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ABSTRACT
Smartphones and wearable devices, such as smart watches, can act
as mobile gateways and sensor nodes in IoT applications, respec-
tively. In conventional IoT systems, wearable devices gather and
transmit data to mobile gateways where most of computations are
performed. However, the improvement of wearable devices, in re-
cent years, has decreased the gap in terms of computation capability
with mobile gateways. For this reason, some recent works present
offloading schemes to utilize wearable devices and hence reducing
the burden of mobile gateways for specific applications. However,
a comprehensive study of offloading methods on wearable devices
has not been conducted. In this paper, nine applications from the
LOCUS’s benchmark have been utilized and tested on different
boards having hardware specification close to wearable devices
and mobile gateways. The execution time and energy consumption
results of running the benchmark on the boards are measured. The
results are then used for providing insights for system designers
when designing and choosing a suitable computation method for
IoT systems to achieve a high quality of service (QoS). The results
show that depending on the application, offloading methods can
be used for achieving certain improvements in energy efficiency.
In addition, the paper compares energy consumption of a mobile
gateway when running the applications in both serial and multi-
threading fashions.
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1 INTRODUCTION
Internet-of-Things (IoT) as a promising paradigm increasingly gains
attention in many application areas such as healthcare, transporta-
tion, and smart spaces [1, 4, 9, 10, 15, 22]. IoT systems leverage
various disciplines such as electronics, communication and data
science to provide ubiquitous connectivity and shared knowledge of
objects for a better service. In IoT context, the objects are equipped
with sensing, communication, and computational resources, using
which they can locally exchange information or communicate with
remote servers.

IoT systems are traditionally partitioned into three main lay-
ers as illustrated in Figure 1 [2, 13]. First, the sensor network is

Figure 1: Fog-based IoT applications computing structure

responsible for continuous data collection. Second, the gateway
layer also known as Fog [18] performs as a bridge between the
sensor network and the cloud servers, enabling data transmission
and lightweight computing tasks. Third, the cloud servers carry
out data storage and data analytics using powerful computers.

In recent years wearable devices such as fitness trackers, smart
watches, augmented reality (AR) glasses have become widely used
products [3]. Consequently, these devices have been used as sensor
node devices in the IoT paradigm which, as a result, have become
a motive for companies to improve the processing capability [6].
Due to the resource constrained nature of wearables in terms of
battery power and processing capability, these devices often rely
on a mobile device (mobile gateway) such as a smartphone for
performing the edge processing of the IoT application. In IoT appli-
cations hardware specifications of mobile devices and wearables
such as battery lifetime and performance are considered as key QoS
requirements of real time IoT applications. Recent works have pre-
sented offloading techniques providing an optimal or near optimal
offloading technique to improve QoS requirements such as response



Figure 2: Response time of different IoT computation struc-
tures including data transmission latency (a, b, c, d) and ex-
ecution time (α , β , γ )

time and battery life-time [17, 20, 23]. To deploy these solutions
or understand how much computation can be offloaded between
mobile gateways and wearable devices, an energy and performance
evaluation of these devices is essential. Recent works have reported
performance and energy consumption comparison between wear-
able devices [6] from a hardware perspective, and also compared
the performance overhead of wearable operating systems (OS) [3],
however they did not provide any comparison against mobile de-
vices. A recent work has proposed an approach for partitioning
of deep learning based applications between wearable and mobile
devices, and also provided a performance and energy comparison,
however it does not cover other types of IoT applications [23].

In this paper, we investigate and analyze the performance and
energy consumption of four different wearable and gateway devices
while they are running 9 diverse applications, ranging from a simple
encryption or decryption algorithm to a complex machine learning
program. The wearable devices and the selected mobile gateways
are compared when running the LOCUS benchmark which includes
a broad range of real-time IoT applications that can be executed on
wearable and mobile gateway devices [6]. In addition, we compare
the energy consumption of a mobile device while running 9 applica-
tions of the LOCUS benchmark in both serial and multi-threading
manners. The paper presents practical insights for system design-
ers when choosing a suitable computation method (i.e., offloading
method) for IoT systems in order to achieve a high quality of service
(QoS).

The structure of the paper is as follows. The background of our
study and related works to this paper are presented in Section 2.
Section 3 discusses the experimental setup. We evaluate and discuss
the results in Section 4. Finally, Section 5 concludes the paper.

