

Contents lists available at ScienceDirect Advances in Applied Mathematics

www.elsevier.com/locate/yaama

A q-analogue of Wilson's congruence

Hao Pan^{a,1}, Yu-Chen Sun^{b,*}

 ^a School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China
 ^b Department of Mathematics and Statistics, University of Turku, 20014 Turku, Finland

ARTICLE INFO

Article history: Received 8 February 2021 Received in revised form 1 May 2021 Accepted 14 May 2021 Available online xxxx

MSC: primary 05A30 secondary 05A05, 05A10, 11A07

Keywords: Wilson's congruence Permutation cycle Major index

ABSTRACT

Let C_n be the set of all permutation cycles of length n over $\{1, 2, \ldots, n\}$. Let

$$\mathfrak{f}_n(q) := \sum_{\sigma \in \mathcal{C}_{n+1}} q^{\operatorname{maj} \sigma}$$

be a q-analogue of the factorial n!, where maj denotes the major index. We prove a q-analogue of Wilson's congruence

$$\mathfrak{f}_{n-1}(q) \equiv \mu(n) \pmod{\Phi_n(q)},$$

where μ denotes the Möbius function and $\Phi_n(q)$ is the *n*-th cyclotomic polynomial.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

 $\ast\,$ Corresponding author.

E-mail addresses: haopan79@zoho.com (H. Pan), yuchensun93@163.com (Y.-C. Sun).

https://doi.org/10.1016/j.aam.2021.102228

 $0196-8858 \otimes 2021$ The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

霐

APPLIED MATHEMATICS

¹ The first author is supported by the National Natural Science Foundation of China (Grant No. 12071208).

1. Introduction

For each $n \in \mathbb{N} = \{0, 1, 2, \ldots\}$, define the q-integer

$$[n]_q := \frac{1 - q^n}{1 - q}.$$

The q-integer evidently is a q-analogue of the original integer, since $\lim_{q\to 1} [n]_q = n$. Suppose that p is a prime. Correspondingly, q-congruences are the q-analogues of those congruences of integers. For example, for a prime p and a positive integer a with (a, p) = 1, it is not difficult to show that (cf. [6, (1.4)])

$$\prod_{k=1}^{p-1} [a]_{q^k} \equiv 1 \pmod{[p]_q},\tag{1.1}$$

where the above congruence is considered over the polynomial ring $\mathbb{Z}[q]$. Clearly (1.1) is the *q*-analogue of Fermat's congruence

$$a^{p-1} \equiv 1 \pmod{p}.\tag{1.2}$$

Using the same discussion, (1.1) can be extended to

$$\prod_{k=1}^{n-1} [a]_{q^k} \equiv 1 \pmod{\Phi_n(q)},$$
(1.3)

where (a, n) = 1 and

$$\Phi_n(q) := \prod_{\substack{1 \le k \le n \\ (k,n)=1}} (q - e^{2\pi i \cdot \frac{k}{n}})$$

denotes the n-th cyclotomic polynomial.

Another important congruence in number theory is the Wilson congruence

$$(p-1)! \equiv -1 \pmod{p} \tag{1.4}$$

for each prime p. The classical q-analogue of the factorial n! is given by

$$[n]_q! := [1]_q [2]_q \cdots [n]_q.$$

Unfortunately, seemingly there exists no suitable q-analogue of Wilson's congruence for the q-factorial $[p-1]_q!$. For examples, we have

$$[6]_q! \equiv 3 + 3q - 4q^3 - 6q^4 - 4q^5 \pmod{[7]_q}.$$

Alternatively, in [1], Chapman and Pan gave a partial q-analogue of Wilson's congruence for those prime p > 3 with $p \equiv 3 \pmod{4}$:

$$\prod_{k=1}^{p-1} [k]_{q^k} \equiv -1 \pmod{[p]_q}.$$
(1.5)

However, (1.5) is invalid if the prime $p \equiv 1 \pmod{4}$, though Chapman and Pan also determined $\prod_{k=1}^{p-1} [k]_{q^k} \mod [p]_q$ for those prime $p \equiv 1 \pmod{4}$, with help of the fundamental unit and the class number of the quadratic field $\mathbb{Q}(\sqrt{p})$.

