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Abstract

This paper describes a method for estimation of heart
rate (HR) and heart rate variability (HRV) with accelerom-
eters and gyroscopes. We denote this joint seismocar-
diography (SCG) and gyrocardiography (GCG) approach
as SCG/GCG. In principle, SCG which is a well known
method measures the linear mechanical movements of the
heart and GCG is a new technique which measures an-
gular motion due to the chest micro-vibrations caused
by myocardial rotation. As electrocardiography (ECG),
they can also be performed in non-invasive manner us-
ing a device in contact to subjects skin, for example. Our
method extracts HRV parameters based on single-axis and
multi-axes autocorrelation analysis (1-AC and 6-AC) of
all simultaneously captured SCG/GCG axes. The results
of each axes are combined to maintain reliable HR- and
HRV. We validate our results with a comparison study be-
tween simultaneous ECG and SCG/GCG recordings using
a study group of 29 healthy male volunteers. The study
provides a promising approach for HRV estimation with
modern wearable devices.

1. Introduction

In this paper, we consider accurate extraction of
heartbeat intervals with modern micro electromechanical
(MEMS) accelerometers and gyroscopes. Seismocardiog-
raphy (SCG) is a well known non-invasive method for ex-
tracting information of heart mechanical movements [1].
A tri-axial MEMS accelerometer can be used to obtain a 3-
axes SCG waveform. This can be complemented by using
a tri-axial gyroscope sensor (preferably MEMS). The gy-
roscope measures the angular velocities of the chest as a re-
sponse to the motion of the heart, thus we use the term Gy-
rocardiography (GCG) [2]. The joint usage of seismo- and
gyrocardiography is denoted in this paper as SCG/GCG,
where both sensor signals are acquired from miniature 3-
axis MEMS sensors attached on the sternum of the patient
in a non-invasive manner .

A recent review on SCG was given in [3]. The capabil-
ity of SCG and ballistocardiography (BCG) — the record-
ing of the reactionary forces of the body invented by Gor-
don in 1877 [4] — for estimating HRV has been previ-
ously reported by [3,5,6]. HRV reflect a variety of aspects
of human heart and autonomous nervous system. For in-
stance, emotions are related to HRV and the operation of
human autonomous nervous system [7]. HRV is also af-
fected by certain drugs, transient coronary occlusion, and
exercise which may result in prolonged cardiac cycle in-
tervals, while the breathing related heart rate modulation
of a human is called respiratory sinus arrhythmia. Usually,
a reduced HRV relates to many unwanted heart conditions,
for example, mortality risk after acute myocardial infarc-
tion is higher for patients with low HRV [8].

Here we propose that the simultaneous usage of gyro-
scope sensor can supplement the measured SCG by attain-
ing information on small-scale body vibrations induced by
the pumping of the heart muscles [9, 10]. While being a
non-invasive method and possessing high practical clini-
cal value, ECG devices have not yet been widely accepted
for very long term remote screening of the patients, since
the attached electrodes may irritate the skin of the patient
(excluding implantable devices). The novelty introduced
in this paper is that we combine the three SCG axes and
three GCG axes to obtain more reliable HRV parameters
(see Fig. 1). Thus, long term monitoring of the heart with
this kind of method could be possible in the future.

2. Autocorrelation Technique

2.1. Single-axis autocorrelation

A challenge in both SCG and BCG with regard to inter-
beat estimation is that other motions such as breathing (and
other muscles) disturb the acquisition of the heart signal.
Also, the signal is not typically as clear as in ECG, where
the QRS complex (R-R interval) is usually rather easy to
segment from the other parts of the signal. Thus, it is usu-
ally required that as a prerequisite to the signal acquisi-
tion the subject needs to be still. Although ECG can suffer
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Figure 1. ECG, 3-axis accelerometer (right insets) and
gyroscope axes (left insets). Accelerometer Z axis is used
in the case of 1-AC (autocorrelation) and all axes in the
case of 6-AC.

from motion artifacts, the situation is much more severe
in the case of BCG and SCG. Even if the subject is still,
the waveforms of the SCG and BCG signals are typically
more complex and require different means for extracting
HR and HRV than in ECG.

Single axis autocorrelation (denoted in this paper as 1-
AC method) has been previously applied to ECG and BCG
analysis (see [11] [12]). The 1-AC for discrete signal is
defined as

φ(σ) = 1/N ∗
N−1∑
n=0

x(n)x(n+ σ), (1)

where φ(σ) is the autocorrelation function of length N
segment taken from the signal [13] and σ is the lag for
discrete signal. φ(σ) has a large value when the signal
x(n) is similar with x(n+ σ). For periodical x(n) the AC
function φ(σ) has peaks in its response [12] [13]. We use
the accelerometer Z axis, which is the same axis as gravity
when the subject is in supine position when applying the
1-AC method throughout this paper. We also extend the
single axis autocorrelation to multiple-axis autocorrelation
(6-AC), where all available accelerometer and gyroscope
axes are applied.

