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Abstract

We study iterated formation of mutually best matches (IMB) in college
admissions problems. When IMB produces a non-wasteful matching, the
matching has many good properties like Pareto optimality and stability.
Moreover, in this case IMB selects the unique core allocation and truth-
telling is a Nash equilibrium for students. If preferences satisfy a single
peakedness condition, or have a single crossing property, then IMB is guar-
anteed to produce a non-wasteful matching. These properties guarantee also
that the Deferred Acceptance algorithm (DA) and the Top Trading Cycles
algorithm (TTC) produce the same matching as IMB. We compare these
results with some well-known results about when DA is Pareto optimal, or
when DA and TTC produce the same matching.
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1. Introduction

Gale and Shapley (1962) introduce the college admissions problem where

no money is used to match agents in two disjoint sets with each other. These

sets consist of students and colleges (or “schools”) having strict preferences
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over the other set. In this paper we describe iterated formation of mutu-

ally best matches (IMB) algorithm as a way to solve the college admission

problem.

By construction, IMB produces an individually rational matching. Fur-

thermore, when IMB produces a non-wasteful matching1, the matching has

many good properties like Pareto optimality and stability. Moreover, the

core is guaranteed to be a singleton, and truthful reporting of preferences

is a Nash equilibrium for students in such case. We suggest that IMB is

used as a preliminary test for a good allocation. If IMB produces a non-

wasteful matching, then there cannot exist any other core allocations, and

the selected allocation has all the nice properties one can hope for.

If preferences satisfy a single peakedness condition, or have a single

crossing property with setwise increasing acceptability relations, then IMB

always produces a non-wasteful matching.2 It follows that in these cases DA

produces the same Pareto optimal matching as IMB. Further, these prop-

erties guarantee that the most common algorithms – the student proposing

DA, the school proposing DA, and the TTC – produce the same matching

as IMB.

Ergin (2002) shows that a necessary and sufficient condition for DA to

be Pareto optimal is that the preference structure of schools satisfies an

acyclicity condition. Kesten (2006) introduces a slightly different acyclicity

condition and shows that a necessary and sufficient condition for DA and

TTC to produce the same matching is that the priority structure of the

schools satisfies his acyclicity condition.

We don’t need acyclicity conditions for our results. The reason is that

our setup is different than that of Ergin or Kesten. Ergin and Kesten fix the

priorities of schools, and ask when DA is Pareto optimal (Ergin) or when

DA = TTC (Kesten), for all possible preferences of students. They find

1There does not exist a mutually acceptable student - school pair s, c such that s is

unmatched and c has free capacity.
2See Chung (2000), Banerjee et al. (2006), Gabszewicz et al. (2012), and Milgrom and

Shannon (1994) for versions of single peakedness and single crossing properties.
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that the priority structure must be acyclic.

We assume that single peakedness or single crossing property hold for

both sides of the market. Then if we look at a particular preference structure

of the schools, there is only a subset of possible preferences for students such

that single peakedness or single crossing assumptions remain valid.

A third example when IMB produces a non-wasteful matching is when

one side of the market has identical preferences. In this case DA = TTC

as well. Although this is a very restrictive assumption from theoretical

viewpoint, in some real world applications it may hold approximately.

When IMB produces a wasteful matching, one may try to fix it by con-

tinuing the matching process with some other algorithm. We study a variant

introduced by Morrill (2015) called Always Clinch and Trade (AC&T) in

which one round of TTC is applied whenever IMB halts producing a waste-

ful matching. After that, IMB is applied again, e.t.c. When schools have

capacity of one (“marriage market”), then AC&T = TTC. It follows that

AC&T is not stable but it is Pareto optimal. Moreover, if some schools

may accept more than just one student, AC&T no longer satisfies strategy

proofness.

The paper is organized in the following way. In Section 2 we introduce

the notation, axioms, and the used matching algorithms. Section 3 contains

the main results. In Section 4 we study a way to “fix” IMB when it produces

a wasteful matching. Section 5 concludes.

2. Preliminaries

Let us denote by S the nonempty finite set of students and by C the

nonempty finite set of schools. A matching is a function µ : S −→ C ∪ S

such that µ(s) /∈ C iff µ(s) = s. We denote by µ−1(c) the set of students

that are matched with school c.

Student s ∈ S has a strict preference order ≺s over acceptable schools:

c ≺s c
′ means that student s strictly prefers school c′ to school c. Notation

c -s c′ means that c ≺s c′ or c = c′. We may denote preferences by

ordered lists like ≺s= c1c2 · · · ck where c1 is the best school for s and ck
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is the worst school that s finds acceptable. Student s a) strictly prefers

being unmatched to being matched with an unacceptable school, b) strictly

prefers any acceptable school to being unmatched.

A preference profile (≺s)s specifies a preference relation to each s ∈ S.

Notation (≺′
s,≺−s) means that student s has preferences ≺′

s while the other

students have the same preferences as in the profile (≺s)s.

School c ∈ C has a strict preferences ≺c over students. Notation s -c s
′

means that s ≺c s
′ or s = s′. We may denote school preferences by ordered

lists like ≺c= s1s2 · · · st where s1 is the most preferred student, and st is

the worst student that c finds acceptable.

Schools order subsets of students as well. We make the common but

strong assumption that preferences are responsive (see Roth and Sotomayor

1992, p. 128). By this assumption we don’t have to represent preferences

over subsets of students explicitly.

A preference profile (≺c)c specifies a preference relation to each c ∈ C.

Notation (≺′
c,≺−c) means that school c has preferences ≺′

c while the other

schools have the same preferences as in the profile (≺c)c. A school c has

capacity qc > 0 which tells the greatest number of students that a school c

can accept. We denote by q = (qc)c the vector of capacities.

A mechanism is a rule M that to each matching problem P = {S, C, (≺s

)s, (≺c)c, q} assigns a matching M(P ) : S −→ C ∪S. We assume that every

s ∈ S has some acceptable school c ∈ C and every school c′ ∈ C has some

acceptable student s′ ∈ S. In this paper mechanisms are sometimes called

algorithms, since the mechanisms studied here are given in algorithmic form.