2 BACKGROUND AND RELATEDWORK
In this section, we first outline energy consumption and execution
time of wearable devices. Then, we describe a background on the
LOCUS benchmark.

2.1 Energy Consumption
Energy consumption is one of the most important metrics eval-
uating the quality of IoT-based systems. wearable devices of IoT
systems are often small size and lightweight [7]. Correspondingly,
their battery, which is light and small, does not include a large

capacity. Therefore, the energy consumption of wearable devices
in the IoT systems must be carefully considered. When the energy
consumption is high, it can cause serious consequences such as
interruptions in services and applications, reducing their Quality
of Service (QoS).

In traditional IoT-based systems, wearable devices only collect
and send data to gateways which forward the data to cloud servers
for further processing. The traditional IoT systems’ architecture has
several limitations such as the inefficiency of energy consumption
and bandwidth utilization. Fortunately, these limitations can be
solved or legitimated with a Mobile Edge Computing (MEC) archi-
tecture which introduces an extra edge layer in between gateways
and cloud servers [5]. In the MEC architecture, data collected by
sensor nodes are transmitted to smart gateways for further process-
ing as the gateways are often equipped with high computational
capability CPU, large memory and a large capacity battery.

By shifting the burden load from sensor nodes to smart gateways,
the energy consumption of the sensor nodes can be dramatically
saved [21]. Currently, due to the evolution of wearable devices and
sensor devices, these devices are equipped with high computational
capability microprocessor and large memory. It leads to a question
that "Does a method of sending all data to smart gateways and
processing at the gateways help to achieve the higher level of energy
efficiency than a method of processing partly at wearable sensor
devices and partly at smart gateway?". However, it is arduous to
answer this question comprehensively as the answer depends on the
complexity of the running application and wireless communication
protocols between sensor nodes and gateways.

In [23], the authors showed that a method of processing partly
at a wearable sensor node and partly at a smart gateway (Nexus 6 -
mobile gateway) helps to achieve a high level of energy efficiency in
most of the cases when running different deep learning models such
as language modeling and document classification (i.e., TextCNN).
However, it cannot be concluded that the method is suitable for
all applications. Therefore, this paper provides a comprehensive
analysis of energy consumption of widely used processors/boards
when running different applications i.e., applications in LOCUS
benchmark which is described in detail in the below sections.

2.2 Execution Time
The execution time becomes more prominent in determining the
response time as the computation is shifted towards the sensor node.
While the response time of fog based applications is dependent on
the execution time of the gateway (in our case mobile gateway)
and the connection delay, the response time of the application will
only be dependant on the execution time (γ ) if all of the execution
was done on the wearable device. In order to judge on how much
computation can be offloaded to the sensor node, a comparison of
the execution time between the mobile gateway and the wearable
device is needed.

Conventionally, the sensor devices such as wearable devices had
significant constraints in terms of energy and performance. As a re-
sult, it was insufficient to perform the whole application on sensor
node devices. However, with the development of wearable devices
in recent years, the gap between γ and β has decreased. These
changes have opened the window for offloading some computation
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to wearable devices which contributions like [20] or [23] have en-
hanced the response time by finding the optimal offloading scheme
according to both wearable and mobile gateway performance and
battery life time constraints. Samie et al. [20] compared the power
consumption and bandwidth utilization for different offloading lev-
els and showed that for an optimal configuration both maximum
bandwidth utilization and increased energy saving for the gateway
and sensor nodes can be achieved. In Xu et al. [23], the energy
and performance of both a mobile gateway and a wearable device
running different amount of deep neural network algorithms was
compared. The work indicated that by offloading a suitable amount
of the computation energy can be saved in both devices and also
the overall response time will be improved.

However, these works only explored one or a specific type of
applications and since the connection delay varies in different IoT
applications, the comparison will not be valid. In this work an
evaluation between wearable devices with different configurations
and mobile gateways is conducted in order to give a view on how
much computation can be offloaded to wearable devices.

2.3 LOCUS Benchmark
The LOCUS benchmark was proposed for evaluating and compar-
ing a 16 multi-core message passing processor with other wearable
processors that are used in IoT applications [6]. At the time the
paper was published there was no available benchmark suite for
wearable processors so the authors introduced there own bench-
mark. This benchmark is a set of representative kernels which are
widely used applications in wearable devices as IoT applications.