In this short note, we shall try to obtain a unified q-analogue of Wilson's congruence for all primes, from the viewpoint of combinatorics. Our motivation arises from Peterson's combinatorial proof of Wilson's congruence [8]. Let S_n denote the permutation group of order n, i.e., the set of all permutations over $\{1, 2, ..., n\}$. Clearly $|S_n| = n!$. For each $\sigma \in S_n$, define the major index of σ

$$\operatorname{maj} \sigma := \sum_{\substack{1 \le i \le n-1 \\ \sigma(i) > \sigma(i+1)}} i.$$

It is known (cf. [3, Theorem 1.1]) that

$$[n]_q! = \sum_{\sigma \in \mathcal{S}_n} q^{\operatorname{maj}\sigma}.$$
(1.6)

Let

 $\mathcal{C}_n := \{ \sigma \in \mathcal{S}_n : \sigma \text{ is a cycle of length } n \}.$

We also have $|\mathcal{C}_n| = (n-1)!$. Define

$$\mathfrak{f}_n(q) := \sum_{\sigma \in \mathcal{C}_{n+1}} q^{\operatorname{maj}\sigma}.$$
(1.7)

Clearly $\mathfrak{f}_n(q)$ is another q-analogue of the factorial n!. In this note, we shall prove a q-analogue of Wilson's congruence for $\mathfrak{f}_n(q)$. Recall the Möbius function

$$\mu(n) := \begin{cases} 1, & \text{if } n = 1, \\ (-1)^k, & \text{if } n = p_1 \cdots p_k \text{ where } p_1, \dots, p_k \text{ are distinct primes}, \\ 0 & \text{if } n > 1 \text{ is not square-free.} \end{cases}$$

Theorem 1.1. Suppose that $n \ge 2$. Then

$$\mathfrak{f}_{n-1}(q) \equiv \mu(n) \pmod{\Phi_n(q)}.$$
(1.8)

In particular, if p is prime, then

$$\mathfrak{f}_{p-1}(q) \equiv -1 \pmod{[p]_q}.$$
(1.9)

The group acting method to derive congruences was systematically developed by Rota and Sagan [10,11]. Subsequently, Sagan [12] extended this method to q-congruences. For more arithmetical applications of group actions, the readers may refer to [2,4,5,7,9]. In the next section, we shall follow the way of Sagan in [12] and use a group action on C_n to prove Theorem 1.1. Let us briefly describe Sagan's way to prove q-congruences. For a finite set A, in order to determine the polynomial $\sum_{a \in A} q^{m_a}$ modulo $\Phi_n(q)$, we may construct a group action T on A, and show that $\sum_{a \in U} q^{m_a}$ is divisible by $\Phi_n(q)$ for each orbit U under T with $|U| \geq 2$. Thus we only need to find out all fixed points under T.

Let us introduce some notions, which will be used in the next section. For each integer $n \geq 2$, let $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ be the cyclic group of order n. We always identify \mathbb{Z}_n with $\{1, 2, \ldots, n\}$, and view S_n as the permutation group over \mathbb{Z}_n . In particular, for each $1 \leq a, b \leq n$, we say a < b over \mathbb{Z}_n if and only if a < b over \mathbb{Z} . Furthermore, for each $\sigma \in S_n$, define

$$\overline{\operatorname{maj}} \sigma := \sum_{\substack{1 \leq i \leq n \\ \sigma(i) > \sigma(i+1)}} i$$

and

$$\overline{\operatorname{des}} \sigma := \sum_{\substack{1 \le i \le n \\ \sigma(i) > \sigma(i+1)}} 1.$$

2. Proof of Theorem 1.1

For a cycle $\sigma \in \mathcal{C}_n$, write $\sigma = (a_1, a_2, \ldots, a_n)$ provided that

$$\sigma(a_1) = a_2, \quad \sigma(a_2) = a_3, \quad \dots, \quad \sigma(a_n) = a_1.$$

Let $\tau \in \mathcal{S}_n$ be defined by

$$\tau(a) = a + 1$$

for each $a \in \{1, 2, ..., n\}$, i.e., $\tau = (1, 2, ..., n)$. The following result is well-known.

Lemma 2.1. For each $1 \leq r \leq n-1$, $\tau^r \in C_n$ if and only if r is prime to n, where τ^k denotes the k-th iteration of τ .

For each $\sigma \in \mathcal{S}_n$, let

$$T\sigma := \tau \circ \sigma \circ \tau^{-1}.$$

Then we have $TC_n = C_n$. In fact, for each cycle $\sigma = (a_1, a_2, \ldots, a_n) \in C_n$,

$$T\sigma = (a_1 + 1, a_2 + 1, \dots, a_n + 1) \in \mathcal{C}_n$$

Clearly $T^n \sigma = \sigma$ for each $\sigma \in \mathcal{C}_n$, where T^k denotes the k-th iteration of T. Hence T can be viewed as a group action on \mathcal{C}_n .

