC
improvement was sizeable with the GR (0.60 vs. 0.84), RXRα

(0.78 vs. 0.90), mineralocorticoid receptor (MR; 0.80 vs. 0.93)
and COX2 (0.81 vs. 0.95) to name a few examples (Table 2).
Moreover, the R-NiB could improve the AUC values substantially
even with the more demanding DUD-E sets (Mysinger et al.,
2012) where the docking scoring started to falter (Table 3). This
positive effect in favor of the R-NiB was seen with a multitude
of target proteins, including the androgen receptor (AR; 0.54
vs. 0.76), GR (0.54 vs. 0.74), MR, (0.55 vs. 0.74), PR (0.63 vs.
0.74), RXRα (0.77 vs. 0.83), and COX2 (0.66 vs. 0.75). The AUC
values worsened or improved marginally for the CYP3A4 (0.61

vs. 0.60) and NEU (0.85 vs. 0.89), respectively, but in these
cases the results remained within the margin of error (Table 3).
The R-NiB clearly could not improve the AUC values for the
PDE5, PPARγ and ER-mixed with the DUD-E datasets (Table 3).
The PDE5 and ER-mixed datasets are particularly demanding,
because they both contain two distinct ligand groups for which
one cannot build a single satisfactory NIB model (Niinivehmas
et al., 2011).

As stated above, it is more important that the virtual screening
produces the highest possible early enrichment rather than the
best AUC value. To this end, the R-NiB was able to improve
the early enrichment somewhat or substantially with most of
the target proteins included in the DUD datasets (Table 4).
The EF1%DEC improvement ranged from 1.9 to 49.1% between
the different targets. On average the EF1%DEC or EF5%DEC

improvement was 3.3-fold or 1.8-fold, respectively, but, alas,
the EF1%DEC of PR improved 9.0-fold using the R-NiB. A
close inspection of the semi-logarithmic ROC curves (Figure 2)
indicates that the very early enrichment produced by the R-NiB
was always as good as or better than that of the original docking
scoring (well above the random rate; Figure 2). This suggests that
the rescoring generally has a positive effect for the yield with the
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TABLE 5 | The enrichment given as true positive rates for the DUD-E datasets.

Docking Rescoring

Target protein EF%DEC PLANTS ChemPLP R-NiB: ligand distancea R-NiB: box radiusb R-NIB: prior modelsc XSCORE PLANTS PLP

