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ABSTRACT 33 

Aims/hypothesis: Type 2 diabetes (T2D) and increased liver fat content (LFC) alter lipoprotein profile and 34 

composition and impair liver substrate uptake. Exercise training mitigates T2D and reduces LFC, but the 35 

benefits of different training intensities on lipoprotein classes and liver substrate uptake are unclear. The 36 

aim of this study was to evaluate the effects of moderate-intensity continuous (MICT) or sprint interval 37 

training (SIT) on LFC, liver substrate uptake, and lipoprotein profile in subjects with normoglycemia or 38 

prediabetes/T2D. 39 

Methods: We randomized fifty-four subjects (normoglycemic n=28, prediabetic/T2D n=26, aged=40-55 40 

years) to perform either MICT or SIT for two-weeks and measured LFC with MRS, lipoprotein composition 41 

with NMR, and liver glucose uptake (GU) and fatty acid uptake (FAU) using PET. 42 

Results: At baseline, prediabetic/T2D group had higher LFC, impaired lipoprotein profile and lower whole-43 

body insulin sensitivity and aerobic capacity compared to normoglycemic group. Both training modes 44 

improved aerobic capacity (p<0.001) and lipoprotein profile (reduced LDL and increased large HDL 45 

subclasses) (all p<0.05) with no training regimen (SIT/MICT) or group effect (normoglycemic or 46 

prediabetic/T2D). LFC tended to reduce in prediabetic/T2D compared to normoglycemic group post-47 

training (p=0.051). When subjects were divided according to LFC (High LFC>5.6% and low LFC<5.6%), 48 

training reduced LFC in subjects with high LFC (p=0.009) and only MICT increased insulin-stimulated liver 49 

GU (p=0.03). 50 

Conclusion: Short-term SIT and MICT are effective in reducing LFC in subjects with fatty liver and in 51 

improving lipoprotein profile regardless of baseline glucose tolerance. Short-term MICT is more efficient in 52 

improving liver insulin sensitivity compared to SIT. 53 

 54 

 55 



3 

Clinical trial number: NCT01344928 56 

Keywords: Liver fat content; liver glucose uptake; sprint interval training; lipoprotein profile and exercise. 57 

List of abbreviations: LFC, liver fat content; T2D, type 2 diabetes; MICT, moderate-intensity continuous 58 

training; SIT, sprint interval training, MRS, magnetic resonance spectroscopy; NMR, nuclear magnetic 59 

resonance; GU, glucose uptake; FAU, fatty acid uptake; PET, positron emission tomography; LDL, low 60 

density lipoprotein; HDL, high density lipoprotein; EGP, endogenous glucose production; MRI, magnetic 61 

resonance imaging; OGTT, oral glucose tolerance test; [18F]FTHA, 14(R,S)-[18F]fluoro-6-thia-heptadecanoic 62 

acid; [18F]FDG, 2-[18F]fluoro-2-deoxy-D-glucose; ALAT, alanine transaminase; ASAT, aspartate transaminase; 63 

GT, gamma-glutamyltransferase; CRP, C reactive protein. 64 

New and Noteworthy 65 

● In short-term both SIT and MICT reduce liver fat content and improve lipoprotein profile, however 66 

MICT seems to be more preferable in improving liver insulin sensitivity. 67 

68 
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INTRODUCTION 69 

Liver is an important determinant of plasma glucose and fatty acid metabolism (34). In obesity and insulin 70 

resistance, impairments in hepatic metabolism and endogenous glucose production (EGP) (15; 26) as well 71 

as increased hypertriglyceridemia increase the risk for type 2 diabetes (T2D) (4; 47). Moreover, in obese 72 

and overweight sedentary subjects, accumulation of excessive triglycerides in liver, known as hepatic 73 

steatosis, leads to impaired liver function (decreased hepatic insulin clearance (22) and increased EGP 74 

(36)); decreased liver insulin-stimulated glucose uptake (GU) (4) and decreased liver blood flow (33). In 75 

obesity and insulin resistance excess visceral fat mass increases the free fatty acid delivery to the liver. The 76 

increased free fatty acid delivery to the liver further contributes to the increased liver free fatty acid 77 

uptake which has been shown to be associated with hepatic steatosis (47). Furthermore, hepatic steatosis 78 

contributes in the development of metabolic syndrome (50) and cardiovascular diseases (43). 79 

The accumulation of fat into the liver has been shown to be associated with dyslipidemia both in 80 

normoglycemic (20) and T2D subjects (19). The dyslipidemia associated with hepatic steatosis affects both 81 

the lipoprotein subclass profile and composition. In fact, it has been shown by Toledo et al. that in T2D 82 

subjects, the severity of dyslipidemia depends on the degree of hepatic steatosis (44). Moreover, recent 83 

studies have shown that the distribution of HDL subclasses predict the risk of acquiring T2D, with small HDL 84 

having higher risk and large HDL protecting against it (28). 85 

Exercise training reduces liver fat content (LFC) both in subjects with and without T2D even in the absence 86 

of weight loss (10; 18). In addition, training improves liver function and the lipoprotein profile 87 

independently of weight reduction (11; 18; 23; 41). Several studies have suggested a dose-response 88 

relationship between physical activity and health benefits (8), with increasing volume of physical activity 89 

achieving the most beneficial outcomes. Even though the health benefits of regular physical exercise 90 

training on chronic diseases have been known for long (24), adherence among the general population still 91 

remains low as lack of time being one of the main constraints (45). Therefore, many studies are focusing on 92 
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establishing a time-efficient dose of exercise training, which can be implemented and accepted by the 93 

general population on a larger scale. 94 

Gibala et al first demonstrated that two weeks of sprint interval training improves exercise performance 95 

similarly to moderate-intensity continuous training (MICT). Thereafter, we and others have shown that SIT 96 

rapidly induces marked improvements in aerobic capacity (6; 25), skeletal muscle performance (25) and 97 

whole-body insulin sensitivity in healthy subjects as well as in patients with cardio-metabolic diseases (3; 98 

48). Recently, with the same dataset as in this study, we showed that only MICT improved intestinal insulin 99 

sensitivity while both SIT and MICT decreased the FAU in the intestine (29). To our knowledge, it is unclear 100 

how SIT challenges liver and whether it leads to positive exercise training-induced responses in liver 101 

metabolism and function. 102 

The purpose of the current study was to compare the effects of two weeks of SIT and MICT on LFC, liver 103 

substrate uptake and lipoprotein subclasses in subjects with normoglycemia and prediabetes/T2D. We 104 

hypothesized that there would be impairments in the lipoprotein profile and liver GU in prediabetic/T2D 105 

compared to normoglycemic group at baseline and exercise training would reduce LFC and FAU in 106 

prediabetic/T2D. In addition, we hypothesized that MICT would induce more significant improvements in 107 

liver metabolism due to the higher training volume-induced demands compared to SIT. 108 

109 
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MATERIALS AND METHODS 110 

The present study is a part of the larger study entitled “The effects of short-term high-intensity interval 111 

training on tissue glucose and fat metabolism in healthy subjects and in patients with type 2 diabetes” 112 

(NCT01344928). The study was approved by the local ethical committee of the Hospital district of South-113 

Western Finland (decision 95/180/2010 §228) and carried out in compliance with the declaration of 114 

Helsinki. The purpose, nature and potential risks involved with the study were explained in detail and 115 

written informed consent was obtained before any measurements were performed. 116 

Subjects 117 

The study subjects were recruited in two phases. In the first phase, untrained normoglycemic (healthy) 118 

men and in the second phase, untrained prediabetic/T2D subjects (men + women) were recruited. The 119 

inclusion criteria for normoglycemic group has been described in detail previously (21). In the second 120 

phase (prediabetic/T2D group recruitment), due to the lack of male volunteers also females were included 121 

into the study. The inclusion and exclusion criteria for the prediabetic/T2D groups have been explained in 122 

detail previously (12). The groups were randomized into SIT and MICT as previously described (12). Given 123 

the nature of the intervention, no blinding was used. In total 54 sedentary 40-55 year-old subjects, of 124 

whom 28 were normoglycemic men and 26 prediabetic/T2D men or women were recruited in this study 125 

