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Let Cn be the set of all permutation cycles of length n over 
{1, 2, . . . , n}. Let

fn(q) :=
∑

σ∈Cn+1

qmajσ

be a q-analogue of the factorial n!, where maj denotes the 
major index. We prove a q-analogue of Wilson’s congruence

fn−1(q) ≡ μ(n) (mod Φn(q)),

where μ denotes the Möbius function and Φn(q) is the n-th 
cyclotomic polynomial.
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1. Introduction

For each n ∈ N = {0, 1, 2, . . .}, define the q-integer

[n]q := 1 − qn

1 − q
.

The q-integer evidently is a q-analogue of the original integer, since limq→1[n]q = n. 
Suppose that p is a prime. Correspondingly, q-congruences are the q-analogues of those 
congruences of integers. For example, for a prime p and a positive integer a with (a, p) =
1, it is not difficult to show that (cf. [6, (1.4)])

p−1∏
k=1

[a]qk ≡ 1 (mod [p]q), (1.1)

where the above congruence is considered over the polynomial ring Z[q]. Clearly (1.1) is 
the q-analogue of Fermat’s congruence

ap−1 ≡ 1 (mod p). (1.2)

Using the same discussion, (1.1) can be extended to

n−1∏
k=1

[a]qk ≡ 1 (mod Φn(q)), (1.3)

where (a, n) = 1 and

Φn(q) :=
∏

1≤k≤n
(k,n)=1

(q − e2πi· kn )

denotes the n-th cyclotomic polynomial.
Another important congruence in number theory is the Wilson congruence

(p− 1)! ≡ −1 (mod p) (1.4)

for each prime p. The classical q-analogue of the factorial n! is given by

[n]q! := [1]q[2]q · · · [n]q.

Unfortunately, seemingly there exists no suitable q-analogue of Wilson’s congruence for 
the q-factorial [p − 1]q!. For examples, we have

[6]q! ≡ 3 + 3q − 4q3 − 6q4 − 4q5 (mod [7]q).
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Alternatively, in [1], Chapman and Pan gave a partial q-analogue of Wilson’s congruence 
for those prime p > 3 with p ≡ 3 (mod 4):

p−1∏
k=1

[k]qk ≡ −1 (mod [p]q). (1.5)

However, (1.5) is invalid if the prime p ≡ 1 (mod 4), though Chapman and Pan also 
determined 

∏p−1
k=1[k]qk modulo [p]q for those prime p ≡ 1 (mod 4), with help of the 

fundamental unit and the class number of the quadratic field Q(√p).
In this short note, we shall try to obtain a unified q-analogue of Wilson’s congruence 

for all primes, from the viewpoint of combinatorics. Our motivation arises from Peterson’s 
combinatorial proof of Wilson’s congruence [8]. Let Sn denote the permutation group of 
order n, i.e., the set of all permutations over {1, 2, . . . , n}. Clearly |Sn| = n!. For each 
σ ∈ Sn, define the major index of σ

majσ :=
∑

1≤i≤n−1
σ(i)>σ(i+1)

i.

It is known (cf. [3, Theorem 1.1]) that

[n]q! =
∑
σ∈Sn

qmajσ. (1.6)

Let

Cn := {σ ∈ Sn : σ is a cycle of length n}.

We also have |Cn| = (n − 1)!. Define

fn(q) :=
∑

σ∈Cn+1

qmajσ. (1.7)

Clearly fn(q) is another q-analogue of the factorial n!. In this note, we shall prove a 
q-analogue of Wilson’s congruence for fn(q). Recall the Möbius function

μ(n) :=

⎧⎪⎪⎨
⎪⎪⎩

1, if n = 1,
(−1)k, if n = p1 · · · pk where p1, . . . , pk are distinct primes,
0 if n > 1 is not square-free.

Theorem 1.1. Suppose that n ≥ 2. Then

fn−1(q) ≡ μ(n) (mod Φn(q)). (1.8)
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In particular, if p is prime, then

fp−1(q) ≡ −1 (mod [p]q). (1.9)

The group acting method to derive congruences was systematically developed by Rota 
and Sagan [10,11]. Subsequently, Sagan [12] extended this method to q-congruences. For 
more arithmetical applications of group actions, the readers may refer to [2,4,5,7,9]. In 
the next section, we shall follow the way of Sagan in [12] and use a group action on Cn
to prove Theorem 1.1. Let us briefly describe Sagan’s way to prove q-congruences. For 
a finite set A, in order to determine the polynomial 

∑
a∈A qma modulo Φn(q), we may 

construct a group action T on A, and show that 
∑

a∈U qma is divisible by Φn(q) for each 
orbit U under T with |U | ≥ 2. Thus we only need to find out all fixed points under T .