ER-mixed 1% 21.7 18.3 5.5 – 6.3 12.8

5% 36.6 32.6 20.1 – 24.8 28.7

AR 1% 1.5 13.0 5.6 8.9 1.9 0.4

5% 7.1 23.0 15.2 22.3 7.8 5.2

GR 1% 1.2 4.7 3.5 5.8 1.2 1.2

5% 12.0 22.5 12.8 17.4 10.5 10.1

MR 1% 3.2 11.7 6.4 3.2 1.1 1.1

5% 19.1 25.5 19.1 18.1 8.5 11.7

PPARγ 1% 24.2 4.5 10.3 – 5.0 19.6

5% 57.0 24.4 32.4 – 13.8 48.3

PR 1% 2.0 4.4 3.8 3.8 2.0 2.4

5% 17.1 17.1 11.6 17.4 11.6 15.0

RXRα 1% 11.5 6.9 1.5 10.7 15.3 1.5

5% 37.4 25.2 12.2 23.9 45.8 19.8

COX2 1% 5.7 2.3 0.5 – 2.1 9.9

5% 21.6 19.1 4.1 – 6.4 25.1

PDE5 1% 11.3 10.6 3.8 – 1.5 8.8

5% 28.1 25.9 14.1 – 7.0 24.4

NEU 1% 4.1 13.3 6.1 – 1.0 0.0

5% 32.7 42.9 35.7 – 4.1 4.1

CYP3A4 1% 7.1 7.6 5.3 – 2.4 6.5

5% 12.9 18.8 15.3 – 6.5 13.5

Those EF%DEC values that are at least 1.5-fold compared to the initial docking are shown in bold.
aThe ligand distance limit used in PANTHER varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. Limits included 1.5 Å (ER-
mixed, AR, PDE5, GR, MR, PR and COX2), 2.0 Å (RXRα, NEU and CYP3A4) and 3.0 Å (PPARγ).
bThe box radius varied between the targets due to the size/shape differences of the binding cavities and screened ligand sets. The radiuses included 6.0 Å (AR, GR, MR and NEU), 7.0
Å (RXRα, PR, PDE5 and CYP3A4), 8.0 Å (COX2), 9.0 Å (PPARγ) and 11.0 Å (ER-mixed).
cThe previously published PANTHER models, optimized for regular NIB screening, were taken from a prior study (Niinivehmas et al., 2015).

tested DUD datasets. The EF1%DEC improvement (Table 4) was
most prominent with the COX2 (13.5 vs. 62.6 %), but the R-
NiB worked exceptionally well also based on the EF5%DEC for
example with the RXRα (30.0 vs. 80.0%), COX2 (35.3 vs. 83.0%),
PDE5 (25.5 vs. 39.2%) and ER-agonist (44.8 vs. 59.7%).

Based on the early enrichment values (Table 4) and the plotted
ROC curves (Figure 3), the overall performance of the R-NiB
with the DUD-E dataset showed similar trends as with the DUD
(Table 3; Figure 2). The improvement over the original docking
was on average 2.5-fold for the EF1%DEC (Table 5) despite the
fact that the DUD-E ligand sets are much larger than the smaller
but better curated DUD datasets (Table 1). For example, the
EF1%DEC improvement of 2.1% (from 2.0 to 4.1%) with PR
might seem minor at the first glance, but in terms of absolute
compound numbers it is a marked uptick from the discovery
of six to 13 actives over the original docking. The EF1%DEC

(Table 5) was improved by the R-NiB substantially with the AR
(1.5 vs. 13.0%), MR (3.2 vs. 11.7%) and NEU (4.1 vs. 13.3%).
Although in the case of the RXRα the EF1%DEC values suggested
that the docking scoring worked better than the R-NiB (Table 5),
a close inspection of the semi-logarithmic ROC plot shows that
the rescoring actually produced higher very early enrichment
(EF0.5%DEC 6.1 vs. 3.8%; Figure 3). The EF5%DEC was improved

on average 1.3-fold for these targets (Table 5) and, for example,
the GR (12.0 vs. 22.5%) received a 1.9-fold improvement.

Negative Image-Based Rescoring Is Both
Ultrafast and Efficient
For the purpose of comparison, the original docking solutions
were also re-evaluated using empirical rescoring algorithm
XSCORE (Wang et al., 2002) and the PLP scoring function in
PLANTS. Target-specific settings for ligand-receptor interactions
such as hydrogen bonding or hydrophobicity are considered via
multivariate analysis in XSCORE. Although the R-NiB generally
produced better enrichment than XSCORE, the latter algorithm
excelled with both the DUD and DUD-E datasets for the RXRα

(Tables 2–5). The rescoring with the PLP function in PLANTS
could only in some cases (e.g., COX2) improve the original
ChemPLP-based ranking and, generally, the R-NiB produced
substantially better results (Tables 2–5).