(Fig. 1a). Out of 26 prediabetic/T2D subjects (male n=16, female n=10), 17 met the criteria of T2D and 9 126 

had either impaired fasting glucose concentrations and/or impaired glucose tolerance (1). Out of 17 T2D 127 

subjects, 13 were treated with oral hypoglycaemic medication (11 metformin; 5 DPP-IV (sitagliptin) and 1 128 

sulphonylurea), while 4 subjects were newly diagnosed and did not take any medication for T2D. None of 129 

the prediabetic/T2D subjects were on insulin and two of females were on contraceptives. In addition, 7 130 

prediabetic/T2D subjects were taking statins. In total, seven subjects dropped out during the intervention, 131 
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one due to exercise-induced hip pain, one due to training induced migraine, one due to claustrophobic 132 

feeling within the MRI scanner, and four due to personal reasons. 133 

Study design 134 

Measurements were performed during three different visits before and after the training intervention as 135 

detailed in (Fig. 1b). An overnight fast for at least 10h was required before PET measurements. Participants 136 

were also asked to abstain from any caffeinated and alcoholic drinks, avoid strenuous physical exercise and 137 

stop all oral hypoglycaemic medication 48 h prior to the measurements. After two weeks of exercise 138 

training intervention, follow up studies were repeated, starting on the second day (∼48 h) after the last 139 

exercise training session. The performed measurements are described in the Fig. 1b. 140 

Exercise interventions 141 

Both SIT and MICT groups exercised three times a week for two weeks. All six training sessions were 142 

performed under supervision. The training protocols have been explained previously (21). Briefly, each SIT 143 

session consisted of 4-6 x 30s exercise bouts of all-out cycling efforts (Wingate protocol) with 4 min of 144 

recovery between the bouts (during the recovery period subjects remained still or continued to do 145 

unloaded cycling). Each bout of SIT started with 5 seconds of acceleration to maximal cadence followed by 146 

a sudden increase in load which was 7.5% of the whole-body weight in kg for normoglycemic subjects and 147 

10% of fat-free mass in kg for prediabetic/T2D subjects (Monark Ergomedic 828E, Monark, Vansbro, 148 

Sweden). MICT training consisted of 40-60 min of cycling at moderate intensity 60% of VO2peak intensity 149 

(Tunturi E85, Tunturi Fitness, Almere, Netherlands). The cycling duration was increased by 10 min after 150 

every other session until 60 min was reached in last two sessions. 151 

 152 

Maximal exercise test 153 
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An incremental bicycle ergometer test (Ergoline 800s, VIASYS Healthcare, USA) with direct respiratory 154 

measurements using a ventilation and gas exchange (Jaeger Oxycon Pro, VIASYS Healthcare, Germany) was 155 

used to measure the maximal oxygen uptake (VO2peak), as described previously (21). Initial exercise 156 

intensity was 50 W which was increased by 30 W after every two minutes until volitional exhaustion.  157 

Mean oxygen consumption at the highest 1 min was expressed as VO2peak. The workload at the last two 158 

minutes of the test was averaged and used as a measure for maximal performance. The peak respiratory 159 

exchange ratio was ≥1.15 and peak blood lactate concentration, measured from capillary samples obtained 160 

immediately and 1 min after exhaustion (YSI 2300 Stat Plus, YSI Incorporated Life Sciences, USA), was ≥8.0 161 

mmol∙L-1 for all the tests. A peak heart rate (HR) (RS800CX, Polar Electro Ltd., Kempele, Finland) within 10 162 

beats of the age-appropriate reference value (220 – age) was true in all except one participant in the both 163 

groups and in both pre- and post-training tests. Therefore, the highest value of oxygen consumption was 164 

expressed as VO2peak and not VO2max. 165 

Lipoproteins subclasses 166 

Lipid and lipoprotein metabolic biomarkers were quantified from fasting serum samples using high-167 

throughput proton NMR metabolomics (Nightingale Health Ltd, Helsinki, Finland). This technique provides 168 

quantification of 14 lipoprotein subclasses. These 14 lipoprotein subclass sizes were defined as follows: 169 

extremely-large VLDL (very low density lipoprotein) with particle diameters from 75nm upwards and a 170 

possible contribution of chylomicrons, five VLDL subclasses; extra-large, large, medium, small, and extra-171 

small, IDL (intermediate density lipoprotein), three LDL (large density lipoprotein) subclasses; large, 172 

medium, and small, and four HDL (high density lipoprotein) subclasses; extra-large, large, medium, and 173 

small. The following components of the lipoprotein subclasses were quantified: total lipids, phospholipids, 174 

triglycerides, cholesterol, free cholesterol, and cholesterol esters. The details of the experimentation have 175 

been described previously (39). 176 

PET scanning 177 
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PET studies were conducted after an overnight fast. Radiotracers 14(R,S)-[18F]fluoro-6-thia-heptadecanoic 178 

acid ([18F]FTHA) and 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) were used to measure the liver FAU and 179 

GU, respectively. On the first PET scan session, liver FAU was measured using [18F]FTHA PET (35) during 180 

fasting state. [18F]FTHA radiotracer (156 [SEM 1.1] MBq) was injected and dynamic imaging of the 181 

abdominal region (frames 3 x 300 s) were acquired starting at 46 minutes after the tracer injection. On the 182 

second day, liver GU was measured using [18F]FDG under euglycemic hyperinsulinemic clamp. The 183 

euglycemic hyperinsulinemic clamp technique was used as previously described (5). On average 91 [SEM 2] 184 

minutes after the start of the clamp, and after 47 min of [18F]FDG (157 [SEM 0.9] MBq) injection abdominal 185 

region (frames 3 x 300 s) were acquired. Arterialized blood samples were obtained during [18F]FTHA and 186 

[18F]FDG scans to measure the plasma radioactivity for calculating the tracer input function. During 187 

[18F]FTHA scans blood samples were also collected to measure [18F]FTHA metabolites for correcting the 188 

plasma input function (27). Automatic gamma counter (Wizard 1480, Wallac, Turku, Finland) was used to 189 

measure the plasma radioactivity. CT imaging was acquired for anatomical references. 190 

Image analysis 191 

The PET imaging data was corrected for dead time, decay and photon attenuation, and was reconstructed 192 

using 3D-OSEM method. Carimas 2.7 (www.pet.fi/carimas) software was used for image analysis. Three-193 

dimensional volumes of interest (3-D VOIs) were drawn on the liver, being cautious about the movement 194 

of the diaphragm and avoiding major vessels in the liver. Tissue time activity curves were obtained from 195 

the 3-D VOIs, and graphical analysis was used to quantify the fractional uptake rate (31). GU and FAU rates 196 

were calculated by multiplying corresponding fractional uptake rate values by the mean plasma glucose or 197 

FFA level during the imaging period, respectively. Whole liver GU and FAU were obtained by multiplying 198 

liver GU and FAU with liver volume, respectively. Lean liver GU and FAU were obtained by subtracting the 199 

LFC from liver volume and multiplying it with liver GU and liver FAU. Due to technical problems in the PET 200 
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scanner and tracer production, the final number of subjects for liver glucose and free fatty acid uptake 201 

analyses were 20 and 17 in the high LFC group and 19 and 16 for the low LFC group, respectively. 202 

MRS and MRI measurements 203 

MRS and MRI studies were performed using Philips Gyroscan Intera 1.5T CV Nova Dual scanner (Philips 204 

Medical Systems, the Netherlands). LFC and volume were measured as previously described (32). 205 

Abdominal subcutaneous adipose tissue and visceral adipose tissue depots were determined according to 206 

the classification by Abate et al. (2). Abdominal fat masses were analysed from the image slice where the 207 

xiphoid process was seen to the image slice where both the femur heads were visible using SliceOmatic 208 

software v. 4.3 (http://www.tomovision.com/products/sliceomatic.htm). To obtain the mass, the pixel 209 

surface area was multiplied by the slice thickness and the density of adipose tissue 0.9196 kg/L (2). 210 

Glycemic status, insulin sensitivity and body composition 211 

Whole-body insulin-stimulated glucose uptake (M-value) was determined during the euglycemic 212 

hyperinsulinemic clamp as previously described (5). Insulin was infused at a continuous rate of 1 213 

mU/kg/min (Actrapid; Novo Nordisk, Copenhagen, Denmark) and blood samples were taken every 5-10 214 

min to adjust the exogenous glucose infusion and to maintain the plasma glucose concentration as closely 215 

as possible to the level of 5 mmol/L. Insulin (100 U/mL) infusion (Actrapid, Novo Nordisk, Copenhagen, 216 

Denmark) was started with the rate of 120 mU/min/m2 during the first 4 min. After 4 min and up to 7 min, 217 

infusion rate was reduced to 80 mU/min/m2, and, after 7 min to the end of the clamp, it was kept constant 218 

at 40 mU/min/m2. Glucose (20%) infusion was started 4 min after the start of the insulin infusion with a 219 

rate of 0.5 x subject’s weight kg. At 10 min, glucose infusion was doubled, and after that further adjusted 220 

according to plasma glucose levels to maintain the steady state level of 5 mmol/L. Arterialized venous 221 

blood samples were collected before the clamp and every 5-10 min to measure the plasma glucose 222 

concentration for adjusting the glucose infusion rate. Arterialized plasma glucose was determined in 223 
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duplicate by the glucose oxidase method (Analox GM9 Analyzer; Analox Instruments LTD, London, United 224 