For each $\sigma \in \mathcal{C}_n$, let

$$U_{\sigma} := \{T^k \sigma : 1 \le k \le n\}$$

denote the orbit of σ . We may partition \mathcal{C}_n into union of disjoint orbits

$$\mathcal{C}_n = \bigcup_{\sigma \in X} U_{\sigma}.$$

Since T is a group action, we must have $|U_{\sigma}|$ divides n for each $\sigma \in X$.

Lemma 2.2. Suppose that $\sigma \in C_n$. Then $T\sigma = \sigma$ if and only if

$$\sigma = \tau^r$$

for some $1 \le r \le n-1$ with (r,n) = 1.

Proof. It is easy to check that $T\tau^r = \tau^r$ for each $1 \le r \le n-1$. Conversely, according to the definition of T, we have

$$T\sigma(a+1) = \sigma(a) + 1$$

for each $a \in \mathbb{Z}_n$. Since $T\sigma = \sigma$,

$$\sigma(a) - a = T\sigma(a+1) - (a+1) = \sigma(a+1) - (a+1)$$

for each $a \in \mathbb{Z}_n$. Let $r = \sigma(a) - a$. Then $\sigma = \tau^r$. Since σ is a cycle, we have (r, n) = 1 by Lemma 2.1. \Box

According to Lemma 2.2, for each $\sigma \in X$, $|U_{\sigma}| = 1$ if and only if $\sigma = \tau^r$ for some r prime to n. That is,

$$\mathcal{C}_n = \{\tau^r : 1 \le r < n, \ (r,n) = 1\} \cup \bigcup_{\substack{\sigma \in X \\ |U_\sigma| > 1}} U_{\sigma}.$$
(2.1)

It follows from the definitions of maj and $\overline{\text{maj}}$ that

$$\overline{\mathrm{maj}}\,\sigma = \begin{cases} \mathrm{maj}\,\sigma + n, & \mathrm{if}\ \sigma(n) > \sigma(1), \\ \mathrm{maj}\,\sigma, & \mathrm{otherwise.} \end{cases}$$

So we always have

$$\overline{\mathrm{maj}}\,\sigma \equiv \mathrm{maj}\,\sigma \pmod{n}.\tag{2.2}$$

Lemma 2.3. Suppose that $\sigma \in C_n$. Then

$$\overline{\operatorname{maj}}T\sigma \equiv \overline{\operatorname{maj}}\sigma + \overline{\operatorname{des}}\sigma - 1 \pmod{n}.$$
(2.3)

Furthermore,

$$\overline{\operatorname{des}} T\sigma = \overline{\operatorname{des}} \sigma. \tag{2.4}$$

Proof. If $\sigma(i-1), \sigma(i) \neq n$, then

$$T\sigma(i) > T\sigma(i+1) \Longleftrightarrow \sigma(i-1) + 1 > \sigma(i) + 1 \Longleftrightarrow \sigma(i-1) > \sigma(i).$$

Assume that $\sigma(i_0) = n$. Clearly

$$T\sigma(i_0 + 1) = n + 1 = 1 < T\sigma(i_0 + 2),$$

as well as $T\sigma(i_0) > T\sigma(i_0 + 1)$. Hence

$$\overline{\mathrm{maj}}T\sigma = i_0 + \sum_{\substack{1 \leq i \leq n \\ i \neq i_0, i_0+1 \\ T\sigma(i) > T\sigma(i+1)}} i = i_0 + \sum_{\substack{1 \leq i \leq n \\ i \neq i_0, i_0+1 \\ \sigma(i-1) > \sigma(i)}} i,$$

where we identify $\sigma(0)$ with $\sigma(n)$. Apparently

$$\sum_{\substack{1 \le i \le n \\ i \ne i_0, i_0+1 \\ (i-1) > \sigma(i)}} i = \sum_{\substack{0 \le i \le n-1 \\ i \ne i_0-1, i_0 \\ \sigma(i) > \sigma(i+1)}} (i+1) \equiv \sum_{\substack{1 \le i \le n \\ i \ne i_0-1, i_0 \\ \sigma(i) > \sigma(i+1)}} (i+1) \pmod{n}.$$

It follows that

 σ

$$\overline{\operatorname{maj}} T \sigma \equiv i_0 + \sum_{\substack{1 \leq i \leq n \\ i \neq i_0 - 1, i_0 \\ \sigma(i) > \sigma(i+1)}} i + \sum_{\substack{1 \leq i \leq n \\ i \neq i_0 - 1 \\ \sigma(i) > \sigma(i+1)}} 1 \pmod{n}.$$

Finally, since $\sigma(i_0) = n$ is greater than $\sigma(i_0 - 1)$ and $\sigma(i_0 + 1)$, we have

$$i_0 + \sum_{\substack{1 \leq i \leq n \\ i \neq i_0 - 1, i_0 \\ \sigma(i) > \sigma(i+1)}} i = \overline{\operatorname{maj}} \sigma$$

and

$$\sum_{\substack{1\leq i\leq n\\ i\neq i_0-1, i_0\\ \sigma(i)>\sigma(i+1)}} 1 = \overline{\operatorname{des}}\, \sigma - 1.$$

(2.3) is concluded.