Let us introduce some notions, which will be used in the next section. For each integer 
n ≥ 2, let Zn = Z/nZ be the cyclic group of order n. We always identify Zn with 
{1, 2, . . . , n}, and view Sn as the permutation group over Zn. In particular, for each 
1 ≤ a, b ≤ n, we say a < b over Zn if and only if a < b over Z. Furthermore, for each 
σ ∈ Sn, define

majσ :=
∑

1≤i≤n
σ(i)>σ(i+1)

i

and

desσ :=
∑

1≤i≤n
σ(i)>σ(i+1)

1.

2. Proof of Theorem 1.1

For a cycle σ ∈ Cn, write σ = (a1, a2, . . . , an) provided that

σ(a1) = a2, σ(a2) = a3, . . . , σ(an) = a1.

Let τ ∈ Sn be defined by

τ(a) = a + 1

for each a ∈ {1, 2, . . . , n}, i.e., τ = (1, 2, . . . , n). The following result is well-known.

Lemma 2.1. For each 1 ≤ r ≤ n − 1, τ r ∈ Cn if and only if r is prime to n, where τk

denotes the k-th iteration of τ .

For each σ ∈ Sn, let

Tσ := τ ◦ σ ◦ τ−1.
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Then we have TCn = Cn. In fact, for each cycle σ = (a1, a2, . . . , an) ∈ Cn,

Tσ = (a1 + 1, a2 + 1, . . . , an + 1) ∈ Cn.

Clearly Tnσ = σ for each σ ∈ Cn, where T k denotes the k-th iteration of T . Hence T
can be viewed as a group action on Cn.

For each σ ∈ Cn, let

Uσ := {T kσ : 1 ≤ k ≤ n}

denote the orbit of σ. We may partition Cn into union of disjoint orbits

Cn =
⋃
σ∈X

Uσ.

Since T is a group action, we must have |Uσ| divides n for each σ ∈ X.

Lemma 2.2. Suppose that σ ∈ Cn. Then Tσ = σ if and only if

σ = τ r

for some 1 ≤ r ≤ n − 1 with (r, n) = 1.

Proof. It is easy to check that Tτ r = τ r for each 1 ≤ r ≤ n − 1. Conversely, according 
to the definition of T , we have

Tσ(a + 1) = σ(a) + 1

for each a ∈ Zn. Since Tσ = σ,

σ(a) − a = Tσ(a + 1) − (a + 1) = σ(a + 1) − (a + 1)

for each a ∈ Zn. Let r = σ(a) − a. Then σ = τ r. Since σ is a cycle, we have (r, n) = 1
by Lemma 2.1. �

According to Lemma 2.2, for each σ ∈ X, |Uσ| = 1 if and only if σ = τ r for some r
prime to n. That is,

Cn = {τ r : 1 ≤ r < n, (r, n) = 1} ∪
⋃
σ∈X

|Uσ|>1

Uσ. (2.1)

It follows from the definitions of maj and maj that

majσ =
{

majσ + n, if σ(n) > σ(1),
majσ, otherwise.
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So we always have

majσ ≡ majσ (mod n). (2.2)

Lemma 2.3. Suppose that σ ∈ Cn. Then

majTσ ≡ majσ + desσ − 1 (mod n). (2.3)

Furthermore,

desTσ = desσ. (2.4)

Proof. If σ(i − 1), σ(i) 	= n, then

Tσ(i) > Tσ(i + 1) ⇐⇒ σ(i− 1) + 1 > σ(i) + 1 ⇐⇒ σ(i− 1) > σ(i).

Assume that σ(i0) = n. Clearly

Tσ(i0 + 1) = n + 1 = 1 < Tσ(i0 + 2),

as well as Tσ(i0) > Tσ(i0 + 1). Hence

majTσ = i0 +
∑

1≤i≤n
i�=i0,i0+1

Tσ(i)>Tσ(i+1)

i = i0 +
∑

1≤i≤n
i�=i0,i0+1

σ(i−1)>σ(i)

i,

where we identify σ(0) with σ(n). Apparently
∑

1≤i≤n
i�=i0,i0+1

σ(i−1)>σ(i)

i =
∑

0≤i≤n−1
i�=i0−1,i0

σ(i)>σ(i+1)

(i + 1) ≡
∑

1≤i≤n
i�=i0−1,i0

σ(i)>σ(i+1)

(i + 1) (mod n).

It follows that

majTσ ≡ i0 +
∑

1≤i≤n
i�=i0−1,i0

σ(i)>σ(i+1)

i +
∑

1≤i≤n
i�=i0−1

σ(i)>σ(i+1)

1 (mod n).