Kingdom). Whole body insulin-stimulated glucose uptake rate (M-value) was calculated from the measured 225 

glucose values collected when the subjects had reached the steady state during the PET scan that was 226 

started 91 min [SE 2] after the start of the clamp. [18F]FDG-PET study was performed when the subject had 227 

reached the stable glucose concentrations at the level of 5 mmol/L (within 5% range for at least 15 min) 228 

after positioning into the PET scanner.  EGP was calculated from the PET data (14). Alanine transaminase 229 

(ALAT), aspartate aminotransferase (ASAT), total cholesterol, triacylglycerols, and HDL concentrations were 230 

measured by automated enzymatic method (Cobus 8000, Roche diagnostics GmbH, Mannheim, Germany). 231 

LDL was calculated using the Friedewald equation (7). Finally, whole-body fat percentage was measured 232 

using a bio impedance monitor (InBody 720, Mega Electronics, Kuopio, Finland). 233 

Statistics 234 

The sample size for the whole study (NCT01344928) was based on skeletal muscle (quadriceps femoris) 235 

glucose uptake (6; 37). No sample size calculation was performed specifically for the parameters of liver. 236 

Normal distribution of the variables was tested using Shapiro-Wilk test and evaluated visually. Logarithmic 237 

or square root transformations were done when appropriate to achieve the normal distribution. Statistical 238 

analyses were performed using hierarchical mixed linear models with compound symmetry covariance 239 

structure for repeated measurements. The model included one within-factor (Time; overall mean change 240 

between baseline and measurement after intervention), two between-factors (Diabetic status (Dia): 241 

Normoglycemic/prediabetic and T2D; Training: SIT/MICT) and all their interactions. In the comparison 242 

between normoglycemic/prediabetic and T2D group, women were excluded to avoid mixing of the effects 243 

of gender and glucose intolerance (Tables 2, 3 and 4 and Fig. 2). In the comparison between high LFC and 244 

low LFC groups, all subjects (men and women) were pooled together using a model that included one 245 

within-factor (time), between-factor group (high LFC/low LFC, SIT/MICT) and interaction terms (LFC*time, 246 

difference between high LFC and low LFC group and training*time, differences between training modes) 247 
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(Table 5 and Fig. 3 and 4). We also took both medication status (taking/not taking oral hypoglycaemic 248 

medication; taking/not taking statins) and gender into account in all the analyses. Subjects with one value, 249 

but another missing (drop outs, technical problems) are accounted for by restricted maximum likelihood 250 

estimation within the linear mixed models. Therefore, model-based means (SAS least square means) and 251 

95% confidence intervals (CI) are reported for all the parameters. Correlations are reported as Pearson’s 252 

correlation coefficients. 253 

All tests were performed as 2-sided, with a significance level set at 0.05. The analyses were performed 254 

using SAS System, version 9.3 for Windows (SAS Institute Inc., Cary, NC, US). 255 

RESULTS 256 

 The effects of exercise training were analysed separately between prediabetic and T2D men (Table 1). As 257 

most of the changes in the variables were similar, the prediabetic and T2D men were combined into one 258 

group. Consequently, the effects of exercise training have been compared between normoglycemic and 259 

prediabetic/T2D men. The effects of exercise training between men and women are shown in 260 

Supplementary table 1. 261 

At baseline, prediabetic/T2D men were heavier, had higher body adiposity, impaired glucose and lipid 262 

profile, and had lower whole-body insulin sensitivity and aerobic capacity than the normoglycemic men (all 263 

baseline p<0.05, Table 2). Both SIT and MICT improved whole-body insulin sensitivity similarly in both the 264 

normoglycemic and prediabetic/T2D men and decreased slightly but significantly HbA1c, whole-body fat 265 

percentage and depot specific adiposity (all time p<0.05, Table 2). Both SIT and MICT improved the aerobic 266 

capacity (VO2peak) (time p<0.001) but the improvement in the SIT group was significantly different 267 

compared to the MICT group with SIT group inducing greater increase (training*time p=0.005, Table 2). 268 

At baseline the prediabetic/T2D group had a significantly impaired lipoprotein profile, both subclass 269 

distribution (VLDL, IDL, LDL and HDL) and composition (lipids, phospholipids, cholesterol, cholesterol 270 
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esters, free cholesterol and triglycerides) compared to normoglycemic group (Table 3). Both SIT and MICT 271 

improved lipid, phospholipid, free cholesterol, cholesterol and cholesterol esters in extra-large HDL, while 272 

there was a significant reduction in various components of IDL, LDL and HDL subclasses (Fig. 2 a-f). There 273 

were significant correlations between the lipoprotein subcomponents and M-value, VO2peak and liver 274 

parameters (Table 4). After the training intervention, there was no significant change in the VLDL 275 

subclasses and composition. In the analyses both diabetic medication and statins were taken as covariate 276 

to see if medication affected the training response, but it did not have any effect on the results. 277 

LFC, liver volume, whole-liver GU, EGP and liver enzymes (alanine transaminase (ALAT), aspartate 278 

transaminase (ASAT) and gamma-glutamyltranspeptidase (GT)) were higher in the prediabetic/T2D 279 

compared to the normoglycemic men (Fig. 3a and Table 2). After training, there was significant reduction 280 

in the liver enzymes (ALAT, ASAT and GT) and C-reactive protein (CRP) without any differences between 281 

the groups or training modes (Table 2). No training response was observed in liver GU, FAU or EGP in either 282 

groups. 283 

Regarding LFC, the training response differed between the normoglycemic and prediabetic/T2D men 284 

(Dia*time p=0.03), with a tendency to reduce LFC in the prediabetic/T2D men (p=0.051 time effect for 285 

prediabetic/T2D men) (Fig. 3a and b). During further data analysis, we observed that in the normoglycemic 286 

group seven subjects had LFC above 5.6%, which has been recommended as the cut-of value for normal 287 

LFC (42), whereas seven prediabetic/T2D subjects had LFC below 5.6%. Next, we pooled all subjects (men + 288 

women) together and divided them into low (<5.6%) and high (>5.6%) LFC groups. The high LFC group had 289 

522% higher LFC (Fig. 3c) compared to low LFC group. After training LFC reduced by -13% (p=0.009) only in 290 

the high LFC group (Fig. 3c). LFC correlated negatively with whole-body insulin sensitivity in all subjects 291 

before and after the intervention (Pre: r=-0.67, p<0.001; Post: r=-0.62, p<0.001). Interestingly, in the same 292 

comparison with high LFC and low LFC groups we saw that MICT improved insulin-stimulated liver GU by 293 

7%, while no change was observed after SIT (Fig. 4). There were no differences between SIT and MICT in 294 
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any other parameters except fasting plasma FFA which reduced significantly only after MICT (Table 5). We 295 

found no differences in EGP. In the low LFC group EGP correlated inversely with aerobic capacity (r=-0.62, 296 

p<0.01). 297 

DISCUSSION 298 

We studied the effects of high intensity low volume SIT and low intensity high volume MICT on LFC, 299 

lipoprotein subclasses and liver metabolism in untrained, middle-aged subjects with normoglycemia or 300 

prediabetes/T2D using MRS, NMR and PET. As expected prediabetic/T2D group had higher LFC and liver 301 

enzyme levels and impaired lipoprotein profile compared to normoglycemic subjects (men only) at 302 

baseline. However, contrary to our hypothesis no differences were found in the liver substrate uptake 303 

between the normoglycemic and prediabetic/T2D groups. After two weeks’ training intervention both SIT 304 

and MICT reduced LFC, liver enzymes and inflammatory markers in prediabetes/T2D subjects (men only) or 305 

subjects with high LFC (men + women). Training improved lipoprotein subclass profile similarly in all 306 

subjects regardless of training mode. MICT increased liver insulin stimulated GU and there was a non-307 

significant reduction in liver free fatty acid uptake whereas no changes were found after SIT (men + 308 

women). The effects of training on liver substrate uptake were independent of baseline glucose tolerance 309 

or LFC. 310 

MICT improves liver insulin sensitivity and leads to a non-significant reduction in liver free fatty acid 311 

uptake 312 

Contrary to our hypothesis, we did not find baseline differences in insulin-stimulated liver GU when 313 

expressed per 100 g of tissue between the normoglycemic and prediabetic/T2D (men only) and high 314 

LFC/low LFC group (men + women). Previous data from our and other groups have shown both similar (47) 315 

or impaired insulin-stimulated liver GU in subjects with T2D (15) and increased LFC (15; 33). In the studies 316 

showing impaired insulin-stimulated liver GU the subjects have been older than the subjects in this study 317 
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and the LFC has been higher than 20%, which may explain discrepancies between this and previous studies 318 