The LOCUS benchmark includes a dynamic time warping (DTW)
kernel which is used in several applications such as data mining and
speech recognition. Furthermore, other included kernels are A Star
which is used as a navigation kernel, electrocardiogram (ECG) R-
peaks detection is a widely used application in most smartwatches.
For secure data communication, AES encrypt and decrypt is widely
used in most IoT applications are a part of the LOCUS benchmark
kernels. Since image processing is increasingly applied to wearable
and IoT applications, 2D Convolution and Histogram kernels which
are extensively used for augmented reality in smart glasses and
mobile devices are included in the benchmark. The Support Vector
Machine (SVM) that is extensively used for classifying pattern
based on sensor data is also included in the benchmark. The last
kernel of the LOCUS benchmark used in this work is the Haar
Transform variant of Discrete Wavelet Transform which is used for
compressing sensor data.

Although the benchmark was meant to run on the proposed
processor, in order to compare the processor with nowadays shared
memory processors, the authors introduced three versions of the
kernels. The first version is a serial version of the kernel, the second
version is the paralleled version using POSIX thread which is ad-
justable according to the target processors specifications and third,
there is a Message Passing Interface (MPI) version of the kernels.

In this paper since the target wearable and mobile devices have
a shared memory architecture, the serial and pthread version of the
benchmark kernels are executed.

Table 1: Hardware specification

Board Processor
Core(s) &
Thread(s)
per core

Memory Operating
System

Intel
Galileo
Gen 2

Intel Quark SoC
X1000 (400 Mhz) 1 & 1

256MB
DDR3
RAM

Yocto
Linux

Onion
Omega2+

MT7688 SoC (580
MHz MIPS) 1 & 1

128MB
DDR2
RAM

OpenWrt
(Onion)

Raspberry
Pi Zero

ARM1176JZF-S
(1GHz) 1 & 1 512MB

RAM

Raspbian
v8 (with
Gui)

Odroid-
Xu4

Cortex-A15 (2GHz)
and Cortex-A7
(1.4GHz)

8 & 1
2GB
LPDDR3
RAM

Ubuntu
Mate

3 EXPERIMENTAL EVALUATION AND
COMPARISON

This section explains the specification of the boards used as a wear-
able and a mobile device then the experimental setup and the condi-
tions considered while extracting the results are explained. Further-
more, the presented results which is the performance and energy
consumption of each kernel code is compared and discussed.

3.1 Experimental Setup
The boards that are used in the experiments are shown in Table
1. The Intel Galileo Gen 2 board includes a low power SoC which
has an Intel Pentium-class processor and has been considered as
a wearable device in several works [8, 14]. The Onion Omega 2+
board is an evaluation board with few components and a small
board size which is widely use for developing smart devices [16].
The Raspberry Pi Zero has a low power single core ARM proces-
sor and can be considered as a wearable device [19]. The mobile
device in our experiments is the Odriod Xu4 board that has an
octa-core ARM processor and has near specifications to the Sam-
sung Galaxy S5 mobile phone [11]. The wearable boards have all
single core processors because single core processors are the most
common processors for a diverse range of wearable devices. Since
for the diverse range of IoT applications various features of the
OS is needed, the benchmark was executed on the standard OS
given for each board which can be seen in Table 1. Accordingly,
the Pthread version of the benchmark was compiled by the Pthread
library associated with the kernel of each board.

The power consumption of each board was measured and pro-
vided by a power monitor but for the Intel Galileo Gen 2 and Odroid
Xu4 boards, a step-up voltage regulator was used. Therefore, the
power measurements of these boards were multiplied by the reg-
ulator’s efficiency ratio and also for excluding the OS and board
peripherals power consumption, the measured power while execut-
ing the process was divided by the power consumption when the
target board was in idle mode. The execution time of each kernel of
the benchmark was measured by modifying the benchmark kernels
and using the time.h C library of the Linux kernel. The power and
execution time were measured simultaneously and are the average
of 10 times running the code. Accordingly, energy consumption is
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Figure 3: Execution time of the serial version of LOCUS
benchmark

computed by multiplying the average power consumption and the
average execution time. In the following, we present the energy
and delay results.

3.2 Execution Time
The execution time measured is the result of the performance of
processor and the operating system of each board. In order to
compare one core of the Odroid Xu4 board CPU with the single
core processor of the wearable devices, we first compare the serial
version of the benchmark executed on all devices which can be
seen in Figure 3.