The use of non-default XSCORE settings could have produced
higher early enrichment; however, similar fine-tuning of the
R-NiB models or even PLANTS settings could likely have
improved the enrichment as well. By adjusting the assortment
of the cavity charge points capable of hydrogen bonding
and/or lowering/increasing the weight of the electrostatics in
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FIGURE 2 | The semi-logarithmic receiver operating characteristics plots for the docking and negative image-based rescoring with the DUD dataset. Only those
R-NiB results with the highest early enrichment were plotted (EF1%DEC in Table 5). The red line shows the original docking enrichment by PLANTS, the blue line gives
the result after PANTHER/ShaEP-based rescoring, and the black line gives the result from consensus scoring where both of them are given equal weight (50/50%).
The dashed line outlines the random selection (AUC = 0.50). The semi-log10 scale is used only for the x axis to highlight the very early enrichment or lack thereof.

the similarity screening generally improves the enrichment. For
example, in our test runs the R-NiB produced notably better
early enrichment (EF1%DEC 12.2–23.0%) for the DUD set of
the AR with the box radius option when only a few cavity
points were added or removed instead of using the default
NIB model (data not shown). In fact, one could even over-
emphasize certain properties (e.g., charge) artificially in the NIB
model to produce better enrichment in the rescoring than what
the default settings would otherwise allow. Because this kind
of rescoring bias does not alter the actual ligand poses, the
preferred docking solutions remain within the realm of possible.
The situation can be entirely different, if the original docking
scoring function, affecting the ligand conformer sampling, is
altered radically; i.e., unrealistic conformations could be put
forward.

Excluding the time taken for the NIB model generation, the
actual rescoring performed with ShaEP is computationally very
inexpensive; spending only a fraction of the time required for

the initial docking. This is possible, because no ligand conformer
sampling or even geometry optimization between the NIB model
and docked ligand conformers is done. In fact, the ShaEP-based
scoring with the DUD sets for the ER-agonist (1.94 ms/comp. vs.
∼24.4 ms/comp.), PDE5 (3.81 ms/comp. vs. ∼35.7 ms/comp.),
and COX2 (2.43 ms/comp. vs. ∼54.0 ms/comp.) was at least 10
times faster than the XSCORE rescoring, which is already very
fast. Similarly, rescoring with PLP function in PLANTS took
roughly double the time with the ER-agonist (1.94 ms/comp. vs.
∼3.21 ms/comp.), PDE5 (3.81 ms/comp. vs. ∼7.15 ms/comp.),
and COX2 (2.43 ms/comp. vs. ∼4.54 ms/comp.) datasets,
when compared to the R-NiB. These benchmark numbers vary
depending on the computer set-up. Here, the software were run
using a single Intel Xeon CPU (W3670 3.2 GHz) and RAM 12
GB DDR 1333MHz in a LINUX desktop. The absolute size of the
NIB model and that of the compounds being rescored affect the
R-NiB performance; however, the differences in the wall time are
minor.
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FIGURE 3 | The semi-logarithmic receiver operating characteristics plots for the docking and negative image-based rescoring with the DUD-E dataset. Only those
R-NiB results with the highest very early enrichment were plotted (EF1%DEC in Table 6). With retinoid X receptor alpha (RXRα), the results are shown for the model
(ligand exclusion of 2.0 Å; Table 6) producing the highest very early enrichment, which is visible in the plotted curve. For interpretation see Figure 2.

DISCUSSION

The negative image-based rescoring or the R-NiB is a truly
novel way of rescoring docking solutions, because it does not
rely on the use molecular mechanics force fields, empirical or
knowledge-based descriptors in evaluating the favorability of
the ligand binding. For example, the binding free energy is not
considered in any shape or form during the rescoring. Although
the selected atom charges and van der Waals radiuses affect the
NIB model generation profoundly, the ShaEP-based rescoring
itself is a simple matter of shape/electrostatics comparison. No
force field-based sampling or even coordinate superimposition is
needed. The NIB models can be trained for optimal effect using
experimental ligand sets with the “trial-and-error” approach, but
generally this is not needed.