(15; 33). 319 

One of the key finding in the present study was the improvement in liver GU (men + women) after the 320 

training in MICT but not in the SIT group. This finding agrees with our recent data regarding intestinal 321 

insulin sensitivity with the same subjects (29), where the insulin-stimulated colonic glucose uptake 322 

improved only after MICT and not after SIT. One explanation for this finding might be the difference in the 323 

energy expenditure between SIT and MICT. When we calculated the energy consumption for all training 324 

sessions based on the effective training time, MICT had ∼ 691% higher total energy consumption 325 

compared to SIT (SIT 392 (355, 429) and MICT 2710 (2474, 2946) kcal). However, according to Skelly et al. 326 

the 24-hour energy expenditure is comparable between SIT and MICT due to higher post training energy 327 

expenditure after SIT (38). This might explain the similar results we found for most of the parameters in 328 

our study. 329 

Another explanation for the difference between the training modes can be the negative association 330 

between liver GU and the plasma FFA level (16). It has been shown that increase in the plasma FFA level 331 

impairs the insulin-stimulated liver GU (16). This is because plasma FFA has an allosteric inhibitory effect 332 

on glucokinase enzyme (which phosphorylates glucose), which leads to less trapping of glucose inside the 333 

liver cells resulting in a lower liver GU. Interestingly, in our study, plasma FFA levels reduced only in the 334 

MICT group possible explaining the increase in the liver GU in the MICT group only. Moreover, change in 335 

fasting plasma FFA correlated inversely with the change in the liver GU only in MICT group (r=-0.60, 336 

p=0.01). 337 

Liver plays a very important role in the whole-body FFA metabolism, each mL of liver has been shown to 338 

utilize almost 50 times more FFA compared to 1 g of muscle (17). Therefore, even small changes in liver 339 

FFA metabolism warrant attention. There was a non-significant decrease in liver FAU (p = 0.10) after MICT 340 

but not after SIT in our study (men + women). This decrease in FAU only after MICT is probably due to the 341 
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greater reduction in the circulating fasting FFA levels due to higher training volumes and energy 342 

expenditure than SIT (6). As most of the liver FAU occur during post-prandial period (13; 46), it is possible 343 

that the training period was too short to induce training responses great enough to be detectable at fasting 344 

conditions. Unfortunately, due to the radiation dose limitations, liver FAU was measured only at fasting 345 

conditions in the present study. 346 

Reduction in LFC 347 

Regarding LFC, the training response differed between the normoglycemic and prediabetic/T2D group 348 

(men), with a non-significant reduction in LFC in the prediabetic/T2D group (p=0.051) while no change was 349 

observed in the normoglycemic group. Interestingly, when we further divided the subjects (men + women) 350 

into high (LFC >5.6%) and low (LFC <5.6%) LFC groups (42), we saw that just two weeks of exercise training 351 

reduced the LFC by -13% in subjects with high LFC to start with. However, there was no reduction in LFC in 352 

low LFC group. In the present study the training intervention was short, consisting only of six training 353 

sessions and thus probable not long enough to reduce LFC in subjects with LFC already at a normal level. 354 

The tendency to decrease LFC in prediabetic/T2D (men) group and the significant decrease in LFC in the 355 

high LFC group (men + women) were independent of the training mode in both comparisons. This finding 356 

agrees with a recent study done on obese subjects with non-alcoholic fatty liver diseases where they 357 

performed either four weeks of high intensity interval training (HIIT) or MICT and showed that both 358 

training modes reduced LFC without any differences between training modes (49). Overall notable in this 359 

study is that people who are not that obese (BMI below or slightly above 30) already have high LFC and 360 

complications of diabetes. 361 

Improvement in lipoprotein profile and protection against diabetes 362 

At baseline, the lipoprotein profile was significantly impaired in prediabetic/T2D compared to 363 

normoglycemic group (men only). However, no changes were observed in VLDL subclasses and their 364 
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components. This is probably because VLDL has a faster turnover rate compared to LDL and HDL, and the 365 

effects of acute and long-term exercise training on VLDL have been shown to be temporary and disappear 366 

within a few hours after the last exercise session (30; 40). However, all the IDL (except the IDL triglyceride 367 

content) and LDL subclasses and components decreased without any differences between the 368 

normoglycemic and prediabetic/T2D (men only) (Fig. 2 a-f). Thus, short-term exercise training improves the 369 

lipoprotein profile both in subjects with normal lipoprotein profile but also in subjects with impaired 370 

lipoprotein profile regardless of their baseline glucose tolerance. Interestingly, both SIT and MICT had a 371 

protective effect for diabetes by efficiently reducing the ones associated with risk of acquiring diabetes and 372 

improving the ones associated with diabetes prevention. In our study, the reduction in the small LDL 373 

lipoprotein composition is noteworthy as it has been shown that smaller LDL particles are associated with 374 

the risk of acquiring diabetes (28). While for HDL subclasses, we saw an improvement in the large HDL 375 

subclasses and reduction in the small HDL subclasses. The improvement of large HDL is very vital as shown 376 

in previous studies that the larger HDL carries lower risk of acquiring diabetes while the smaller HDL carries 377 

high risk of acquiring diabetes (28). The changes in these sub fractions are significant, as Garvey et al. had 378 

also demonstrated an association with the progression of insulin resistance and the increase in VLDL, LDL 379 

and small HDL concentrations (9). Additionally, we found a positive correlation between extra-large HDL 380 

and M-value and negative correlations between extra-large HDL and liver volume and ALAT. While with 381 

small HDL we found interesting positive correlation with LFC (Table 4). 382 

Limitations 383 

There are some limitations in this study which warrant consideration. Subjects were only asked to maintain 384 

their normal dietary habits and no diet control was performed, thus the effect of diet on weight reduction 385 

and body adiposity post training cannot be ruled out when critically interpreting the data. Also, the 386 

findings in VO2peak needs to be interpreted in relation to possible measurement error (12). Liver GU and 387 

FAU were studied in different metabolic environments, [18F]FDG during euglycemic hyperinsulinemic clamp 388 
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and [18F]FTHA during fasting, corresponding to the conditions where GU and FAU are at their highest, 389 

respectively. Due to the radiation dose limitations, [18F]FDG and [18F]FTHA studies were not possible to 390 

perform both at fast and during clamp. No control subjects were included in the study. The power 391 

calculations were made for the whole study (NCT01344928) based on its primary outcome, skeletal muscle 392 

glucose uptake and no sample size calculation was performed specifically for the measures of the present 393 

study. Finally, the duration of the training intervention was only two weeks and likely more differences 394 

would be revealed with longer training period. 395 

Conclusion 396 

In conclusion, training reduced LFC in prediabetic/T2D subjects and subjects with fatty liver but not in 397 

subjects with normoglycemia or low liver fat content. Training improved lipoprotein profile, by reducing 398 

lipoproteins associated with risk of acquiring T2D and improving the ones associated with diabetes 399 

prevention, and liver insulin sensitivity regardless of baseline glucose tolerance. Regarding the training 400 

modes, MICT was more effective in improving liver insulin sensitivity compared to SIT, while the training 401 

mode had no effect on LFC or lipoprotein profile. 402 
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Figure legends 411 

Figure 1. a) Consort flow diagram showing the total number of subjects recruited and analysed. SIT, sprint 412 

interval training; MICT, moderate-intensity continuous training. b) Study design: OGTT, oral glucose tolerance 413 

test; VO2peak, aerobic capacity; MRS, magnetic resonance spectroscopy; MRI, magnetic resonance imaging; 414 

PET, positron emission tomography; [18F]FTHA, 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid; [18F]FDG, 2-415 

[18F]fluoro-2-deoxy-D-glucose; SIT, sprint interval training; MICT, moderate-intensity continuous training. 416 

Figure 2. Effects of two weeks of exercise training on subcomponents of lipoproteins in (normoglycemic + 417 

prediabetic/T2D only men n = 44). a) Lipids, b) Phospholipids, c) Cholesterol, d) Cholesterol esters, e) Free 418 

cholesterol and f) Triglycerides. Intermediate density lipoprotein (IDL); LLDL (large low density lipoprotein); 419 

MLDL (medium low density lipoprotein); SLDL (small low density lipoprotein); XLHDL (extra-large high density 420 

lipoprotein); LHDL (large high density lipoprotein); MHDL (medium high density lipoprotein) and SHDL (small 421 

high density lipoprotein). All values are expressed as model-based means and bars are confidence intervals 422 

[95% CI]. *p<0.05 value for time interaction (i.e. the groups behaved similarly for the change). 423 

Figure 3. Liver fat content (LFC) before and after two weeks of intervention. a) effects of two weeks of SIT and 424 

MICT on LFC in prediabetic/T2D (normoglycemic + prediabetic/T2D only men n = 44) and, b) effects of SIT and 425 

MICT on LFC in high LFC and low LFC group (men + women n = 54). The shaded area in (a) denotes normal liver 426 

fat content (≤ 5.6 %). All values are expressed as model-based means and bars are confidence intervals [95% 427 

CI]. *p ≤ 0.05 baseline differences between the normoglycemic and prediabetic/T2D and ***p ≤ 0.001 428 

baseline differences between low LFC and high LFC groups. †† p ≤ 0.01 time effect for the high LFC group. 429 

Figure 4. Insulin-stimulated liver glucose uptake in SIT and MICT groups before and after the training 430 

intervention in all subjects (men + women, n = 54). All values are expressed as model-based means and bars 431 
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are confidence intervals [95% CI]. P-value training*time indicates the change in liver glucose uptake was 432 

different between the training groups. Ϯ p value the improvement in liver glucose uptake in the MICT group 433 

was significant compared to SIT. 434 
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Fig. 1(a).
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Fig. 1(b).