In our case N in Equation 1 is determined by the sam-
pling rate Fs of the sensor and the used window size Twk

in seconds, here we use Fs=800Hz and window size 2.5
s, i.e. N = 2000 samples for both the signal x(n) and

the shifted signal. The shifted signal is extended to over-
lap between all existing values of the signal x(n) itself. For
single axis, bandpass filtered version of the original signal
is first acquired, and it is sampled at constant Tint=1 sec-
ond intervals. The overlap between two windows becomes
1.5 s (assuming 2.5 s full autocorrelation). Fig. 2 shows
the autocorrelation results for a generated signal with and
without windowing. Observe that in the bottom insets the
first peak is actually the autocorrelation of the generated
signal with itself, and detecting it would not result in use-
ful information (see Fig. 2).

In principle, contraction of the left ventricle (systole)
yields aortic valve opening (AO) and results in the first
heart sound, S1, while by the beginning of ventricular re-
laxation (diastole) and after closure of aortic valve (AC)
the second heart sound, S2 occurs [6]. Before applying
the 1-AC method, the signal of the single axis is first mul-
tiplied by a triangular waveform, which emphasizes the
leftmost values within the sliding autocorrelation window.
This in itself is not sufficient, since it is possible that in-
stead of finding the peak corresponding to two adjacent
true beats, the autocorrelation can find the AO-AC interval
within single beat. This is because the systolic and dias-
tolic peaks both are with significant signal power in con-
trast to ECG, where the R peaks are typically dominant.
Therefore, the leftmost part (φ < φ0, φ0 = 3/5 seconds)
of the resulting 1-AC window is assigned to zero. After
that, the dominant peak of the 1-AC window is assumed to
contain the dominant instant heart rate component.

Figure 2. The figure shows first the original signal, and
then the original signal windowed with a steadily decreas-
ing windowing function (upper right corner). The autocor-
relation of the original signal (lower left corner) shows that
the first peak from the left (corresponding to signal itself)
is the largest, but the other peaks are difficult to distin-
guish. The last image (lower right corner) shows that the
windowing function allows for separating the peaks after
the leftmost part of the AC signal has been thresholded to
zero.

 

 

  



2.2. From Single-axis to Multi-axes Auto-
correlation

The multi-axes case autocorrelation for accelerometer
and gyroscope is defined as φ(σ)k, where where axes k
are 1 = ACCx, 2 = ACCy , 3 = ACCz , 4 = GY ROx,
5 = GY ROy , 6 = GY ROz for the SCG signal com-
ponents ACC and GCG signal components GY RO. The
1-AC function is applied for each axes simultaneously and
the RR interval time series are extracted. Then, if the RR
interval is the first acquired RR interval the selected output
of the combined axes is chosen as the median or mean of
these six values (initialization). After that, one of the six
interval of each axis closest to the previously determined
combined interval is chosen as the output (update).

In certain conditions where a weak signal power peak
is located in between two higher amplitude peaks, within
the same 1-AC window, the algorithm may misinterpret an
unnecessary long RR interval. Then, the algorithm prefers
the higher amplitude peak pair and select the longer in-
terval instead of the correct (previous) one. Furthermore,
in worst case the following interval estimations could pro-
duce the same problem, if at least one of the six axes would
indicate to a too long false interval. These issues could be
avoided by more advanced (and computationally complex)
axes combining techniques.

3. Experimental Configuration

3.1. Test Set-up and Data Collection

We used a (3 mm × 3 mm × 1 mm) triple-axis, low-
power, capacitive digital accelerometer (Freescale Semi-
conductor, MMA8451Q, Austin, TX, USA) and an (3 mm
× 3 mm × 0.9 mm) ultra-accurate, low power, low noise,
3-axis MEMS angular rate sensor (Maxim Integrated,
MAX21000, San Jose, CA, U.S.). The sensors were at-
tached to the chest of the test subjects with double sided
tape without hair removal from the chest. We also cap-
tured simultaneous ECG (Texas Instruments ADS1293) as
a reference. The SCG/GCG and ECG data were captured
simultaneously to a memory stick and were processed off-
line.