Applicability of Negative Image-Based
Rescoring
A NIB model can be built for virtually any target protein as long
as there is a solid idea where the potential small-molecule binding

or initial docking should happen. The target pocket can be a well-
defined and enclosed cavity (see CYP3A4 in Figures 4A–D and
GR in Figures 4E–H), an opening on the protein surface (see
NEU in Figures 4I–L), a sub-cavity, a groove or even a small
dent on the protein surface (Figure 4). The R-NiB results with
the benchmark sets confirm this hypothesis, because the method
improves docking enrichment with a variety of different target
proteins (Tables 2–5; Figures 2, 3) and, more importantly, with
physically different kind of ligand-binding cavities (Figure 4).
The enrichment values (Tables 2–4) and semi-logarithmic ROC
curves (Figures 2, 3) show that the R-NiB (Figure 1) clearly
improves the yield with amultitude of DUD-E datasets, including
the nuclear receptors AR, GR, MR, and PR, but also with entirely
different kind of target protein NEU.

Overall, the R-NiB results (Tables 2–5; Figures 2, 3) show
that a satisfactory enrichment can be acquired in most cases by
building NIB models by simply adjusting the cavity detection
radius or by limiting the cavity search area using a receptor-
bound ligand included in the PDB entry (Figures 1, 4). Having
protrusions outside this cavity space do not necessarily worsen
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FIGURE 4 | The cavity-based NIB models and the docking solutions are aligned. The protein 3D structures of (A) cytochrome P450 3A4 (CYP3A4; lime; PDB: 3NXU)
(Sevrioukova and Poulos, 2010), (E) glucocorticoid receptor (GR; white; PDB: 1M2Z) (Bledsoe et al., 2005) and (I) neuraminidase (NEU; yellow; PDB: 1B9V) (Finley
et al., 1999) are shown as opaque surfaces on the far left. With CYP3A4 and GR, the X-ray crystal structures are shown in two sections to highlight the buried
locations of their active sites (mauve opaque surfaces) at the center. The dotted lines indicate the cutting planes for the cross-sections chosen for the illustration. The
prosthetic heme group is shown as a CPK model (black backbone) for CYP3A4. With NEU, the enzyme’s active which opens directly from the protein surface, is only
partially buried and, thus, no cross-sectioning was done. The contours of the active sites of (B,C) CYP3A4, (F,G) GR, and (J,K) NEU are shown both as opaque
surfaces and finalized NIB models (transparent surfaces with charge potential) in the cross-section close-ups. The red, blue, and white dots in the NIB model indicate
the negative, positive and neutral cavity dots (or filler atoms) constituting the negative image. The docked poses of five known active compounds (stick models with
orange backbone) for (D) CYP3A4, (H) GR, and (L) NEU from PLANTS are shown stacked in the far right.

any ligand’s similarity score a lot (a marginal penalty inflicted
in the ShaEP scoring); however, it is important to understand
that those ligand segments outside the cavity will be effectively
ignored in the rescoring.

So, the emphasis of R-NiB is resolutely on the cavity’s negative
image (Figure 4) and it is recommended that unpractically
large ligands for the cavity in question are filtered away before
docking and/or rescoring. Essentially, docking sizable ligands
with a lot of rotatable bonds (e.g., PPARγ datasets) or with
particularly large cavities (e.g., PDE5) is likely to produce
errors or difficult ascertain alternative poses that cannot be
reliably rescored using the R-NiB. Despite this, in theory,
the R-NiB could be used to rescore even docked peptides
(not tested here) as long as their binding is dependent on
the shape/electrostatics complementarity with the cavity. This
narrow focus on the area designated by the NIB model for the
ligand binding makes the R-NiB (Figure 1) truly a precision
technique.