Recruitment

•Subjects n = 54 Male/Female
•Normoglycemic n = 28 (male n = 28); prediabetic/T2D n = 26 (male n = 16, female n = 10)
•Age = 40 – 55 years

Pre 
intervention 

studies

•Day 1 (pre): Screening (Physical examination, VO2peak)
•Day 2: Liver fat content (MRS); volume of abdominal fat (MRI); liver free fatty acid uptake 

([18F]FTHA PET during fasting)
•Day 3: Liver glucose uptake ([18F]FDG PET during euglycemic hyperinsulinemic clamp)

Randomization
and 

intervention

•Two weeks of sprint interval training (SIT) (3 times per week)
OR

•Two weeks of moderate intensity continuous training (MICT) (3 times per week)

Post 
intervention 

studies

•Day 1 (post 48 h): Liver fat content (MRS), volume of abdominal fat (MRI), liver free fatty acid 
uptake ([18F]FTHA PET during fasting)

•Day 2 (post 72 h): Liver glucose uptake ([18F]FDG PET during euglycemic hyperinsulinemic clamp)
•Day 3 (post 96 h): Anthropometry, VO2peak
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Table 1: Effects of exercise training on liver fat content, liver volume, liver substrate uptake and liver enzyme inflammatory profile in prediabetic and T2D men 
(n = 16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter  Prediabetic  T2D   Baseline  Time  Dia*time 

  Pre  Post  Pre  Post       

n  5  4  11  9       

Men/Women*  5    11         

Anthropometrics               

LFC (%)  15.0 [6.8, 23.1]  14.1 [5.9, 22.2]  11.8 [6.0, 17.5]  9.9 [4.1, 15.7]  0.52  0.06  0.48 

Liver volume (mL)  1713 [1370, 2056]  1712 [1367, 2056]  1835 [1592, 2078]  1775 [1532, 2018]  0.55  0.23  0.24 

PET data                

Liver GU                     
(µmol/100g/min)  4.3 [3.9, 4.8]  4.2 [3.7, 4.7]  4.2 [3.9, 4.5]  4.4 [4.0, 4.7]  0.64  0.91  0.39 

Liver  FAU                     
(µmol/100g/min)  10.1 [7.3, 12.9]  10.7 [7.6, 13.8]  8.1 [6.2, 10.0]  8.7 [6.6, 10.9]  0.22  0.52  0.99 

EGP (µmol/min/kg)  18.1 [8.5, 27.8]  10.3 [0.4, 20.2]  18.6 [11.4, 25.9]  13.5 [6.1, 20.9]  0.85  0.01  0.48 

Lean liver GU  78 [58, 99]  83 [67, 98]     76 [55, 97]  83 [68, 99]  0.70  0.84  0.73 

Lean liver FAU  185 [134, 236]  157 [121, 193]  192 [137, 248]  156 [116, 195]  0.39  0.88  0.79 

Inflammatory markers               

CRP§ (mg/L)  3.1 [1.1, 8.6]  1.1 [0.4, 3.3]  1.5 [0.7, 2.9]  0.7 [0.3, 1.5]  0.17  0.01  0.56 

ALAT (U/L)  46.8 [32.8, 60.8]  39.7 [24.6, 54.9]  43.9 [34.5, 53.4]   36.5 [26.4, 46.7]  0.74  0.10  0.97 

ASAT§ (U/L)  36.0 [26.9, 48.2]  29.4 [21.2, 40.8]  29.8 [24.5, 36.3]  23.4 [18.8, 29.1]  0.41  0.06  0.85 

GT§ (U/L)  80.9 [42.7, 153.4]  36.2 [23.5, 55.8]  54.8 [28.1, 106.7]  29.1 [18.6, 45.6]  0.052  0.05  0.54 



*Women were excluded from this analysis. All values are model based means [95% confidence intervals]. LFC, liver fat content; GU, glucose uptake; FAU, fatty acid uptake; EGP, 
endogenous glucose production; CRP, C‐reactive protein; ALAT, alanine transaminase; ASAT, aspartate transaminase; GT, gamma‐glutamyltranspeptidase. (§) Log transformation was 
performed to achieve normal distribution. P‐value for baseline indicates the differences between the prediabetic and type 2 diabetic men. The p‐value for time indicates the change 
between pre‐ and post‐measurements in the whole study group. The p‐value for Dia*time interaction indicates if the change in the parameter was different between prediabetic and 
type 2 diabetic men. Bolded p values are statically significant (p ≤ 0.05) 

 



 

 

Table 2: Subject characteristics between normoglycemic and prediabetic/T2D groups (all men n = 44) before and after exercise intervention. 

Parameter  Normoglycemic  Prediabetic/T2D  Baseline  Time  Dia*time  Training*time 

  Pre  Post  Pre  Post         

N  28    26*           

Age   48 [46, 50]    49 [48, 51]           

Men/Women*, n  28/0    16           

Prediabetic/T2D, n      5/11           

SIT/MICT, n  14/14    9/7           

Anthropometrics                 

Weight (kg)  83.6 [79.7, 87.5]  83.3 [79.4, 87.2]  96.3 [91.2, 101.5]  96.2 [91.0, 101.3]  <0.001  0.22  0.80  0.36 

BMI (kg/m2)  26.1[25.1, 27.1]  26.0 [25.0, 27.0]  30.4 [29.1, 31.8]  30.4 [29.0, 31.7]  <0.001  0.17  0.70  0.30 

Whole body fat§ (%)  22.6 [20.9, 24.3]  21.7 [20.0, 23.3]  28.8 [26.5, 31.2]  28.1 [25.7, 30.4]  <0.001  <0.001  <0.001  0.62 

Subcutaneous fat mass§ (kg)  4.1 [3.7, 4.5]  4.0 [3.6, 4.4]  5.6 [4.9, 6.4]  5.5 [4.9, 6.4]  <0.001  0.03  0.93  0.65 

Visceral fat mass& (kg)  3.1 [2.7, 3.4]  3.0 [2.6, 3.4]  4.2 [5.0, 3.6]  4.1 [4.8, 3.5]  <0.001  0.002  0.54  0.60 

VO2peak (mL/kg/min)  34.2 [32.7, 35.7]  35.7 [34.2, 37.2]  29.3 [27.2, 31.4]  30.0 [27.9, 32.1]  <0.001  0.003  0.23  0.005 

Liver volume§ (mL)  1366 [1282, 1455]  1373 [1289, 1464]  1773 [1628, 1932]  1730 [1587, 1886]  <0.001  0.32  0.12  0.95 

Glucose profile                 

Glucosefasting§ (mmol/L)  5.6 [5.4, 5.8]  5.5 [5.3, 5.7]  6.6 [6.3, 7.0]  6.6 [6.3, 7.0]  <0.001  0.86  0.71  0.83 

Glucoseclamp (mmol/L)  4.9 [4.8, 5.1]  4.9 [4.8, 5.1]  4.8 [4.6, 5.1]  5.0 [4.7, 5.2]  0.40  0.35  0.34  0.86 

Insulinfasting FDGday§ (mU/L)  5.5 [4.3, 7.0]  5.4 [4.2, 6.9]  13.1 [9.3, 18.3]  12.0 [8.5, 17.0]  <0.001  0.46  0.66  0.14 

Insulinclamp (mU/L)  75.4 [69.6, 81.2]  76.5 [70.5, 82.5]  87.6 [79.9, 95.4]   86.0 [77.8, 94.2]  0.02  0.92  0.57  0.46 



 

 

 