Similarly, we also have

$$\overline{\operatorname{des}} T\sigma = 1 + \sum_{\substack{1 \le i \le n \\ i \ne i_0, i_0 + 1 \\ T\sigma(i) > T\sigma(i+1)}} 1 = 1 + \sum_{\substack{1 \le i \le n \\ i \ne i_0 - 1, i_0 \\ \sigma(i) > \sigma(i+1)}} = \overline{\operatorname{des}} \sigma. \quad \Box$$

Lemma 2.4. For each $\sigma \in C_n$, $\overline{\operatorname{des}} \sigma = 1$ if and only if $\sigma = \tau^r$ for some r prime to n.

Proof. By Lemma 2.2 and (2.4), we only need to show that $\sigma = \tau^r$ with (r, n) = 1 when $\overline{\operatorname{des} \sigma} = 1$. Since *n* must contribute 1 to $\operatorname{des} (\sigma)$, $\overline{\operatorname{des} \sigma} = 1$ means $1, \ldots, n-1$ contribute 0, i.e., σ is a cyclic shift of the identity $12 \cdots n$. Hence $\sigma = \tau^r$ for some $1 \leq r \leq n$. Of course, *r* must be prime to *n* since $\sigma \in \mathcal{C}_n$. \Box

Now we are ready to prove Theorem 1.1. In view of (2.1),

$$\mathfrak{f}_{n-1}(q) = \sum_{\substack{1 \le r \le n \\ (r,n)=1}} q^{\operatorname{maj} r^r} + \sum_{\substack{\sigma \in X \\ |U_{\sigma}| > 1}} \sum_{\upsilon \in U_{\sigma}} q^{\operatorname{maj} \upsilon}.$$

Suppose that $\sigma \in X$ and $|U_{\sigma}| \ge 2$. By Lemma 2.4, we have $\overline{\operatorname{des}} \sigma \ge 2$. Let $h = |U_{\sigma}|$. According to Lemma 2.3,

$$\begin{split} \sum_{\upsilon \in U_{\sigma}} q^{\operatorname{maj}\upsilon} &\equiv \sum_{k=0}^{h-1} q^{\overline{\operatorname{maj}}T^{k}\sigma} \equiv q^{\overline{\operatorname{maj}}\sigma} \sum_{k=0}^{h-1} q^{k(\overline{\operatorname{des}}\sigma-1)} \\ &= q^{\overline{\operatorname{maj}}\sigma} \cdot \frac{1 - q^{h(\overline{\operatorname{des}}\sigma-1)}}{1 - q^{\overline{\operatorname{des}}\sigma-1}} \; (\operatorname{mod} \; \Phi_{n}(q)). \end{split}$$

Since $1 \leq \overline{\operatorname{des}} \sigma - 1 \leq n - 1$, $1 - q^{\overline{\operatorname{des}} \sigma - 1}$ is not divisible by $\Phi_n(q)$. On the other hand, $T^h \sigma = \sigma$ since $|U_\sigma| = h$. So, by (2.3), we must have

$$h(\overline{\operatorname{des}}\,\sigma-1) \equiv 0 \pmod{n},$$

i.e.,

$$1 - q^{h(\operatorname{des} \sigma - 1)} \equiv 0 \pmod{\Phi_n(q)}.$$

Thus for each $\sigma \in X$ with $|U_{\sigma}| > 1$, we have

$$\sum_{v \in U_{\sigma}} q^{\operatorname{maj} v} \equiv 0 \pmod{\Phi_n(q)}.$$

It follows that

$$\mathfrak{f}_{n-1}(q) \equiv \sum_{\substack{1 \le r \le n \\ (r,n)=1}} q^{\operatorname{maj} \tau^r} = \sum_{\substack{1 \le r \le n \\ (r,n)=1}} q^{n-r} = \sum_{\substack{1 \le r \le n \\ (r,n)=1}} q^r \; (\operatorname{mod} \; \Phi_n(q)).$$