The downside of this narrow focus is that it also limits the
usability of different benchmark test sets in evaluating the R-
NiB (Figure 1). If the test set contains active compounds that
bind into completely different or only partially connected ligand-
binding sites in the target protein, the R-NiB cannot possibly rank
all those ligands high up in the list using a single NIB model
(Figure 4). Moreover, when dealing with large ligand-binding
cavities such as the active site of PDE5, where inhibitors can
have very different binding locations and poses, with very little
overlap, and/or water molecules play a big role in coordinating
the ligand binding, a single NIB model simply cannot provide
all the necessary information needed for the enrichment. One
can try to solve this issue by curating the ligand sets better,
limiting the search radius for docking or by applying multiple
NIB models to the task. Naturally, this level of focus is not
a problem when working in an actual screening project, in
which the efforts are centered on a specific binding site or
subcavity.
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Recognizing Biologically Relevant
Ligand-Binding Poses
The R-NiB is not optimizing the ligand positioning inside the
protein’s ligand-binding pocket, but merely comparing the earlier
produced docking poses against the cavity’s shape/electrostatics
(Figure 1). The highest scored poses for the active compounds
might not differ from the original docking; however, the
enrichment can improve due to lower ranking of the inactives
by the R-NiB. In fact, improvement in the enrichment values
is not an absolute guarantee that the “correct” conformers are
discovered during the rescoring. With certain ligand-binding
pockets and compounds it is very difficult to conclude what is
the actual binding pose and there might even exist more than
one valid pose (Mobley and Dill, 2009). One can attempt to
address this issue by looking at the individual docking solutions,
their exact binding interactions and, ultimately, compare them
against the experimentally validated data for the same compound
or its closely-related structural analogs (Figure 5). For example,
the R-NiB seems to be able to recognize the biologically relevant
binding pose of hydrocortisone with the MR whereas the original
docking scoring fails (Figure 5).

Because the R-NiB can only reorder the docking solutions and
if all of the ligand conformers are docked in a completely “wrong”
way or even outside the ligand-binding pocket, the “correct” pose

or ligand cannot emerge on top of the results list. This is true
for all rescoring methodologies as they mainly reshuffle existing
solutions. To a certain extent, this is the case even for force field-
based post-processing methodologies, because the initial ligand-
receptor complex is crucial for the sampling as well. In certain
cases even a partial shape/electrostatics match with the cavity-
based NIB model can give the docked compound a substantially
higher ranking and improve the enrichment. By docking the
decoys mostly outside the binding cavity, one could also improve
the enrichment as long as the actives reside at the site. Here, it was
made sure that the docked compounds and the generated NIB
models occupied roughly the same 3D space in relation to the
protein. The match between the cavity space and the outputted
docking solutions is highlighted for the CYP3A4 (Figure 4C vs.
Figure 4D), GR (Figure 4G vs. Figure 4H), and NEU (Figure 4K
vs. Figure 4L) in Figure 4.

Consensus Scoring—Finding the Balance
Between the Scoring Functions
If the initial docking produced the “correct” or at least reasonable
pose for the active compound but it was not favored by the
docking software, in theory one should be able recognize it from
the multiple outputted poses using a superior scoring method. In
reality, all of the scoring methodologies excel on some targets and

FIGURE 5 | A negative image-based rescoring example with mineralocorticoid receptor. (A) The X-ray crystal structure of mineralocorticoid receptor (MR; silver
cartoon model; PDB: 2AA2) (Bledsoe et al., 2005) and the amino acid residues (stick models) making hydrogen bonds (magenta dotted lines) with the inhibitor
aldosterone (stick model with cyan backbone) are shown. (B) The negative image or NIB model (transparent surface) of the MR active site was build using the same
PDB entry (Bledsoe et al., 2005) and the 1.5 Å ligand distance limit option in PANTHER. The red and blue dots depict the negatively and positively charged cavity
points, respectively, whereas the white dots are neutral. (C) The rescored pose (rank #13) of hydrocortisone (stick model with orange backbone) reminds closely the
experimentally verified pose of its structural analog aldosterone (A vs. C). (D) Hence, the pose of hydrocortisone given the highest score by PLANTS (rank #17),
showing a reversed pose in comparison to the aldosterone (A vs. D), is likely erroneous (D).
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TABLE 6 | The consensus scoring of the DUD Datasets.