2.1. Properties of mechanisms and matchings

Given a problem P = {S, C, (≺s)s, (≺c)c, q}, we say that a pair s, c is

mutually acceptable, if s is an acceptable student for school c and c is an

acceptable school for student s. A mutually acceptable pair s, c is amutually

best pair, if c is the best school for the student s and s is among the best qc

students of school c.

A matching µ is individually rational, if c = µ(s) implies that s, c is a

mutually acceptable pair.
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Axiom 1 (Individual rationality). The matching M(P ) is individually ra-

tional for all P = {S, C, (≺s)s, (≺c)c, q}.

A matching µ is non-wasteful3, if there does not exists a mutually ac-

ceptable pair s, c such that s is unmatched and c has free capacity. That is,

if µ(s) = s and |µ−1(c)| < qc, then s, c is not a mutually acceptable pair.

Axiom 2 (Non-wastefulness). The matching M(P ) is non-wasteful for all

P = {S, C, (≺s)s, (≺c)c, q}.

Given a matching µ, a mutually acceptable pair s, c is a blocking pair, if

a) µ(s) 6= c, and b) µ(s) ≺s c and s′ ≺c s for some s′ ∈ µ−1(c), or µ(s) ≺s c

and c has free capacity. A matching µ is stable, if it is individually rational,

and there does not exist a blocking pair.

A matching µ is in the core, if there does not exist a matching µ′ and a

nonempty coalition A ⊂ S ∪ C such that every agent i ∈ A at least weakly

prefers µ′ to µ and some agent j ∈ A strictly prefers µ′ to µ. With strict

and responsive preferences the core equals the set of stable matchings (Roth

and Sotomayor 1992, 167).

Axiom 3 (Stability). The matching M(P ) is stable for all P = {S, C, (≺s

)s, (≺c)c, q}.

Given a mechanism M , we say that truth-telling is a Nash equilibrium

at a problem P = {S, C, (≺s)s, (≺c)c, q}, if M(P ′) -s M(P ) for all s and

for all ≺′
s, where P ′ = {S, C, (≺′

s,≺−s), (≺c)c, q}, and (≺s)s and (≺c)c are

the true preference profiles. We say that truth-telling is a dominant strategy

for student s, if reporting the true preferences ≺s is optimal for s at every

problem P in which s is present with preferences ≺s.

Axiom 4 (Strategy proofness). Truth-telling is a dominant strategy for all

students s.

3Balinski and Sönmez (1999) define non-wastefulness the following way: “matching

µ is non-wasteful if µ(s) ≺s c implies |µ−1(c)| = qc for all s ∈ S and for all c ∈ C”. Both

definitions can be used in this paper, but our definition is slightly weaker.
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A matching µ is Pareto optimal, if there does not exist an alternative

matching µ′ such that µ(s) -s µ′(s) for all s ∈ S, and µ(s) ≺s µ′(s) for

some s ∈ S. In this paper we study truth-telling and efficiency from the

viewpoint of students only.

Axiom 5 (Pareto optimality). The matching M(P ) is Pareto optimal for

all P = {S, C, (≺s)s, (≺c)c, q}.

2.2. Matching mechanisms

If the choice is restricted to subsets S ′ ⊂ S and C ′ ⊂ C, the preferences

on S ′ and C ′ are the original orders restricted to these subsets. We may

denote by As(C
′) and Ac(S

′) the schools and students that are acceptable

in subsets C ′ and and S ′ for student s and school c, respectively. Note that

As(C
′) = As(C) ∩ C ′ and Ac(S

′) = Ac(S) ∩ S ′.

Student s ∈ S and school c ∈ C are mutually acceptable if s ∈ Ac(S)

and c ∈ As(C). Matching problems without mutually acceptable pairs are

not interesting from the viewpoint of matching theory.

The best known mechanisms are the deferred acceptance algorithm (Gale

and Shapley 1962) and the top trading cycles mechanism (Shapley and Scarf

1974, Abdulcadiroğlu and Sönmez 2003).

The deferred acceptance algorithm (hereafter DA), more precisely a stu-

dent proposing version of it, is defined by the following steps.

1. Any student s names her best school. Any school c tentatively accept

the best qc of those students that named c, and permanently rejects

the rest of the students that named c.

2. Any student s rejected in the previous step names her best school

among the schools that have not yet rejected him. A student who has

been tentatively accepted cannot name any school. Any school c com-

pares the new applicants to the ones she already has, and tentatively

accepts the best qc of them.

DA ends when any student who is not tentatively accepted by some

school does not have any acceptable schools left. The students tentatively
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accepted by schools are permanently matched with these schools. In school

proposing DA, the students accept proposals from schools. Student propos-

ing DA produces a student optimal stable matching while school proposing

DA produces a school optimal stable matching.

The top trading cycle mechanism (hereafter TTC), is defined by the

following steps.

1. Each student s names the best school c in the market that finds s

acceptable. Each school c names the best student in the market. If

there are no cycles, go to 3. If there are cycles (s → c → . . . → s),

match each student in a cycle permanently with the school that the

student named. Update the preferences and capacities of the agents.

Permanently matched students and those schools whose capacity is full

leave the market. Also those students (schools) who no longer have

acceptable schools (students) leave the market (this step is repeated

if necessary). Go to 2.

2. Let S ′ and C ′ denote the students and schools that are still in the

market. If both S ′ and C ′ are nonempty, then go to 1, and apply the

procedure to S ′ and C ′. If S ′ or C ′ is empty, go to 3.

3. End.

In step 1. of TTC, we must require that an student s names the best

school c that finds s acceptable. Without this specification TTC could

match a student with a school that does not accept s. Also students and

schools that do not have acceptable matches must be removed from the mar-

ket, since otherwise a school might name a student who has no acceptable

school and TTC could produce a wasteful matching.

Recall that s, c is a mutually best pair, if c is the best school for student

s, and s is among the best qc students for school c. By iterated formation

of mutually best matches (IMB) we mean the following process.

1. Students (schools) report their preferences over schools (students) that

are in the market. If there are no mutually best pairs, then go to 3.

If there are mutually best pairs, the mechanism matches permanently
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all such pairs. Update the preferences and capacities of the agents.

Permanently matched students and those schools whose capacity is full

leave the market. Also those students (schools) who no longer have

acceptable schools (students) leave the market (this step is repeated

if necessary). Go to 2.