We collected SCG/GCG data and ECG reference from
29 individuals, which were advised to lie in supine posi-
tion during the acquisition. The demographic of the sub-
jects were as follows (min-max, mean, standard deviation):
age (23-41, 29.15, 4.73 years), height (170-190, 178.48,
5.91 cm), weight (60-98, 76.32, 11.20 kg) and BMI (17.53-
29.4, 23.92, 3.00 kg/m2). We extracted both time and fre-
quency domain parameters, which were calculated using
Kubios software [14] from the raw interbeat interval data
obtained in Matlab. For ECG we used well known Pan-
Tompkins approach [15] for generating the ground truth.

3.2. The Extracted HRV Indices from the
Kubios software

We report the results of 1-AC method in comparison
with 6-AC method so that the ECG is used as a reference.
The time domain parameters considered here are mean RR
intervals, which are calculated for each recording sepa-
rately (both 1-AC and 6-AC against ECG), standard devia-
tion (STD) of RR intervals (SDNN), mean heart rate (HR),
STD HR, and RMSSD (Square root of the mean squared
differences between successive RR intervals). Addition-
ally NN50 (number of successive RR intervals differing
more than 50ms), pNN50 (probability of NN50 against to-
tal number of RR intervals), HRV triangular index (derived
from the RR interval histogram) and TINN which is the
width of the RR interval histogram are reported.

The frequency domain parameters considered here are
the FFT (Fast Fourier Transform) and AR (Autoregressive
model) spectrum based features. More specifically, fre-
quency bands such as very low Frequency (VLF), low fre-
quency (LF), and high frequency (HF) peak frequencies
and power ratio LF/HF [14] are being reported.

4. Results and Discussion

4.1. Time-domain HRV results

Table I shows the mean error of 1-AC and 6-AC meth-
ods against ECG. It can be observed, that only in the cases
of NN50 and pNN50 the 6-AC method’s performance is
decreased against the 1-AC method. As NN50 is defined
as the number of successive pairwise RR intervals differ-
ing more than 50ms, it seems that the 6-AC method filters
out some of these, due to its characteristics as it tends to
choose the next RR among the 6 available axis, so that
the difference between to the previous RR interval is min-
imized. Thus, although the 6-AC method provides robust-
ness to beat interval estimation as the SCG/GCG signals
are more difficult to analyze than ECG, it should be taken
into account that (p)NN50 like parameters performance
might suffer from the applied technique. However, the
most important HRV parameters Mean RR and STD RR
(as well as HR and STD HR) and RMSSD are improved
clearly through the use of 6-AC method. Observe, that the
lengths of the recordings varied between that 1min 44s and
26min 45s.

4.2. Frequency-domain results

Table II shows the mean error between 1-AC and 6-AC
methods with respect to ECG using the frequency domain
parameters extracted using the Kubios software. The fre-
quency domain parameters showed improvement in all of
the selected cases.

 

 

  



Mean error vs. ECG 1-AC 6-AC
Mean RR (ms) 3.3608 2.2278
STD RR (ms) 7.0882 2.5936

Mean HR (1/min) 0.2162 0.1565
STD HR (1/min) 0.6335 0.2178

RMSSD (ms) 11.8449 5.2855
NN50 (count) 7.9310 15.1034
pNN50 (%) 2.5576 4.5384
RR tri-index 3.1595 2.5587
TINN (ms) 46.5813 27.9606

Table 1. Time domain HRV parameters.

Mean error vs. ECG 1-AC 6-AC
FFT VLF (peak) (Hz) 0.0019 0.0003
FFT LF (peak) (Hz) 0.0121 0.0075
FFT HF (peak) (Hz) 0.0171 0.0115

FFT LF/HF (power ratio) 0.2692 0.2305
AR VLF (peak) (Hz) 0.0012 0.0000
AR LF (peak) (Hz) 0.0098 0.0027
AR HF (peak) (Hz) 0.0193 0.0132

AR LF/HF (power ratio) 0.2401 0.2169

Table 2. Frequency domain HRV parameters.

5. Conclusion

We presented a novel approach for estimating HRV us-
ing 3-axis accelerometer and 3-axis gyroscope so that the
axes are combined to obtain a more reliable HRV estimate.
The presented approach could be embedded into mod-
ern wearable/implantable devices equipped with miniature
MEMS sensors. Future work can include extending the
study for a larger number of subjects, and studying possi-
bilities for HRV estimation in other locations of the MEMS
sensor (than on the chest only). Furthermore, in this pa-
per the subject under test was asked to maintain in still
position, and one interesting direction for future research
would be to study possibilities of applying the HRV anal-
ysis while the subject is moving.
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