 

EGP& (µmol/min/kg)  5.5 [2.4, 8.5]  4.2 [1.2, 7.2]  18.6 [13.5, 23.5]  13.0  [7.8, 18.4]  <0.001  0.38  0.10  0.60 

Whole‐body insulin sensitivity 
(M‐value)§ (µmol/min/kg)  35.3 [30.0, 40.6]  38.7 [33.3, 44.1]  17.5 [10.3, 24.8]  21.6 [14.2, 29.0]  <0.001  <0.001  0.11  0.06 

HBA1c (mmol/mol)  36.9 [35.2, 38.6]  34.8 [33.0, 36.5]  39.6 [37.3, 41.8]  37.5 [35.2, 39.9]  0.08  <0.001  0.75  0.38 

Lipid profile                 

FFAfasting (mmol/L)  0.70 [0.62, 0.77]  0.62 [0.54, 0.70]  0.69 [0.60, 0.78]  0.68 [0.58, 0.78]  0.86  0.04  0.11  0.01 

FFAclamp
& (mmol/L)  0.065 [0.05, 0.08]  0.060 [0.05, 0.07]  0.093 [0.07, 0.12]  0.082 [0.06, 0.10]  0.02  0.15  0.70  0.76 

Cholesterol (mmol/L)  5.0 [4.7, 5.3]  4.5 [4.1, 4.8]  4.8 [4.4, 5.3]  4.4 [3.9, 4.9]  0.51  <0.001  0.57  0.12 

HDL§ (mmol/L)  1.4 [1.2, 1.5]  1.3 [1.2, 1.4]  1.2 [1.1, 1.4]  1.1 [1.0, 1.2]  0.10  <0.001  0.66  0.19 

LDL (mmol/L)  3.1 [2.9, 3.4]  2.8 [2.5, 3.1]  2.7 [2.3, 3.1]  2.6 [2.2, 3.0]  0.09  0.001  0.16  0.12 

Triglycerides§ (mmol/L)  0.9 [0.8, 1.1]  0.8 [0.7, 1.0]  1.7 [1.4, 2.1]  1.5 [1.2, 1.9]  <0.001  0.08  0.96  0.63 

Inflammatory markers                 

CRP§ (mg/L)  1.0 [0.6, 1.7]  0.5 [0.3, 0.9]  1.9 [1.1, 3.5]  0.8 [0.4, 1.6]  0.81  0.001  0.78  0.75 

ALAT§ (U/L)  27.1 [23.1, 31.9]  23.3 [19.7, 27.6]  42.2 [34.0, 52.3]   34.5 [27.5, 43.2]  <0.001  0.001  0.62  0.27 

ASAT§ (U/L)  26.0 [23.2, 29.1]  22.7 [20.1, 25.7]  31.8 [27.3, 37.0]  25.3 [21.4, 29.8]  0.047  0.003  0.40  0.23 

GT§ (U/L)  24.0 [19.0, 30.3]  19.0 [15.0, 24.1]  47.7 [35.0, 65.0]  36.2 [26.3, 49.7]  <0.001  <0.001  0.70  0.59 

PET data                 

Lean liver GU  57 [50, 64]  59 [52, 67]  66 [57, 75]  67 [58, 76]  0.10  0.32  0.77  0.09 

Lean liver FAU  129 [105, 153]  121 [95, 147]  137 [111, 163]  143 [115, 171]  0.60  0.93  0.50  0.25 



 

 

* Women were excluded from the analysis to avoid mixing effects of gender. All values are model based means [95% confidence intervals]. T2D, type 2 diabetes; SIT, Sprint interval training; 
MICT, Moderate intensity continuous training; BMI, body mass index; VO2peak, aerobic capacity; EGP, endogenous glucose production; HbA1c, glycosylated hemoglobin; FFA, free fatty acids; 
HDL, high density lipoprotein; LDL, low density lipoprotein; CRP, C‐reactive protein; ALAT, alanine transaminase; ASAT, aspartate transaminase; GT, gamma‐glutamyltranspeptidase; GU, 
glucose uptake; FAU, fatty acid uptake. (§) Log transformation and (&) square root transformation was performed to achieve normal distribution. P‐value for baseline indicates the differences 
between the normoglycemic and prediabetic/T2D groups. The p‐value for time indicates the change between pre‐ and post‐measurements in the whole study group. The p‐value for Dia*time 
interaction indicates if the change in the parameter was different between normoglycemic and prediabetic/T2D groups. The p‐value for training* time interaction indicates if the change in 
the parameter was different between the SIT and MICT training modes. 



 

 

 



Table 3: The baseline differences between normoglycemic and prediabetes/T2D (all men n = 44)* in 
different lipoprotein components and subclasses. 

Parameter Normoglycemic Prediabetic/T2D* p value 
Lipids (mmol/L)    
    
       Extremely-Large VLDL 0.01 [0.01, 0.02] 0.04 [0.03, 0.05] <.0001 
        Extra-large VLDL 0.03 [0.02, 0.05] 0.09 [0.06, 0.13] <.001 
        Large VLDL 0.17 [0.13, 0.22] 0.35 [0.26, 0.48] <.0001 
        Medium VLDL 0.41 [0.34, 0.50] 0.67 [0.52, 0.87] <.01 
        Small VLDL 0.047 [0.42, 0.54] 0.61 [0.51, 0.72] 0.047 
        IDL 1.06 [0.95, 0.17] 0.81 [0.70, 0.93] <.01 
        Large LDL 1.29 [1.15, 1.44] 0.95 [0.82, 1.11] <.001 
        Medium LDL  0.79 [0.71, 0.87] 0.59 [0.50, 0.69] <.01 
        Small LDL 0.51 [0.46, 0.56] 0.40 [0.34, 0.46] <.01 
        Small HDL 1.10 [1.06, 1.14] 1.19 [1.14, 1.25] <.01 
    
Phospholipids (mmol/L)    
    
        Extremely-Large VLDL 0.001 [0.001, 0.001] 0.004 [0.003, 0.007] <.0001 
        Extra-large VLDL 0.005 [0.003, 0.009] 0.012 [0.007, 0.022] <.0001 
        Large VLDL 0.03 [0.02, 0.04] 0.06 [0.04, 0.08] <.0001 
        Medium VLDL 0.006 [0.004, 0.009] 0.015 [0.009, 0.025] <.001 
        Small VLDL 0.11 [0.10, 0.13] 0.15 [0.13, 0.17] 0.01 
        Extra-small VLDL 0.14 [0.13, 0.15] 0.12 [0.10, 0.13] 0.02 
        IDL 0.29 [0.27, 0.33] 0.22 [0.19, 0.25] <.0001 
        Large LDL 0.33 [0.30, 0.36] 0.25 [0.23, 0.29] <.001 
        Medium LDL  0.20 [0.19, 0.22] 0.17 [0.15, 0.19] 0.02 
        Extra-large HDL 0.16 [0.13, 0.20] 0.10 [0.07, 0.14] 0.02 
        Small HDL 0.54 [0.52, 0.56] 0.65 [0.62, 0.69] <.0001 
    
Cholesterol (mmol/L)    
    
        Extremely-Large VLDL 0.001 [0.001, 0.002] 0.004 [0.002, 0.007] <.001 
        Extra-large VLDL 0.005 [0.003, 0.008] 0.011 [0.007, 0.018] <.001 
        Large VLDL 0.03 [0.02, 0.04] 0.06 [0.04, 0.09] <.001 
        Extra-small VLDL 0.21 [0.19, 0.23] 0.17 [0.15, 0.19] <.001 
        IDL 0.68 [0.61, 0.75] 0.49 [0.41, 0.57] <.01 
        Large LDL 0.90 [0.80, 1.01] 0.62 [0.51, 0.74] <.0001 
        Medium LDL 0.54 [0.48, 0.61] 0.37 [0.30, 0.45] <.01 
        Small LDL 0.33 [0.29, 0.37] 0.23 [0.19, 0.27] <.01 
 
 
 

   



Cholesterol esters (mmol/L)   
    
        Extra-Large VLDL 0.003 [0.002, 0.004] 0.006 [0.004, 0.010] <.001 
        Large VLDL 0.02 [0.01, 0.03] 0.03 [0.02, 0.04] <.001 
        Extra-small VLDL 0.14 [0.13, 0.16] 0.11 [0.10, 0.13] <.001 
        IDL 0.48 [0.43, 0.53] 0.36 [0.30, 0.42] <.01 
        Large LDL 0.64 [0.57, 0.73] 0.44 [0.36, 0.53] <.001 
        Medium LDL 0.39 [0.34, 0.45] 0.25 [0.20, 0.31] <.01 
        Small LDL 0.24 [0.21, 0.27] 0.16 [0.13, 0.19] <.001 
        Small HDL 0.40 [0.38, 0.43] 0.36 [0.33, 0.39] 0.02 
    