2. Let S ′ and C ′ denote the students and schools that are still in the

market. If both S ′ and C ′ are nonempty, then go to 1, and apply the

procedure to S ′ and C ′. If S ′ or C ′ is empty, go to 3.

3. End.

In the next example we demonstrate how the algorithm is applied in

practice.

Example 1. Let S = {s1, s2, s3} and C = {c1, c2}. All student – school

pairs s, c are mutually acceptable. Preferences are: ≺s1= c2c1, ≺s2= c1c2,

≺s3= c2c1. Schools’ preferences are ≺c1= s1s2s3, ≺c2= s2s3s1. School c1

has capacity of two and school c2 has capacity of one.

In the first round, the only mutually best pair is s2, c1. After matching

these agents, we remove student s2 from the market and reduce the quota of

school 1 by one. After updating the preferences, we can move on to round 2.

In the second round there is only one mutually best pair s3, c2. In the last

round school 1 and student s1 are a mutually best pair. No more mutually

best pairs can be found and the algorithm ends in a non-wasteful matching.

Note that both IMB and DA produce a matching µ = {(s1, c1), (s2, c1),

(s3, c2)} while the TTC produces a matching µ′ = {(s1, c2), (s2, c1), (s3, c1)}.

Let us modify this example so that IMB produces a wasteful matching.

Suppose both schools have capacity of one. Now the IMB stops immediately

as there are no mutually best matches. Yet, all schools are acceptable for all

students. Furthermore, s1 can manipulate her preferences and the wasteful

matching by dropping c2 from her preferences. With manipulated prefer-

ences ≺′
s1
= c1 the resulting matching using IMB is µ′′ = {(s1, c1), (s2, c2)}.

Matching µ′′ is preferred by s1 to not being matched. ✁

Note that since the IMB matches mutually acceptable pairs iteratively, it

satisfies Axiom 1 (individual rationality) by construction. As we saw from
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Example 1, IMB does not satisfy Axiom 2 (non-wastefulness) in general.

Moreover, a wasteful matching produced by IMB is manipulable and IMB

does not satisfy Axiom 4 (strategy proofness) in general.

3. Results

The first result says that when IMB produces a non-wasteful match-

ing for P = {S, C, (≺s)s, (≺c)c, q}, then the matching is stable and Pareto

optimal, and truth-telling is a Nash equilibrium for students at P .

Proposition 1. If IMB produces a non-wasteful matching µ for the problem

P = {S, C, (≺s)s, (≺c)c, q}, then µ is stable and Pareto optimal. Hence

DA produces µ as well. Moreover, truth-telling is a Nash equilibrium for

students at P .

Proof. Stability. If µ is not stable there exists a blocking pair s, c, since

IMB is individually rational. Since µ is a non-wasteful matching, c cannot

have free capacity, and s′ ≺c s must hold for some s′ that is matched with c.

Under IMB, it is not possible that s is matched with some school c′ before

or at the same time s′ is matched with c. This holds since s is above s′

in the preferences of c, so c′ would then be a better school for s than c,

a contradiction. But then it follows that s will remain among the qc best

students of c even after s′ is matched with c. The worst thing that can

happen to s is that she will be eventually matched with c, a contradiction

again. Hence µ is stable.

Pareto optimality. Let Sk be the set of students that are matched in

round k of IMB. Those matched in round 1 are matched with their best

schools. Those matched in round k = 2 are matched with the best schools

still in the market, and so on. So it is impossible to find a Pareto improving

reallocation among the students that are matched with some school. Hence

if µ′ is a Pareto improving matching, µ′ matches all students in subsets

Sk the same way as µ. Hence µ′ can be different only if some s that was

unmatched under µ is placed in some school under µ′. By the definition of
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IMB, any school c that has free capacity under µ finds s unacceptable, or

else c is unacceptable to s. Hence µ is Pareto optimal.

Let DA produce a matching µ′′. Since µ′′ Pareto dominates any other

stable matching (Roth and Sotomayor 1992), µ′′ = µ.

Truth-telling. Let Sk be the set of students that are matched in round k

of IMB. If s is matched in round k = 1, then she is matched with her best

school and therefore untruthful reporting of preferences cannot be beneficial.

If k = 2, then untruthful reporting would benefit s only if she would be

matched with some school c′ that is better than c = µ(s), and that got its

capacity filled already in round k = 1. But that is possible only if s was

among the qc′ best students for school c
′ in round k = 1. If this holds, then

c′ has still free capacity in round k = 2, a contradiction with the assumption

that s is matched with a worse school c. Apply induction on k and conclude

that no student that is matched with a school can benefit from misreporting

preferences. Finally note that a similar argument holds also for students

that are unmatched under µ.

As we saw in Example 1, TTC can produce a different matching than

IMB even when IMB produces a non-wasteful matching. The following

result shows that TTC is equivalent to IMB when the capacities of the

schools are restricted to one and IMB produces a non-wasteful matching.

Corollary 1. If IMB produces a non-wasteful matching µ for the problem

P = {S, C, (≺s)s, (≺c)c, q}, and each school has capacity of one, then IMB

generates the same matching as DA and TTC.

Proof. By construction IMB produces only short cycles s → c → s. Because

each school has capacity of one, a pair s, c is mutually best, if and only if s

is the best student for school c and c is the best school for student s. These

kind of mutually best pairs are matched also by TTC. Hence every pair s, c

matched by IMB will also be matched by TTC. Since TTC produces an

individually rational matching, and by assumption IMB produces a non-

wasteful matching, we are done.
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The next Theorem shows that when IMB produces a non-wasteful match-

ing µ, the core is a singleton.

Theorem 1. If IMB produces a non-wasteful matching µ for the problem

P = {S, C, (≺s)s, (≺c)c, q}, then µ is the unique element of the core.

Proof. Let IMB produce a non-wasteful matching µ. By Proposition 1,

student proposing DA also produces matching µ. Suppose the core is not a

singleton. Hence the school proposing DA produces a matching µ′ 6= µ.