Finally, since σ(i0) = n is greater than σ(i0 − 1) and σ(i0 + 1), we have

i0 +
∑

1≤i≤n
i�=i0−1,i0

σ(i)>σ(i+1)

i = majσ

and
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∑
1≤i≤n

i�=i0−1,i0
σ(i)>σ(i+1)

1 = desσ − 1.

(2.3) is concluded.
Similarly, we also have

desTσ = 1 +
∑

1≤i≤n
i�=i0,i0+1

Tσ(i)>Tσ(i+1)

1 = 1 +
∑

1≤i≤n
i�=i0−1,i0

σ(i)>σ(i+1)

= desσ. �

Lemma 2.4. For each σ ∈ Cn, desσ = 1 if and only if σ = τ r for some r prime to n.

Proof. By Lemma 2.2 and (2.4), we only need to show that σ = τ r with (r, n) = 1 when 
desσ = 1. Since n must contribute 1 to des (σ), desσ = 1 means 1, . . . , n − 1 contribute 
0, i.e., σ is a cyclic shift of the identity 12 · · ·n. Hence σ = τ r for some 1 ≤ r ≤ n. Of 
course, r must be prime to n since σ ∈ Cn. �

Now we are ready to prove Theorem 1.1. In view of (2.1),

fn−1(q) =
∑

1≤r≤n
(r,n)=1

qmaj τr

+
∑
σ∈X

|Uσ|>1

∑
υ∈Uσ

qmaj υ.

Suppose that σ ∈ X and |Uσ| ≥ 2. By Lemma 2.4, we have desσ ≥ 2. Let h = |Uσ|. 
According to Lemma 2.3,

∑
υ∈Uσ

qmaj υ ≡
h−1∑
k=0

qmajTkσ ≡qmajσ
h−1∑
k=0

qk(desσ−1)

=qmajσ · 1 − qh(desσ−1)

1 − qdesσ−1
(mod Φn(q)).

Since 1 ≤ desσ − 1 ≤ n − 1, 1 − qdesσ−1 is not divisible by Φn(q). On the other hand, 
Thσ = σ since |Uσ| = h. So, by (2.3), we must have

h(desσ − 1) ≡ 0 (mod n),

i.e.,

1 − qh(desσ−1) ≡ 0 (mod Φn(q)).

Thus for each σ ∈ X with |Uσ| > 1, we have
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∑
υ∈Uσ

qmaj υ ≡ 0 (mod Φn(q)).

It follows that

fn−1(q) ≡
∑

1≤r≤n
(r,n)=1

qmaj τr

=
∑

1≤r≤n
(r,n)=1

qn−r =
∑

1≤r≤n
(r,n)=1

qr (mod Φn(q)).

Finally, it suffices to show that
∑

1≤r≤n
(r,n)=1

qr ≡ μ(n) (mod Φn(q)).

Let ζ be a n-th primitive root of unity. Then

Φn(q) =
∏

1≤k≤n
(k,n)=1

(q − ζk).

So we only need to prove that for each 1 ≤ k ≤ n with (k, n) = 1,

lim
q→ζk

∑
1≤r≤n
(r,n)=1

qr = μ(n). (2.5)

(2.5) is a classical result on Ramanujan’s sum
∑

1≤r≤n
(r,n)=1

ζkr.

However, for the sake of completeness, here we give the proof of (2.5) as follows:

∑
1≤r≤n
(r,n)=1

ζkr =
n∑

r=1
ζkr

∑
d|(r,n)

μ(d) =
∑
d|n

μ(d)
n/d∑
j=1

ζkdj

= μ(n) +
∑
d|n
d<n

μ(d) · 1 − ζkn

1 − ζkd
= μ(n).

All are done. �
Remark. For each σ ∈ Sn, define the inversion number of σ

inv σ :=
∣∣{(i, j) : 1 ≤ i < j ≤ n, σ(i) > σ(j)}

∣∣.
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According to [3, Theorem 1.1], we also have

[n]q! =
∑
σ∈Sn

qinvσ.

It is natural to ask what
∑
σ∈Cn

qinvσ (mod Φn(q))

is. Unfortunately, the situation seems complicated. For example, we have
∑
σ∈C7

qinvσ ≡ 102 + 56q + 38q2 + 144q3 − 14q4 + 170q5 (mod [7]q)

and
∑
σ∈C9

qinvσ ≡ 2692 − 3980q + 4690q2 − 2386q3 + 776q4 + 1004q5 (mod Φ9(q)).

So, we may ask whether for each n ≥ 2, there exists a subset Xn ⊂ Sn with |Xn| = (n −1)!
such that

∑
σ∈Xn

qinvσ (mod Φn(q))

could give another q-analogue of Wilson’s congruence.
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