Free Cholesterol (mmol/L)    
    
      Extremely-Large VLDL 0.0004 [0.0003, 0.0007] 0.0024 [0.0014, 0.0043] <.0001 
      Extra-large VLDL 0.002 [0.001, 0.004] 0.005 [0.003, 0.009] <.001 
      Large VLDL 0.01 [0.01, 0.02] 0.04 [0.02, 0.05] <.001 
      Medium VLDL 0.05 [0.03, 0.06} 0.08 [0.06, 0.10] <.001 
      Small VLDL 0.07 [0.06, 0.07] 0.08 [0.07, 0.10] 0.04 
      Extra-small VLDL 0.07 [0.06, 0.07] 0.06 [0.05, 0.07] 0.03 
      IDL 0.20 [0.18, 0.22] 0.13 [0.11, 0.16] <.0001 
      Large LDL 0.26 [0.23, 0.28] 0.18 [0.15, 0.21] <.0001 
      Medium LDL 0.15 [0.14, 0.16] 0.12 [0.10, 0.13] <.0001 
      Small LDL 0.09 [0.08, 0.10] 0.07 [0.06, 0.08] <.01 
      Extra-large HDL 0.05 [0.04, 0.06] 0.03 [0.02, 0.04] <.01 
      Large HDL  0.05 [0.04, 0.06] 0.03 [0.02, 0.04] 0.04 
      Small HDL 0.10 [0.10, 0.11] 0.12 [0.11, 0.12] <.0001 
    
Triglycerides (mmol/L)    
    
       Extremely-Large VLDL 0.01 [0.008, 0.013] 0.03 [0.020, 0.039] <.0001 
       Extra-large VLDL 0.02 [0.02, 0.03] 0.06 [0.04, 0.09] <.0001 
       Large VLDL 0.10 [0.08, 0.13] 0.22 [0.17, 0.30] <.0001 
       Medium VLDL 0.22 [0.18, 0.27] 0.39 [0.31, 0.51] <.0001 
       Small VLDL 0.19 [0.17, 0.22] 0.28 [0.24, 0.34] <.0001 
       Extra-small VLDL 0.09 [0.08, 0.10] 0.12 [0.10, 0.13] 0.02 
       Medium HDL 0.03 [0.03, 0.04] 0.05 [0.04, 0.05] <.001 
       Small HDL 0.04 [0.04, 0.05] 0.06 [0.05, 0.07] <.0001 
 

* Women were excluded from the analysis to avoid mixing effects of gender.T2D, type 2 diabetes; 
VLDL, very low density lipoprotein; IDL, intermediate density lipoprotein; LDL, low density lipoprotein 
and HDL, high density lipoprotein. 



Table 4: Correlations at baseline between the subcomponents in lipoprotein subclasses and general 
parameters (all men n = 44)*. 

Components Lipoprotein 
components 

General 
parameters 

r p 

Lipids Extra-large HDL§ M-value§ 0.49 <.001 
 Extra-large HDL§ ALAT§ -0.38 0.01 
 Extra-large HDL§ Liver volume§ -0.50 <.001 
 Small HDL M-value§ -0.46 <.001 
 Small HDL VO2peak -0.37 0.01 
 Small HDL LFC& 0.35 0.02 
 Small HDL Liver volume§ 0.36 0.01 
     
Phospholipids Extra-large HDL& M-value§ 0.35 0.01 
 Extra-large HDL& Liver volume§ -0.39 <.001 
 Small HDL§ M-value§ -0.59 <.001 
 Small HDL§ VO2peak  -0.54 <.001 
 Small HDL§ LFC& 0.50 <.001 
 Small HDL§ Liver volume§ 0.46 <.001 
     
Cholesterol Extra-large HDL§ M-value§ 0.42 <.01 
 Extra-large HDL§ ALAT§ -0.37 0.01 
 Extra-large HDL§ Liver volume§ -0.43 <.001 
     
Cholesterol esters Extra-large HDL§ Liver volume§ -0.29 0.03 
     
Free cholesterol Extra-large HDL§ M-value§ 0.44 <.01 
 Extra-large HDL§ ALAT§ -0.29 0.03 
 Extra-large HDL§ Liver volume§ -0.44 <.001 
 Small HDL§ M-value§ -0.50 <.001 
 Small HDL§ LFC& 0.41 0.01 
 Small HDL§ Liver volume§ 0.40 <.01 
     
Triglycerides Small HDL§ M-value§ -0.66 <.001 
 Small HDL§ VO2peak -0.42 <.001 
 Small HDL§ ALAT§ 0.41 <.001 
 Small HDL§ LFC& 0.54 <.001 
 Small HDL§ Liver volume§ 0.52 <.001 
 

* Women were excluded from the analysis to avoid mixing effects of gender. HDL, high density 
lipoprotein; M-value, whole-body insulin sensitivity; ALAT, alanine transaminase; VO2peak, aerobic 
capacity; LFC, liver fat content. (§) Log transformation and (&) square root transformation was 
performed to achieve normal distribution. 



 

 

Table 5: Subject anthropometrics, glucose lipid profiles and inflammatory markers between SIT and MICT exercise 
training modes (all men + women n = 54). 

Parameter SIT MICT Training*time

 Pre Post Pre Post  

 

n 27  27   

Men/Women  23/4  21/6   

Anthropometrics      

Weight (kg) 86.6 [82.3, 90.8] 86.1 [81.8, 90.4] 88.1 [83.9, 92.3] 87.8 [83.6, 92.0] 0.63 

BMI (kg/m2) 27.8 [26.6, 29.0] 27.6 [26.4, 28.8] 28.7 [27.5, 29.9] 28.6 [27.4, 29.7] 0.60 

Whole body fat§ (%) 26.2 [23.5, 29.3] 25.1 [22.5, 28.1] 27.1 [24.3, 30.3] 26.2 [23.4, 29.2] 0.65 

Subcutaneous fat mass§ (kg) 5.5 [4.6, 6.4] 5.3 [4.4, 6.3] 5.7 [4.8, 6.7] 5.6 [4.7, 6.6] 0.57 

Visceral fat mass& (kg) 3.0 [2.4, 3.7] 2.9 [2.3, 3.6] 3.1 [2.5, 3.7] 2.9 [2.3, 3.5] 0.43 

VO2peak (ml/kg/min) 31.1 [28.9, 33.2] 32.7 [30.5, 34.9] 30.6 [28.5, 32.8] 31.1 [28.9, 33.3] 0.053 

Liver volume§ (ml) 1417 [1329, 1510] 1398 [1311, 1491] 1547 [1455, 1646] 1543 [1450, 1642] 0.56 

Glucose profile      

Glucosefasting
§ (mmol/L) 6.1 [5.7, 6.4] 6.0 [5.7, 6.4] 6.0 [5.7 ,6.4] 5.9 [5.6, 6.2] 0.44 

Glucoseclamp (mmol/L) 4.9 [4.7, 5.1] 4.9 [4.7, 5.1] 4.9 [4.7, 5.1] 5.0 [4.8, 5.2] 0.56 

Insulinfasting FDGday§ (mU/L) 7.9 [6.2, 10.0] 7.0 [5.5, 8.9] 7.4 [5.8, 9.3] 7.6 [6.0, 9.7] 0.19 

Insulinclamp (mU/L) 80.7 [74.7, 86.7] 80.5 [74.2, 86.7] 80.7 [74.8, 86.5]  82.8 [76.6, 89.0] 0.56 

EGP& (µmol/min/kg) 5.8 [4.2, 7.7] 5.9 [4.2, 7.8] 6.6 [4.9, 8.5] 7.1 [5.2, 9.3] 0.76 



 

 

 
All values are model based means [95% confidence intervals]. BMI, body mass index; VO2peak, aerobic capacity; EGP, endogenous glucose production; 
HbA1c, glycosylated hemoglobin; FFA, free fatty acids; HDL, high density lipoprotein; LDL, low density lipoprotein; CRP, C-reactive protein; ALAT, 
alanine transaminase; ASAT, aspartate transaminase; GT, gamma-glutamyltranspeptidase. (§) Log transformation and (&) square root transformation 
was performed to achieve normal distribution. The p-value for training* time interaction indicates if the change in the parameter was different 
between the SIT and MICT training modes. * p-value was significant for the MICT group. 