By the Rural Hospital Theorem (Roth 1986), the set of matched students

is the same in both matchings µ and µ′, and if a school c has free capacity

in µ, then school c has exactly the same students in µ and µ′. Since µ′ is

a school optimal stable matching, at least one school c strictly prefers µ′ to

µ. Hence for this school c it must hold that there exists students s′, s such

that µ′(s′) = c 6= µ(s′), µ(s) = c 6= µ′(s), and s′ is strictly better for c than

s.

Now apply the school proposing DA algorithm and IMB on a given

problem P . In the school proposing DA, school c sends an offer to the top

students in its preference relation, up to the capacity constraint, and we

may assume w.l.o.g that offers are sent to those students only that find c

acceptable.

Since IMB produces a non-wasteful matching, there is at least one mu-

tually best pair s, c at round 1 of IMB. By the definition of the school

proposing DA and the definition of a mutually best pair, this school c is

tentatively accepted by student s at round 1 in problem P . Note that since

s, c is a mutually best pair, the student s cannot get a better offer on later

rounds of the school proposing DA algorithm.

Denote by µ1 all the mutually best pairs (s, c) matched by IMB in the

first round, and note that these pairs (s, c) will be eventually matched by

the school proposing DA as well. In the school proposing DA, if school c

was rejected by a student s′, school c may never again make a proposal to

s′.

Form a sub-problem P 1 = {S1, C1, (≺1
s)s, (≺

1
c)c, q

1}, where S \ S1 con-

sists of those students that were matched by IMB in the first round, C \C1
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consists of those schools whose capacity was filled at this point, and pref-

erences ≺1 and capacities q1 are updated for the remaining students and

schools accordingly.

Start round 2 of IMB on the original problem P . There exists at least

mutually best pair s, c. Now s ∈ S1 and c ∈ C1 and hence student s will

tentatively accept c when the school proposing DA is applied on P 1. Note

that student s cannot get an offer from a better school anymore when DA

is applied, and therefore s will be permanently matched with c. But this

holds also when the school proposing DA is applied to the original problem

P , because in that case c will make proposal to s in the second round of

DA.

Denote by µ2 all the mutually best pairs (s, c) matched by IMB in the

second round. We have shown that the pairs (s, c) ∈ µ2 will be eventually

matched by the school proposing DA as well.

Continue recursively by forming a subproblem P k+1 from P k in the same

manner as P 1 was formed P , for k ≥ 1. It follows that the mutually best

pairs µk+1 identified by IMB in the round k will be permanently matched

by the school proposing DA.

Let n be the round when IMB halts. Then the non-wasteful matching

µ generated by IMB satisfies µ = µ1 ∪ · · · ∪ µn. By Proposition 1 the

student proposing DA also produces µ. On the other hand, we have shown

that µk ⊂ µ′ for all k ≤ n, where µ′ is the matching produced by the

school proposing DA. Hence µ ⊂ µ′. The Rural Hospital Theorem implies

µ = µ′

Note that Theorem 1 is a necessary but not a sufficient condition for

a singleton core. This is shown in the following example slightly modified

from Example 4 in Morrill (2015).

Example 2. S = {s1, . . . , s5}, C = {c1, . . . , c4}. All student-school pairs are

mutually acceptable. Students’ preferences are as follows, unlisted schools

could be in any order after the top schools: ≺s1= c3c2c1, ≺s2= c1, ≺s3= c2c1,

≺s4= c4c1c3, ≺s5= c3. Schools’ preferences are as follows, unlisted students

could be in any order after the top students: ≺c1= s1s4s2s3, ≺c2= s2s3s1,
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≺c3= s4s5, ≺c4= s5s4. School c1 has capacity of two, the other schools have

capacity of one.

There are no mutually best matches to eliminate and IMB produces a

wasteful empty matching. Both DA algorithms produce the matching µ∗:

µ∗ = {(s1, c1), (s2, c1), (s3, c2), (s4, c4), (s5, c3)}.

This shows that the core can be singleton even when the IMB produces

a wasteful matching. ✁

For the remaining part of this section we concentrate on studying sit-

uations where restricted preference domains allow IMB to produce a non-

wasteful matching. One such situation is when one side of the market has

identical preferences over the other side of the market.

Proposition 2. If P = {S, C, (≺s)s, (≺c)c, q} is such that all students have

identical preferences, then IMB produces the same non-wasteful matching µ

for P as TTC and DA. This holds also if all schools have identical prefer-

ences but may have different capacities.

Proof. Identical student preferences. Index the schools so that the common

preference of students is ≺s= c1c2 · · · ck, where ck is the last acceptable

school. In the first round of IMB, school c1 gets the top qc1 students accord-

ing to its preferences ≺c1 or fewer if c1 has smaller number of acceptable

students. After that school c2 gets the top qc2 students according to its

preferences ≺c2 or fewer if c2 has smaller number of acceptable students.

Continue this way as long as there are acceptable students for some ct, t ≤ k.

Now apply TTC, and note that school c1 gets first the same students she

got under IMB. After that, school c2 gets the same students she got under

IMB. Continuing this way we observe that TTC produces the same matching

µ as IMB. Hence µ is a non-wasteful individually rational matching. By

Proposition 1 DA produces µ.

Identical school preferences. Index the students so that the common

preferences of schools is ≺c= s1s2 · · · sk, where sk is the last acceptable

student. In the first round of TTC only s1 is matched, and she is matched
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with her best school, say c1. IMB also matches s1 with c1. By the same

argument, during each round t ≤ k of TTC only student st is matched, and

she is matched with the best school still in the market, say ct. IMB also

matches st with ct. Therefore if TTC matches a student s with a school

c, then also IMB matches s with c. The matching µ produced by TTC is

Pareto optimal and individually rational. Hence µ is also a non-wasteful

matching. By Proposition 1 both IMB and DA produces µ as well.

Next we relax the identical preference structure with a single peakedness

property. Single peakedness has sound economic rationale in school choice.