Finally, it suffices to show that

$$\sum_{\substack{1 \le r \le n \\ (r,n)=1}} q^r \equiv \mu(n) \pmod{\Phi_n(q)}.$$

Let ζ be a n-th primitive root of unity. Then

$$\Phi_n(q) = \prod_{\substack{1 \le k \le n \\ (k,n)=1}} (q - \zeta^k).$$

So we only need to prove that for each $1 \le k \le n$ with (k, n) = 1,

$$\lim_{q \to \zeta^k} \sum_{\substack{1 \le r \le n \\ (r,n)=1}} q^r = \mu(n).$$

$$(2.5)$$

(2.5) is a classical result on Ramanujan's sum

$$\sum_{\substack{1 \le r \le n \\ (r,n)=1}} \zeta^{kr}.$$

However, for the sake of completeness, here we give the proof of (2.5) as follows:

$$\sum_{\substack{1 \le r \le n \\ (r,n)=1}} \zeta^{kr} = \sum_{r=1}^n \zeta^{kr} \sum_{\substack{d \mid (r,n) \\ d \mid n}} \mu(d) = \sum_{\substack{d \mid n \\ d \mid n}} \mu(d) \sum_{j=1}^{n/d} \zeta^{kdj}$$
$$= \mu(n) + \sum_{\substack{d \mid n \\ d < n}} \mu(d) \cdot \frac{1 - \zeta^{kn}}{1 - \zeta^{kd}} = \mu(n).$$

All are done. $\hfill \square$

Remark. For each $\sigma \in S_n$, define the inversion number of σ

inv
$$\sigma := |\{(i, j) : 1 \le i < j \le n, \sigma(i) > \sigma(j)\}|.$$

8

According to [3, Theorem 1.1], we also have

$$[n]_q! = \sum_{\sigma \in \mathcal{S}_n} q^{\operatorname{inv} \sigma}$$

It is natural to ask what

$$\sum_{\sigma \in \mathcal{C}_n} q^{\operatorname{inv} \sigma} \pmod{\Phi_n(q)}$$

is. Unfortunately, the situation seems complicated. For example, we have

$$\sum_{\sigma \in \mathcal{C}_7} q^{\text{inv}\,\sigma} \equiv 102 + 56q + 38q^2 + 144q^3 - 14q^4 + 170q^5 \pmod{[7]_q}$$

and

$$\sum_{\sigma \in \mathcal{C}_9} q^{\text{inv}\,\sigma} \equiv 2692 - 3980q + 4690q^2 - 2386q^3 + 776q^4 + 1004q^5 \pmod{\Phi_9(q)}$$

So, we may ask whether for each $n \ge 2$, there exists a subset $X_n \subset S_n$ with $|X_n| = (n-1)!$ such that

$$\sum_{\sigma \in X_n} q^{\operatorname{inv} \sigma} \pmod{\Phi_n(q)}$$

could give another q-analogue of Wilson's congruence.

Acknowledgment

We are grateful to the anonymous referee for his/her very helpful comments on this paper.

References

- [1] R. Chapman, H. Pan, q-analogues of Wilson's theorem, Int. J. Number Theory 4 (2008) 539–547.
- [2] E. Deutsch, B.E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (2006) 191–215.
- [3] J. Haglund, The q, t-Catalan Numbers and the Space of Diagonal Harmonics, With an appendix on the combinatorics of Macdonald polynomials, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008.
- [4] D. Kim, J.S. Kim, A combinatorial approach to the power of 2 in the number of involutions, J. Comb. Theory, Ser. A 117 (2010) 1082–1094.
- [5] M. Konvalinka, Divisibility of generalized Catalan numbers, J. Comb. Theory, Ser. A 114 (2007) 1089–1100.
- [6] H. Pan, A q-analogue of Lehmer's congruence, Acta Arith. 128 (2007) 303–318.
- [7] H. Pan, Congruences for q-Lucas numbers, Electron. J. Comb. 20 (2013) 29.
- [8] J. Peterson, Beviser for Wilsons og Fermats Theoremer, Tidsskr. Math. 2 (1872) 64-65.

- [9] A. Postnikov, B.E. Sagan, What power of two divides a weighted Catalan number?, J. Comb. Theory, Ser. A 114 (2007) 970–977.
- [10] G.-C. Rota, B.E. Sagan, Congruences derived from group action, Eur. J. Comb. 1 (1980) 67–76.
- [11] B.E. Sagan, Congruences via Abelian groups, J. Number Theory 20 (1985) 210-237.
- [12] B.E. Sagan, Congruence properties of q-analogs, Adv. Math. 95 (1992) 127–143.