Whole-body insulin sensitivity 
(M-value)§ (µmol/min/kg) 25.0 [20.5, 30.5] 30.6 [25.0, 37.4] 20.6 [16.9, 25.1] 23.6 [19.2, 28.9] 0.47 

HBA1c (mmol/mol) 37.3 [35.7, 38.9] 35.9 [34.3, 37.5] 38.4 [36.9, 40.0] 35.9 [34.2, 37.5] 0.14 

Lipid profile      

FFAfasting (mmol/L) 0.69 [0.61, 0.77] 0.68 [0.59, 0.76] 0.81 [0.73, 0.88] 0.71 [0.63, 0.79]* 0.03 

FFAclamp
& (mmol/L) 0.071 [0.06, 0.09] 0.063 [0.05, 0.08] 0.082 [0.07, 0.10] 0.067 [0.05, 0.08] 0.58 

Cholesterol (mmol/L) 5.0 [4.7, 5.4] 4.4 [4.0, 4.7] 4.9 [4.6, 5.3] 4.6 [4.2, 4.9] 0.07 

HDL§ (mmol/L) 1.3 [1.2, 1.5] 1.2 [1.1, 1.3] 1.3 [1.2, 1.5] 1.3 [1.1, 1.4] 0.23 

LDL (mmol/L) 3.0 [2.7, 3.3] 2.6 [2.3, 2.9] 3.0 [2.6, 3.3] 2.7 [2.4, 3.1] 0.09 

Triglycerides§ (mmol/L) 1.2 [1.0, 1.4] 1.1 [0.9, 1.3] 1.2 [1.0, 1.4] 1.0 [0.9, 1.3] 0.83 

Inflammatory markers      

CRP§ (mg/L) 1.2 [0.8, 2.0] 0.6 [0.4, 1.0] 1.6 [1.0, 2.4] 0.7 [0.4, 1.0] 0.64 

ALAT§ (U/L) 31.3 [26.3, 37.2] 25.2 [21.1, 30.0] 29.8 [25.2, 35.3]  26.4 [22.2, 31.5] 0.27 

ASAT§ (U/L) 27.1 [24.0, 30.5] 21.7 [19.2, 24.6] 26.3 [23.4, 29.5] 24.7 [21.8, 28.1] 0.10 

GT§ (U/L) 28.3 [22.0, 36.3] 22.6 [17.5, 29.1] 29.8 [23.3, 38.1] 22.6 [17.6, 29.0] 0.52 



Supplementary table 1: Subject characteristics between prediabetic/T2D men and women before and after exercise intervention. 

Parameter Prediabetic/T2D men Prediabetic/T2D women Baseline Time Sex*time 

 Pre Post Pre Post    

N 16  10     

Anthropometrics        

Weight (kg) 96.5 [90.3, 102.7] 96.3 [90.1, 102.5] 84.3 [76.4, 92.2] 83.3 [75.4, 91.2] 0.02 0.03 0.13 

BMI (kg/m2) 30.5 [29.0, 32.0] 30.4 [28.9, 31.9] 30.4 [28.5, 32.3] 30.0 [28.1, 32.0] 0.97 0.03 0.10 

Whole body fat§ (%) 28.5 [26.4, 30.8] 27.7 [25.6, 29.9] 40.7 [36.8, 45.1] 39.4 [35.6, 43.6] <.0001 0.01 0.81 

Subcutaneous fat 
mass§ (kg) 

6.0 [5.1, 7.1] 5.9 [5.0, 7.4] 9.1 [7.4, 11.2] 8.8 [7.2, 10.8] <.001 0.03 0.23 

Visceral fat mass& (kg) 4.3 [3.6, 5.2] 4.1 [3.4, 5.0] 2.4 [1.7, 3.2] 2.3 [1.6, 3.1] <.001 0.01 0.83 

VO2peak (mL/kg/min) 29.3 [27.4, 31.2] 29.9 [28.0, 31.9] 23.7 [21.3, 26.2] 24.3 [21.7, 26.8] <.001 0.15 0.95 

Liver volume§ (mL) 1802 [1655, 1950] 1760 [1611, 1908] 1382 [1200, 1564] 1360 [1176, 1543] <.001 0.13 0.62 

Liver fat content (%) 11.3 [7.2, 16.4] 9.9 [6.0, 14.7] 9.4 [4.7, 15.6] 8.2 [3.8, 14.1] 0.62 0.02 0.91 

Glucose profile        

Glucosefasting
§ 

(mmol/L) 
6.6 [6.2, 7.1] 6.6 [6.2, 7.1] 6.6 [6.1, 7.2] 6.4 [5.8, 6.9] 0.95 0.27 0.21 

Glucoseclamp (mmol/L) 4.8 [4.7, 4.9] 5.0 [4.8, 5.1] 4.9 [4.8, 5.1] 4.9 [4.7, 5.1] 0.25 0.39 0.30 

Insulinfasting FDGday§ 
(mU/L) 

13.1 [9.3, 18.4] 12.1 [8.5, 17.2] 8.5 [5.6, 12.8] 8.2 [5.4, 12.6] 0.09 0.49 0.74 

Insulinclamp (mU/L) 
87.6 [80.7, 94.6] 85.8 [78.3, 93.2] 85.0 [76.7, 93.2] 90.2 [80.5, 100.0] 0.59 0.61 0.29 



EGP& (µmol/min/kg) 15.8 [9.5, 23.6] 11.1 [5.9, 17.9] 14.1 [6.9, 23.8] 8.1 [2.9, 16.0] 0.60 <.01 0.52 

Whole-body insulin 
sensitivity (M-value)§ 

(µmol/min/kg) 

17.5 [11.6, 23.5] 21.8 [15.6, 27.9] 19.9 [12.7, 27.0] 22.2 [14.6, 29.9] 0.66 0.07 0.59 

HBA1c (mmol/mol) 39.6 [37.0, 42.1] 37.6 [35.0, 40.2] 39.5 [36.3, 42.8] 37.7 [34.4, 41.0] 0.99 <.01 0.88 

Lipid profile        

FFAfasting (mmol/L) 0.69 [0.61, 0.77] 0.68 [0.60, 0.77] 0.96 [0.85, 1.07] 0.91 [0.79, 1.04] <.0001 0.38 0.56 

FFAclamp
& (mmol/L) 0.09 [0.07, 0.12] 0.08 [0.06, 0.11] 0.08 [0.06, 0.12] 0.06 [0.03, 0.09] 0.78 0.07 0.41 

Cholesterol (mmol/L) 4.8 [4.3, 5.3] 4.4 [3.9, 4.9] 5.0 [4.4, 5.7] 4.5 [3.9, 5.2] 0.50 0.01 0.67 

HDL§ (mmol/L) 1.2 [1.1, 1.4] 1.1 [0.9, 1.2] 1.5 [1.2, 1.7] 1.4 [1.2, 1.7] 0.052 0.02 0.12 

LDL (mmol/L) 2.7 [2.3, 3.1] 2.6 [2.2, 3.0] 2.9 [2.4, 3.5] 2.4 [1.9, 3.0] 0.43 0.01 0.14 

Triglycerides§ 
(mmol/L) 

1.7 [1.3, 2.2] 1.5 [1.1, 2.0] 1.2 [0.9, 1.7] 1.2 [0.9, 1.7] 0.12 0.55 0.69 

Inflammatory 
markers 

       

CRP§ (mg/L) 1.9 [1.1, 3.2] 0.9 [0.5, 1.5] 2.0 [1.0, 3.8] 1.3 [0.6, 2.7] 0.94 <.01 0.26 

ALAT§ (U/L) 41.5 [33.0, 52.3] 33.8 [26.5, 43.2] 26.6 [19.8, 35.6] 22.9 [16.8, 31.2] 0.01 0.04 0.72 

ASAT§ (U/L) 31.6 [27.1, 36.8] 25.2 [21.3, 29.8] 22.6 [18.6, 27.5] 21.9 [17.7, 27.0] 0.02 0.08 0.19 

GT§ (U/L) 47.3 [33.6, 66.6] 35.9 [25.3, 51.1] 25.1 [16.2, 38.8] 19.5 [12.4, 30.4] 0.047 <.001 0.91 

 

All values are model based means [95% confidence intervals]. T2D, type 2 diabetes; BMI, body mass index; VO2peak, aerobic capacity; EGP, 
endogenous glucose production; HbA1c, glycosylated hemoglobin; FFA, free fatty acids; HDL, high density lipoprotein; LDL, low density 
lipoprotein; CRP, C-reactive protein; ALAT, alanine transaminase; ASAT, aspartate transaminase; GT, gamma-glutamyltranspeptidase. (§) Log 



transformation and (&) square root transformation was performed to achieve normal distribution. P-value for baseline indicates the differences 
between the prediabetic/T2D men and women. The p-value for time indicates the change between pre- and post-measurements in the whole 
study group. The p-value for Sex*time interaction indicates if the change in the parameter was different between men and women in the 
prediabetic/T2D group.  
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