Such a situation would arise when schools and students apply to their prox-

imate counterparts first. Eeckhout (2000) defines conditions for a singleton

core in a balanced marriage market in terms of single peaked preference

structure. Our definition is more general since we allow for multiple agents

to have the same most preferred choice in an unbalanced college admissions

setup. To define single peakedness for problems P = {S, C, (≺s)s, (≺c)c, q},

we assume that sets S and C of students and schools are subsets of some

finite dimensional real space R
p which is equipped with a norm ‖·‖.4 The

following holds for any student s ∈ S, and any schools c, c′:

c ≺s c
′ ⇐⇒ ‖s− c‖ > ‖s− c′‖, (1)

and similarly for c ∈ C, and any students s, s′:

s ≺c s
′ ⇐⇒ ‖c− s‖ > ‖c− s′‖. (2)

Single peaked preferences are based on the notion of distance between

the ideal points s and c of the agents. Student s can have the same prefer-

ences as student s′ if s′ is sufficiently close to s, and similarly for schools.

We continue to assume that all preferences are strict and hence there are

no indifferences.

4For example, ‖·‖ could be the Euclidean norm ‖x‖ =
√

∑

i
x2

i , but any norm on R
p

will do.
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We define the acceptability relations As of students to be distance con-

sistent, if

c ∈ As(C) and ‖s− c′‖ < ‖s− c‖ =⇒ c′ ∈ As(C). (3)

The distance consistent acceptability relations Ac for school c is defined

analogously.

Single peaked preferences guarantee that IMB produces a non-wasteful

matching. This is shown in the next proposition.

Proposition 3. If P = {S, C, (≺s)s, (≺c)c, q} is such that preferences sat-

isfy the single peakedness property, and the acceptability relations are dis-

tance consistent, then IMB produces a non-wasteful matching µ for P .

Proof. We assume that there is at least one mutually acceptable pair s, c,

since otherwise the empty matching is trivially non-wasteful. There exists

a pair s′, c′ that minimizes the norm ‖s− c‖, since there are finitely many

students and schools in the market. We will show that s′, c′ is a mutually

best pair.

We show first that s′, c′ is a mutually acceptable pair. Assume first

that s′ does not accept c′. Since s′ has some acceptable school c′′ in the

market, and acceptability relations are distance consistent, we must have

‖s′−c′′‖ < ‖s′−c′‖. This contradicts the choice of s′, c′. In the same manner

we can show that c′ finds s′ acceptable, because any norm is a symmetric

function: ‖s− c‖ = ‖c− s‖. Therefore s′, c′ is a mutually acceptable pair.

Now c′ must be the best school in the market for s′, since otherwise

‖s′− c′′‖ < ‖s′− c′‖ would hold because acceptability relations are distance

consistent. Similarly, s′ must be the best student for c′, and therefore s′, c′

is a mutually best pair.

If there are any mutually acceptable pairs left, then IMB can be contin-

ued and the step above can be repeated. If there are no mutually acceptable

pairs we are done.

Whenever IMB produces a non-wasteful matching µ, by Proposition 1

DA produces matching µ. Our next result shows that single peaked prefer-

ences guarantee that TTC produces µ as well regardless of school capacities.
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Proposition 4. If P = {S, C, (≺s)s, (≺c)c, q} is such that preferences sat-

isfy the single peakedness property, and the acceptability relations are dis-

tance consistent, then IMB generates the same matching µ as DA and TTC.

Furthermore, matching µ is stable, Pareto optimal, the unique element of

the core, and truth-telling is a Nash equilibrium for students at P .

Proof. IMB = DA, stability, Pareto-optimality, and the truth-telling prop-

erty follow from Propositions 3 and 1. Uniqueness of the core follows from

Theorem 1. By definition, IMB produces only short cycles s → c → s.

For TTC = IMB to hold, we need to show that there are no cycles of the

form s → c → s′ → c′ → s, where s 6= s′. For such cycles the following

inequalities have to hold for s, s′ ∈ S and c, c′ ∈ C :

s : ‖s− c′‖ > ‖s− c‖,

c : ‖c− s‖ > ‖c− s′‖,

s′ : ‖s′ − c‖ > ‖s′ − c′‖,

c′ : ‖c′ − s′‖ > ‖c′ − s‖.

It follows that ‖s − c‖ > ‖c − s′‖ > ‖s′ − c′‖ > ‖c′ − s‖ > ‖s − c‖ has to

hold by symmetry of ‖·‖, a contradiction. Same reasoning can be applied

to all cycles s → c → s′ → · · · → c′ → s since the inequalities ‖s − c‖ >

‖c− s′‖ > · · · > ‖c′ − s‖ > ‖s− c‖ cannot hold.

Example 3. Let S = {s1, s2, s3, s4} and C = {c1, c2, c3}, all schools are

acceptable to all students and all students are acceptable to all schools. Let

the capacities of the schools be 1 except for school c2 let qc2 = 2. Let the

used norm be the taxicab norm so that for student s1 and school c2 the

following holds ‖s1 − c2‖ = |sx1 − cx2 | + |sy1 − cy2| = |0 − 4| + |2 − 4| = 6.

The distances can be easily calculated from Figure 1 where each agent is

represented by coordinates on x− y plane.

Now the students preferences are as follows: ≺s1= c1c2c3, ≺s2= c1c3c2,

≺s3= c2c3c1, ≺s4= c3c2c1. Similarly the schools’ preferences are: ≺c1=

s2s1s4s3, ≺c2= s3s2s4s1, ≺c3= s4s2s3s1. Clearly the preferences are strict

and satisfy single peakedness.
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Figure 1: Taxicab norm single peaked preferences.

s1 = (0, 2)

s2 = (4, 0)

s3 = (5, 5)

s4 = (7, 2)

c1 = (2, 0)

c2 = (4, 4)

c3 = (7, 0)
(x, y) = (0, 0)

(x, y) = (7, 5)

Applying IMB, the first mutually best matches are (s2, c1), (s3, c2), and

(s4, c3). After that, the only mutually best match is (s1, c2). IMB produces

the matching µ = {(s1, c2), (s2, c1), (s3, c2), (s4, c3)}. DA and TTC produce

µ as suggested by Proposition 4. ✁

If students’ and schools’ preferences satisfy the “single crossing” prop-

erty, then again IMB produces a non-wasteful matching for the problem.

Clark (2006) defines the single crossing property in a balanced marriage

market, and shows that the core is a singleton. We define the single cross-

ing property in the framework of possibly unbalanced college admissions

problems.