Target protein Optimal weight Equal weight

ShaEP weighta AUC EF1%DEC 1EF1%DEC
b EF5%DEC 1EF5%DEC

b EF1%DEC 1EF1%DEC
b EF5%DEC 1EF5%DEC

b

ER-agonist 0.70 0.81 ± 0.03 (↔) 41.8 4.5 56.7 4.5 40.3 3.0 53.7 1.5

ER-antagonist 0.55 0.78 ± 0.04 (↓) 35.9 7.7 43.6 0.0 35.9 7.7 43.6 0.0

ER-mixed 0.90 0.77 ± 0.03 (↑) 11.3 0.0 26.4 2.8 7.5 −3.8 29.2 5.6

AR 0.25 0.85 ± 0.03 (↑) 32.4 5.4 47.3 1.4 28.4 1.4 50.0 4.1

GR 0.60 0.76 ± 0.03 (↑) 19.2 2.5 26.9 −1.3 19.2 2.5 25.6 −2.6

MR 1.0 0.93 ± 0.05 (↑) 33.3 0.0 73.3 0.0 33.3 0.0 73.3 0.0

PPARγ 0.35 0.93 ± 0.02 (↓) 84.0 5.0 87.7 1.3 81.5 2.5 87.7 1.3

PR 0.60 0.53 ± 0.06 (↓) 33.3 0.0 40.7 0.0 22.2 −11.1 40.7 0.0

RXRα 1.0 0.89 ± 0.05 (↑) 35.0 0.0 80.0 0.0 25.0 −10.0 80.0 0.0

COX2 0.80 0.95 ± 0.01 (↑) 65.2 2.6 82.8 −0.2 59.8 −2.8 77.6 −5.4

PDE5 0.85 0.64 ± 0.04 (↓) 31.4 0.0 43.1 3.8 23.5 −7.9 33.3 −5.9

The NIB model producing the highest EF1%DEC (Table 4) was used in the consensus scoring with PLANTS. When optimal and equal (50/50%) weight is used, all datasets produced
better EF1%DEC and EF5%DEC enrichments than the docking.
a If the ShaEP weight is 1.0, the consensus score comes entirely from ShaEP rescoring, and, vice versa, if the weight is 0, only the PLANTS score is used. The value of 0.50 corresponds
to the situation in which PLANTS docking and ShaEP rescoring effect have equal weight in the results. Both the ShaEP and PLANTS scores were normalized to fit the scale from 0 to 1
before combining them. The consensus scoring was not done to acquire the best AUC enrichment possible and, accordingly, upon a rare occasion the value could decrease (downward
arrow) instead improving it (upward arrow).
b
1EF%DEC corresponds to the EF%DEC difference between the consensus scoring and the original ShaEP rescoring of the same NIB-model.

TABLE 7 | The consensus scoring of the DUD-E datasets.