The results show that the Raspberry Pi Zero has the best re-
sults between the wearable boards but compared to the Odroid Xu4
board there is a performance gap. The performance gap between
the Raspberry Pi Zero and the Odroid Xu4 board shown in Figure 4
indicates that for applications that have less computation to per-
form like ASTAR, Histogram and Haar Transform, there is a lower
performance gap. However, for other applications that have inten-
sive and complex computation like ECG which have fast fourier
transform computation in some of its processing stages the perfor-
mance gap is higher. The performance even gets more substantial
in kernels like SVM and 2DConv that need to read a huge amount
of data and their computation mostly consists of float data, since
these kind of applications often need to utilize the floating point
unit of the processor which for mobile devices like Odroid Xu4 has
higher performance than the floating point unit in wearable de-
vices like Raspberry Pi Zero. The AES encrypt and decrypt [12] and
the ECG kernel have complex and also long computation routine
that has resulted in a higher performance gap. Overall the result
of the serial version of the benchmark shows that a single core of
the Odroid Xu4 board has substantial performance gap with the
wearable boards but in some applications which have low weight
or complex processing, the performance gap is lower.

In order to evaluate the amount of parallelism each application
can leverage and how much gain can be achieved, the execution
time of the serial and Pthread version of the LOCUS benchmark
is illustrated in Figure 5. Although the creators of the benchmark
reported an execution speedup for all kernels [6] but in our ex-
periments, the AES encrypt, decrypt and the 2DConv kernels had
a decrease in performance. The reason behind the speed down is
multifold but one fold is probably because of the I/O read and write
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Figure 4: The performance ratio of the Odroid board to the
Raspberry Pi Zero when executing the serial version of the
Locus benchmark
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Figure 5: The execution time of the pthread and serial ver-
sions of the LOCUS executed on the Odroid board

operations to the files (2DConv) which is related to the OS perfor-
mance. Other kernels had considerable speedup in execution time
like ASTAR, SVM or Histogram. This speedup is due to intrinsic
parallelism these applications have which the same operation is per-
formed on multiple data. For example, the ASTAR kernel computes
multiple routes and at the end selects the route with the lowest
cost. A similar concept is present in applications like SVM, for clas-
sifying multiple nodes compute the input data and the results are
combined at the end or in Histogram a comparison is performed
on every pixel to extract the tonal distribution of the pixels. The
Pthread version of the benchmark shows considerable speedup
can be achieved in applications that perform simple operations on
multiple data but for applications with complex operations, the
performance gain is limited.

3.3 Energy Consumption
Energy consumption of the embedded boards listed in Table 1 when
running different applications of the LOCUS benchmark in a se-
quential manner is shown in Figure 7. The results show that energy
consumption of all the boards when running applications such as
ECG, AES encrypt, AES decrypt and ASTAR is much lower than
the energy consumption when running DTW, SVM, Histogram,
2DConv, and Haar Transform. In addition, the results show that
Intel Galileo Gen 2 and Odroid Xu4 consume the most and the least
energy consumption among all boards when running all applica-
tions of the LOCUS benchmark. In most of the cases, the Raspberry
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Figure 6: Comparison of the energy consumption of the
Pthread and version of the Locus benchmark executed on
the Odroid Xu4 board

Pi Zero consumes the second most energy consumption except for
the cases of Histogram and 2DConv applications.

One of the reasons causing the large difference in energy con-
sumption of these two boards can be microprocessors and their
frequency. As can be seen that Odroid Xu4 is equipped with 2
GHz microprocessor whilst Raspberry Pi Zero and Intel Galileo are
equipped with 1 GHz and 400 MHz microprocessors, respectively.

In the experiment cases, applications of the benchmark require
many computations; therefore, applying microprocessors with a
higher frequency can help to achieve some levels of energy ef-
ficiency. However, energy consumption of Raspberry Pi Zero is
higher than energy consumption of Onion Omega 2+ in most of
the cases when running the LOCUS benchmark’s applications al-
though Raspberry Pi Zero and Onion Omega 2+ are equipped with
1 GHz and 580 MHz, respectively. One of the reasons causing the
low energy consumption of the Onion Omega 2+ is that the board
is supplied with 3 V whilst other boards (i.e., Raspberry Pi Zero)
require 5 V power supply. In cases of Histogram and 2DConv ap-
plications, energy consumption of Onion Omega 2+ is larger than
Raspberry Pi Zero because of many "read-from-files" and "write-to-
files" instructions in these applications, that cause the overhead of
the Onion Omega 2+ operating system performance. Therefore, it
can be concluded that depending on the applications (e.g., complex-
ity, computation requirements, and Input/Output access frequency),
different microprocessor’s frequencies should be applied.