Let us assume that the single crossing property holds at a problem P =

{S, C, (≺s)s, (≺c)c, q}. Then the students S = {s1, . . . , sn} and schools C =

{c1, . . . , cm} can be thought as being real numbers and indexed so that si <

si+1 and ck < ck+1. Further, the following holds for si, sj ∈ S, ck, cp ∈ C:

ck ≺si cp and ck < cp =⇒ ck ≺sj cp, if si < sj (4)

si ≺ck sj and si < sj =⇒ si ≺cp sj, if ck < cp. (5)

If all students would accept the same schools and all schools would

accept all students, then single crossing alone would be sufficient for IMB
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to generate a non-wasteful matching. If these assumptions do not hold, we

have to impose some restrictions on the acceptability relations as well.

Acceptability relation As(C) for student s is an interval, if c, c′ ∈ As(C),

c ≤ c′, implies c′′ ∈ As(C), for all schools c′′ such that c ≤ c′′ ≤ c′. Interval

acceptability relation for a school c is defined in the same manner.

Given a nonempty subset A of S, we denote by maxA and minA the

greatest and least elements of A, respectively. Notation maxB and minB

is defined analogously for nonempty subsets B of C.

Acceptability relations As and Ac are setwise increasing intervals, if they

are intervals, and

s < s′ =⇒ minAs(C) ≤ minAs′(C), and maxAs(C) ≤ maxAs′(C) (6)

c < c′ =⇒ minAc(S) ≤ minAc′(S), and maxAc(S) ≤ maxAc′(S). (7)

Constant relations As(C) = As′(C), Ac(S) = Ac′(S) for all s, s
′ and c, c′

are special cases of setwise increasing relations.

The following lemma is a version of some well-known results from the

literature of strategic complements (see e.g. Milgrom and Shannon 1994),

but we give a proof here for the sake of completeness. For any s ∈ S let

c(s) denote the best school for s. That is, c(s) is the best school in the set

As(C). For any c ∈ C let s(c) denote the best student for c.

Lemma 1. Suppose that the single crossing property holds at a problem

P = {S, C, (≺s)s, (≺c)c, q} and that the acceptability relations of schools

and students are setwise increasing intervals.

Then s < s′ implies c(s) ≤ c(s′) and c < c′ implies s(c) ≤ s(c′).

Proof. It suffices to prove the lemma for students only because the proof

for schools is identical.

Take any s, s′ ∈ S such that s < s′. We want to show c(s) ≤ c(s′). If

this does not hold then c(s′) < c(s). Since acceptability relations are setwise

increasing intervals, we have that c(s′), c(s) ∈ As(C)∩As′(C) because s < s′.

But then single crossing property implies that student s′ strictly prefers c(s)

to c(s′), since s < s′, c(s′) < c(s), and c(s′) ≺s c(s). A contradiction with

the definition of c(s′). Hence c(s) ≤ c(s′).
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When acceptability relations Ac(S) and As(C) on S and C are setwise

increasing intervals, then their restrictions Ac(S
′) and As(C

′) to subsets

S ′, C ′ are also setwise increasing intervals of these subsets. The next lemma

states that when acceptability relations are setwise increasing intervals, the

single crossing property is a “hereditary property” in the sense that it holds

for subsets of S and C.

Lemma 2. Suppose that the single crossing property holds at a problem

P = {S, C, (≺s)s, (≺c)c, q}, all acceptability relations are setwise increasing

intervals, and S ′ ⊂ S and C ′ ⊂ C are nonempty subsets. Then the student

preferences restricted to C ′ and school preferences restricted to S ′ satisfy

the single crossing property, and nonempty acceptability relations are set-

wise increasing intervals of S ′ and C ′. In particular, Lemma 1 holds for

preferences restricted to C ′ and S ′.

Proof. It suffices to give a proof for students only. Let S ′ ⊂ S and C ′ ⊂ C

be nonempty subsets. Preferences restricted to subsets C ′ and S ′ satisfy

the single crossing property since they have this property on C and S.

Take any s, s′ ∈ S such that s < s′. Since As(C) is an interval of C,

also As(C
′) = C ′ ∩ As(C) is an interval of C ′. If both As(C

′) and As′(C
′)

are nonempty, then it follows immediately that these relations are setwise

increasing.

The proof of Lemma 1 holds if S and C are replaced by S ′ and C ′, so

the function c(s) is increasing on S ′.

We have the following.

Proposition 5. If P = {S, C, (≺s)s, (≺c)c, q} is such that preferences sat-

isfy the single crossing property, and the acceptability relations are setwise

increasing intervals, then IMB produces a non-wasteful matching µ for P .

Proof. We assume that there is at least one mutually acceptable pair s, c,

since the empty matching is trivially non-wasteful. Form a sequence s1, s2, . . .

of students and a sequence c1, c2, . . . of schools by the following rule. Let

s1 = sn, and c1 = c(s1), and given st, let ct = c(st) and st+1 = s(ct). In
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words, we start from the highest indexed student sn, and choose the best

school c1 for him. Then we choose the best student s2 for school c1, and

after that the best school c2 for s2, and so on.

Note that s2 ≤ s1, and therefore c2 ≤ c1 by Lemma 1. It follows by

Lemma 1 that sequences {st} and {ct} are decreasing. By finiteness of S

and C, these sequence have limits s∗ and c∗. The limits satisfy c∗ = c(s∗)

and s∗ = s(c∗), so s∗, c∗ is a mutually best pair.

Match all mutually best pairs, remove matched students from S, and

remove those schools from C whose capacity is full. Let S ′ (C ′) be the

set of students (schools) who are still in the market. If either S ′ or C ′ is

empty, then the process ends. If both S ′ and C ′ are nonempty, update the

preferences and capacities of these agents and continue with IMB.

IMB can be applied as long as there are mutually acceptable pairs left,

and as shown above, in such a case there is at least one mutually best pair.

This completes the proof.

In fact, when single crossing property holds, the IMB produces the same

matching as TTC and DA.

Proposition 6. If P = {S, C, (≺s)s, (≺c)c, q} is such that preferences sat-

isfy the single crossing property, and the acceptability relations are setwise

increasing intervals, then IMB, DA, and TTC produce the same matching

µ for P . Furthermore, matching µ is stable, Pareto optimal, the unique

element of the core, and truth-telling is a Nash equilibrium for students at

P .