Target protein Optimal weight Equal weight

ShaEP weight AUC EF 1%DEC 1EF1%DEC EF5%DEC 1EF5%DEC EF1%DEC 1EF1%DEC EF5%DEC 1EF5%DEC

ER-mixed 0.35 0.69 ± 0.02 (↓) 24.5 6.2 37.9 5.3 23.0 4.7 36.8 4.2

AR 1.0 0.76 ± 0.02 (↑) 13.0 0.0 23.0 0.0 9.3 −3.7 19.0 −4.0

GR 1.0 0.70 ± 0.02 (↑) 5.8 0.0 17.4 0.0 2.3 −3.5 16.7 −0.7

MR 1.0 0.70 ± 0.03 (↑) 11.7 0.0 25.5 0.0 9.6 −2.1 21.3 −4.2

PPARy 0.20 0.85 ± 0.01 (↔) 27.7 17.4 58.1 25.7 21.9 11.2 46.7 14.3

PR 0.55 0.72 ± 0.02 (↑) 6.8 2.4 18.4 1.3 6.8 2.4 18.1 1.3

RXRa 0.25 0.82 ± 0.02 (↑) 19.1 8.4 46.6 22.7 14.5 3.8 29.0 5.1

COX2 0.10 0.69 ± 0.01 (↑) 7.6 5.3 25.5 6.4 6.0 3.7 23.4 4.3

PDE5 0.25 0.82 ± 0.01 (↑) 17.6 7.0 36.4 10.5 13.8 3.2 31.7 5.8

NEU 0.50 0.91 ± 0.02 (↑) 16.3 3.0 52.0 9.1 16.3 3.0 52.0 9.1

CYP3A4 0.50 0.61 ± 0.02 (↔) 10.6 3.0 21.2 2.4 10.6 3.0 21.2 2.4

The NIB model producing the highest EF1%DEC (Table 5) was used in the consensus scoring with PLANTS. When optimal weight is used, all datasets produced better EF1%DEC and
EF5%DEC enrichments than the docking. In the case of equal (50/50%) weight, only the PPARy dataset produced weaker early enrichment than the original docking. See Table 6 for
further details.

ligand sets for different and sometimes even conflicting reasons.
Because both the original docking software PLANTS (Korb et al.,
2009) and the similarity comparison algorithm ShaEP (Vainio
et al., 2009) output their own scores for each ligand conformer, it
is possible to normalize and combine the results and adjust their
relative weight with different targets (Tables 6, 7).

This score weighting or consensus scoring (Tables 6, 7) was
performed to determine, if the ranking benefitted more from
either of the scoring functions and if there is a generally
applicable weight ratio that could be routinely used. Because the
emphasis in the consensus scoring was put on the EF1%DEC

improvement, the AUC values of the DUD datasets were

not necessarily improved (e.g., PPARγ; Table 2 vs. Table 6).
Similarly, with the ER-mixed, plagued also by the dualistic nature
of the included agonist/antagonist ligands, the AUC values were
not improved for the DUD-E (Table 3 vs. Table 7). Moreover,
focusing on the early enrichment indicates that the consensus
scoring worked almost without an exception better than the
docking for both the DUD (Table 4 vs. Table 6) and DUD-E
datasets (Table 5 vs. Table 7). Even a relatively tiny push by the
R-NiB (e.g., 10–35% weight from ShaEP) was enough to help the
early enrichment (Tables 6, 7).

Dealing with a completely new target protein cavity or
heterogeneous ligand set is likely to require re-weighting and
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careful optimization upon the arrival of experimental results.
Despite this, the yield was in most cases improved by simply
giving both scoring functions an equal weight in the consensus
scoring (Tables 6, 7) instead of using the default PLANTS scoring
or the R-NiB alone (Tables 4, 5). With the DUD datasets, the
equal weight consensus scoring produced always better early
enrichment than the docking, but the non-weighted R-NiB could
sometimes work slightly better (see the negative 1EF values in
Table 6; Figure 2). Similarly, the equal weighting produced better
early enrichment than docking scoring alone with the DUD-E
datasets; however, the yield for the PPARγ did not benefit from
this arrangement. Regardless, with a multitude of targets, the
non-weighted R-NiB produced higher early enrichment than the
equal weight consensus scoring (see the negative 1EF values in
Table 7; Figure 3).

Although the equal weighting in the consensus scoring
could reduce the early enrichment marginally in certain cases,
the tradeoff was that in general it produced better early
enrichment; making it a viable option for future docking
screening experiments.

CONCLUSIONS

This study demonstrates that by simply focusing on the
shape/electrostatics complementarity between the ligand and
the receptor protein’s binding cavity, the docking performance
regarding the early enrichment can be improved across the
board. The rescoring is done by generating a negative image of

the protein’s ligand-binding cavity that is then used directly in
the similarity comparison of the docking solutions (Figure 1).
The results show that the negative image-based rescoring (or
the R-NiB) can enhance the success-rate of docking screenings
to a level that facilitates effective drug discovery. Moreover,
the R-NiB can be used in unison with other docking scoring
functions in consensus scoring to improve the early enrichment
yet further.
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