As mentioned above, all applications of the LOCUS benchmark
are run in the serial andmulti-threadingmanners on the Odroid Xu4
board. The results show that applying a multi-threading method
for running applications of the LOCUS benchmark helps to reduce
the energy consumption of the board except for the case of AES
encrypt and AES decrypt. One of the reasons causing the high
energy consumption of Odroid Xu4 in these applications is that
in AES encrypt and decrypt applications, many computation func-
tions require and wait for the results from the other or previous
functions run in the past. It can be concluded that depending on the
applications, microprocessors with multi-core and multi-threading
can help to achieve some levels of energy efficiency.
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Figure 7: Energy Consumption of the serial version of the
benchmark codes

4 DISCUSSION
The energy consumption and execution time results show that
board components like input/output (I/O) ports can increase the
energy consumption of wearable devices despite the performance
they have. The energy consumption of a board is affected by the
operating system and the software running on the board. When
an applications uses system calls too much, the operating system
becomes a major overhead. Therefore, it is essential to suppose that
the relation of energy consumption and execution time may not be
consistent when applying offloading techniques.

The execution time results of the Pthread and serial version of
the benchmark indicate that for applications like ECG that have
multiple stages for processing and have complex computation, it
is better to use an offloading scheme which offloads some of the
stages onto the wearable device and leave the higher complex com-
putation for the mobile device. Applications that process images
like Histogram, 2DConv which perform the same operation on
multiple data, is better to use an offloading scheme that partitions
the data to process some of the data on the wearable device and
the rest of the data on the mobile gateway. Since there is a huge
performance gap (compared to the performance gap of other ker-
nels) between the Odroid Xu4 and wearable boards for the SVM
which is a classification kernel or other kernels like ECG that are
more compute intensive compared to the data, the offloading tech-
nique as presented in previous works [23], should significantly be
conducted towards breaking the process into multiple stages and
offload the stages that have less complex computations onto the
wearable device. Although the Pthread version of the benchmark
had performance speedup for most applications, in real-world sce-
narios, the mobile device has multiple applications to process which
as a result it cannot use all of its resources for one process which
is an important factor to be considered in choosing an offloading
technique and conducting it.

According to the execution time results of the serial version of
the LOCUS benchmark, there is a considerable gap in terms of per-
formance between the CPU core of a mobile gateway and wearable
devices. Due to the limited scope of the paper, the paper does not
consider other aspects which also affects the energy consumption
of wearable devices such as wireless connection protocol, data rate,
and connection delay. It is recommended that a system administra-
tor needs to consider these aspects together with other aspects such
as microprocessor’s frequency, multi-threading in order to achieve
a high level of energy efficiency. Depending on the application and
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wearable sensor devices, one of the methods such as offloading all
computation on wearable devices, a combination of partly offload-
ing on wearable devices and partly processing on mobile gateways,
or running completely algorithms on mobile gateways.

5 CONCLUSION
The paper has compared the energy and execution time of various
platform boards considered as wearable device and mobile device
via the LOCUS benchmark to provide a guide for how and what
offloading techniques to use for increasing QoS in IoT applications.
The results show that the chosen mobile gateway device has higher
performance and is more energy efficient compared to the chosen
wearable devices but according to the type of the application, the
performance and energy consumption gap differ. The Pthread and
serial version of the benchmark indicates that for applications with
complex computation, computation offloading can be more effec-
tive whereas for applications that the data intensity is more than
the computation complexity, offloading techniques that offload the
processing of some of the data will be more suitable. The wear-
able energy consumption results indicate that not always better
performance brings better energy efficiency, and factors such as
board components that consume power or processor frequency
play a critical role in determining wearable energy consumption.
We encourage the readers to see the results as a guide to consider
the execution time and energy consumption of each application
compared to each other to conduct a suitable offloading technique
which will increase the QoS in IoT applications such as response
time and/or battery lifetime.
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