Proof. By Proposition 5, IMB produces a non-wasteful matching µ for P .

We only have to prove that TTC produces µ, since the other results follow

immediately from Proposition 1 and Theorem 1.

When single crossing property holds, it is impossible that TTC generates

a cycle that contains at least two students and schools. To see this, assume

that there is cycle s → c → s′ → c′ → s. If s < s′, then c ≤ c′ by single

crossing property, and c = c′ would imply that s = s′. Hence c < c′, and
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therefore s′ ≤ s a contradiction. In the same manner all longer cycles are

impossible under TTC.

Therefore under TTC only cycles s → c → s will be formed. In each

round of IMB, there is at least one cycle s → c → s and s will be matched

with c. Every cycle s → c → s that is formed during the first round of IMB,

will be formed also under TTC, so at least these matchings are the same.

In the first round of IMB, there could also be matchings s, c such that c is

the best school for s, and s is among the best qc students for c although not

the best one. Under each round of TTC, c is either matched with the best

student for c, or c gets no students at all during this round. This implies

that s will eventually be matched with c also under TTC. Hence all students

that are matched in the first round of IMB will eventually be matched with

the same schools under TTC as well.

Continuing this way we can conclude that any match s, c that is formed

during round k of IMB will eventually be formed under TTC as well. Since

IMB produces a non-wasteful matching µ, TTC must produce µ as well.

In the next example a matching problem is presented that satisfies the

single crossing property. However, the acyclicity conditions of Ergin (2002)

and Kesten (2006) are violated. We show that DA produces a Pareto opti-

mal matching although Ergin’s condition is violated and that DA = TTC

holds although Kesten’s condition is violated. A similar situation for single

peaked preferences was shown in Example 3.

As explained in the Introduction, this is due to the fact that our setup

is different than theirs. They seek a condition for a fixed priority structure

such that DA is Pareto optimal or TTC = DA, no matter what the students’

preferences are. In our setup, students’ and schools’ preferences cannot

vary totally independently in the class of problems with the single crossing

property.

Example 4. Let S = {s1, s2, s3, s4} and C = {c1, c2, c3}, all schools are

acceptable to all students and all students are acceptable to all schools.

Each school has capacity of one. Let the students’ preferences be as follows:

≺s1= c1c2c3, ≺s2= c1c3c2, ≺s3= c3c1c2, ≺s4= c3c2c1. Let schools’ preferences
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be as follows: ≺c1= s1s2s3s4, ≺c2= s3s4s1s2, ≺c3= s4s3s2s1. Now all agents

have different preferences.

Order students in the order given by their indices: s1 < s2 < s3 < s4.

Order schools in the order given by their indices: c1 < c2 < c3. Student

s3 prefers c1 to c2, and so do also students s2 and s1. On the other hand

student s2 prefers c3 to c2, and so do also students s3 and s4.

School c2 orders s3 and s4 higher than s1 and s2, and so does school c3

who is on top in the linear order of schools. On the other hand, c2 ranks s3

higher than s4 and s1 higher than s2, and so does c1 who is the least school

in the linear order of schools.

In this way one can check that single crossing property holds for prefer-

ences.

Applying IMB, the first mutually best matches are (s1, c1) and (s4, c3).

After that, the only mutually best match is (s3, c2), and student s2 is left

unmatched. Hence the matching is µ = {(s1, c1), (s3, c2), (s4, c3)} and s2 is

left unmatched. By Proposition 6 DA and TTC also produce this Pareto

optimal matching.

Both Ergin’s and Kesten’s acyclicity conditions are violated, since s3 ≺c1

s2 ≺c1 s1 and s1 ≺c3 s2 ≺c3 s3, and the Scarcity condition of both author’s

is satisfied since all schools have capacity of one (for details, see Ergin 2002

and Kesten 2006). ✁

Single crossing works nicely for IMB when the student and school sets

are totally ordered, or “one dimensional”. If student and school sets have

more complicated lattice structure then IMB may fail as shown in the next

example.

Example 5. Consider the subset {(0, 0), (0, 1), (1, 0), (1, 1)} of R2. When

equipped with the usual order of R2 this set becomes a lattice. Let S =

{s00, s01, s10, s11} and C = {c00, c01, c10, c11} and order the students and

schools by their indices. So s00 ≤ s01, s10 ≤ s11, and s01 and s10 are incom-

parable, and analogously for schools. All schools have capacity of one.

Students’ preferences: ≺s00= c00c10c01c11, ≺s10= c11c01c10c00, ≺s01=

c11c10c01c00, ≺s11= c11c01c10c00. All schools are acceptable to all students.
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Schools’ preferences: ≺c00= s00s01s10c11, ≺c10= s11s10s01s00, ≺c01=

s11s01s10s00, ≺c11= s11s10s01c00. All students are acceptable to all schools.

Note that preferences satisfy the single crossing property. They satisfy

also a condition called “quasi supermodularity”. This condition says for

student s00 that c00 must be better than c10 because c01 is better than c11

(for details, see Milgrom and Shannon 1994).

IMB matches first s00 with c00 and s11 with c11. But then IMB halts:

s10 prefers c01 to c10 but s10, c01 is not a mutually best pair, and s01 prefers

c10 to c01 but , s01, c10 is not a mutually best pair. ✁

4. Fixing IMB?

IMB may halt before it has generated a non-wasteful matching. Some-

times it may fail to match any pairs of students and schools. In this section

we look at a possibility to modify IMB in such a way that it always produces

a non-wasteful matching.

The IMB modification that is of interest coincides with Always Clinch

and Trade (AC& T) first introduced by Morrill (2015). The definition is

simple: if IMB halts and the matching is wasteful, then apply one round of

TTC to the sets of students S ′ and C ′ still in the market. There must be at

least one cycle. Remove the matched students from S ′. Remove the schools

whose capacity is full from C ′. Update the preferences and capacities of

the remaining students S ′′ and schools C ′′, and try to apply the usual IMB

again. And so on. It is clear that the outcome will be a non-wasteful

matching.

The next result states that in marriage markets AC&T is actually TTC.

Proposition 7. If each school has capacity of one, then AC&T = TTC.

Proof. Note that under TTC, it is irrelevant in which order formed cycles

are removed from the market. So we can apply TTC in such a way that all

possible short cycles s → c → s are first removed from the market. When

there are no short cycles to be found, remove all long cycle s′ → c′ → . . . →

s′. Iterate and produce a matching µ.
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Since the quota of every school is one, IMB produces only such mutually

best pairs in which a student points to her best school and a school points to

its favorite student. This is equivalent to removing short cycles s → c → s

from the market under TTC. When no short cycles can be found, one round

of TTC is applied by the definition of AC&T. This removes all long cycles

s′ → c′ → . . . → s′. By iterating this process we end up with the same

matching µ that was produced by TTC.

It follows from Proposition 7 that AC&T is not stable. However AC&T

is Pareto optimal.

Proposition 8. AC&T is Pareto optimal.

Proof. Let AC&T generate a matching µ for problem P . Then µ is a non-

wasteful matching. Suppose that µ is not Pareto optimal, and that µ′ Pareto

dominates it.

When AC&T is applied to P , let k be the first round such that some

student gets a better match in µ′ than in µ. Now k = 1 is impossible since

all students matched in the first round of AC&T get their best match in P .

Hence the students matched in the first round are matched with the same

schools in µ and in µ′.

Let S ′, C ′ be the sets of agents left in the beginning of the second round,

and update capacities and preferences. Let P 1 be the problem corresponding

to this situation. Then it must still hold that AC&T applied to P 1 generates

a matching µ1 that is Pareto dominated by a matching µ′1. Again, it holds

that students matched in the first round are matched the same way in µ1

and µ′1. Hence k = 2 is impossible.

The proof is completed by applying induction on k.

A drawback of AC&T as compared to ordinary TTC is that it is not

strategy proof. AC&T may also match a larger number of students with

schools than TTC. This is show in the next example.

Example 2 (Continued). There are no mutually best matches to eliminate.

By the definition of AC&T we must apply one round of TTC to S and
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C. The only cycle is s4 → c4 → s5 → c3 → s4. So the first matches are

(s4, c4), (s5, c3) and these agents are removed. In the second round (s2, c1) is

a mutually best match. In the third round (s3, c2) is a mutually best match.

In the fourth round (s1, c1) is a mutually best match. So the matching µ∗

generated by AC&T is

µ∗ = {(s1, c1), (s2, c1), (s3, c2), (s4, c4), (s5, c3)}.

Suppose s1 reports that c2 is her best school. Applying AC&T, we get

first a cycle s1 → c2 → s2 → c1 → s1. Hence s1 will be matched with c2,

and therefore AC&T is not strategy proof.

Note that the ordinary TTC with true preferences generates the same

matching µ′ as AC&T with the false reporting by s1:

µ′ = {(s1, c2), (s2, c1), (s3, c1), (s4, c4), (s5, c3)}.

Now change the preferences of student s3 so that she accepts only c2.

That will not change the matching µ∗ produced by AC&T when all students

report true preferences. But TTC will now produce the matching

µ = {(s1, c2), (s2, c1), (s4, c4), (s5, c3)},

so in this case AC&T matches more students with schools than TTC. ✁

We saw from the last example that AC&T might produce a different

matching compared to TTC when capacities of the schools are larger than

one. However, we can guarantee that TTC = AC&T in all college admis-

sions problems when we transform it to a related marriage market (see Roth

and Sotomayor 1992, p 131). That is, whenever a school c has a capacity

larger than one we create |qc| copies of the school, each copy maintaining the

preferences of the original c with capacity one, and replace c by the string

c1, . . . c|qc| on preferences of the students. We assume that student s strictly

prefers lower number indexed copies of school c to higher indexed copies.

Thus for student s with preferences ≺s: cc
′ we form new cloned preferences

as ≺s: c
1 . . . cic′1 . . . c′j, where |qc| = i, |qc′| = j, and i, j ≥ 1. We can now

present our final result.
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Corollary 2. For every college admissions problem P = {S, C, (≺s)s, (≺c

)c, q} transformed to a related marriage market, we have AC&T=TTC.

Proof. As a related marriage market only requires us to make assumptions

about preferences of the students and now for all schools we have a quota

of one, it immediately follows from Proposition 7 that AC&T = TTC.

There are of course many ways to solve the deadlock when IMB ter-

minates producing a wasteful matching. Indeed, Morrill (2015) introduces

more complex algorithms similar to AC&T which guarantee e.g. strategy

proofness.

In the first version of this paper we defined IMB in such a way that

the preferences ≺s (≺c) are defined over those schools (students) only that

accept s ∈ S (c ∈ C). While IMB produces a non-wasteful matching more

often than with the specification used in this paper, the matching produced

may be wasteful as was shown in Example 6. All the results that do not

involve comparison between TTC and IMB hold with minor modifications

in the proofs, but for example Corollary 1 and Proposition 7 fail when the

alternative definition of IMB is applied. The reason is that under TTC, any

school c names the best student s still in the market, but it is not necessary

that s finds c acceptable. We are grateful to an anonymous referee for

pointing out this fact.

In this section we tried to explore a reasonable way of maintaining the

nice properties of IMB when it produces a wasteful matching. However,

this seems a hard task to achieve without a tentative proposal construction

a la deferred acceptance and demonstrates how carefully pairing has to be

done when no mutually best pairs can be found. On a positive note AC&T,

a simple fix on the IMB, can produce a larger matching than the TTC.

5. Conclusions

In this paper we have introduced an algorithm based on iterative forma-

tion of mutually best matches (IMB). When IMB produces a non-wasteful
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matching, this matching is the unique element of the core, and so IMB pro-

duces the same matching as the student proposing and school proposing

deferred acceptance algorithms. Further, this matching satisfies strategy

proofness. We suggest that IMB could be used as a first trial to find a

“good” matching. If IMB produces a wasteful matching, then either it

could be amended in some way like in Morrill (2015), or one could use his

or her favorite algorithm.

With some tractable restrictions on preferences, such as single peaked-

ness or single crossing, IMB produces a non-wasteful matching, and the top

trading cycles algorithm produces the same matching as IMB. These kinds

of assumptions about preferences are well-known and widely used in social

choice literature.
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