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Abstract: The purpose of this study was to evaluate the effects of interpenetrating polymer network
(IPN) thermoplastic resin on the flexural strength of fibre-reinforced composite (FRC) with different
IPN polymer compositions. The penetration of bonding resin into semi-IPN FRC posts was also
evaluated. The IPN thermoplastic resin used was UDMA-MMA monomer with either PMMA (0.5%,
2%, 5%) or PMMA-copolymer (0.5%, 2%). A no added IPN polymer resin was also made. Mixed resin
was impregnated to S- and E-glass fibre rovings. These resins and resin impregnated fibres were used
for flexural strength (FS) test. To evaluate the penetration of bonding resin into semi-IPN post, SEM
observation was done with various impregnation time and polymerization mehods (hand-light- and
oven-cure). The result of FS was recorded from 111.7 MPa (no-IPN polymer/no-fibre-reinforcement)
to 543.0 MPa (5% PMMA/S-glass FRC). ANOVA showed that there were significant differences
between fibre-reinforcement and no-fibre-reinforcement (p < 0.01) both in S- and E-glass fibre groups,
and between 0.5% PMMA and 5% PMMA in the S-glass FRC group. SEM micrographs showed that
the penetration layers of bonding resin into hand-light cured semi-IPN posts were different according
to impregnation time. Fibre reinforcement is effective to improve flexural strength. The depth of
penetration layer of bonding resin into semi-IPN matrix resin was improved when a hand-light cure
was used.

Keywords: fibre-reinforced composite; interpenetrating polymer network; fibre post; post and core;
flexural strength; PMMA

1. Introduction

Fibre-reinforced composite (FRC) is a composite material which consists of reinforcing
fibres embedded in a resin polymer matrix. FRCs have been developed for decades
and are widely applied in dental treatment [1]. FRCs are commonly used for direct
and indirect restorations, such as fixed partial dentures (FPDs) [2,3], root-canal posts [4],
periodontal splinting [5] and orthodontic applications [6]. Thus, FRCs have now become
good alternatives to conventional metal-based treatments and also resolve not only patients’
esthetic problems, but cost and time considerations.

The resin matrix used in FRCs is typically composed of a highly cross-linked poly-
mer such as bis-phenol A diglycidyl ether dimethacrylate (Bis-GMA), triethylene glycol
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dimethacrylate (TEGDMA), or urethane-dimethacrylate (UDMA) [7]. In addition, another
concept, that of interpenetrating polymer networks (IPNs), has been introduced. This is a
polymer comprised of two or more kinds of polymer in network form, with continuous
mutual interlacing [8]. This IPN polymer has been also applied to, for example, FRC root
canal posts and FRC frameworks of FPD [9]. Semi-IPN for dental polymer matrices is
composed of polymethylmethacrylate (PMMA) and bis-GMA, and also achieves a chemical
bonding between the FRC materials and luting cements or veneering composite [10].

Many types of fibres are used clinically, however, the most commonly used ones
are E-glass fibres and S-glass fibres which can be silanized, and adhere well to the resin
matrices of FRCs [9]. Another reason is their translucency which makes it easy to adjust
the tooth color and/or outer materials, and satisfies the patient’s esthetic demands [11].

For mechanical testing, three-point bending tests have been universally used to test
the flexural properties of composite materials. Previously, many studies which compare
cross-linked polymer FRC to IPN FRC, have been done and the mechanical properties of
FRC materials evaluated [4,12,13]. The fracturing of FRC caused by biting forces should be
avoided, especially in the posterior molar areas. It is well known that when occlusal forces
are loaded onto FRC structures, stresses are transferred from the matrix to the reinforcing
fibres to function. Therefore, we need to carefully consider not only the fibres but the
stiffness of the matrix resin itself.

For FRCs, the impregnation of the matrix resin into every fibre becomes one of the most
important factors to prevent FRCs from fracturing or failing. If complete impregnation and
polymerization are not achieved, void spaces appear and then the occlusal forces cannot
be transferred to fibres, and failure may occur [14,15]. Thus, reinforcing fibres and resin
matrices should be tightly combined together. However, the commercial FRC materials
which form IPNs are quite limited, and the effects of the compositions of IPN polymer
in the resin matrix have not been evaluated much. Moreover, it is still not clear how the
different compositions of IPN polymers added to resin matrices affect the mechanical
strength of FRCs.

The good bonding of resin materials to the polymer matrix resin is also a very impor-
tant part in the fabrication of FRC FPD or adhesion of luting cement to a dentin surface.
In previous studies, the penetration depths of bonding resin into resin matrices were
reported [16], and it was proved that the penetration progressed into deeper areas of the
matrix resin of semi-IPN FRC than in a cross-linked polymer FRC [10,17]. Moreover, the
penetration layers after various impregnation periods were evaluated and their effects have
been clarified [18]. However, commercial semi-IPN post (everStick post in this study) needs
to be polymerized using light curing or oven curing units, therefore, the differences of
penetration layers polymerized by these two methods are worth evaluating. This may also
be useful information for selecting the fabrication method for oven-cured laboratory-made
restorations.

The present study was thus conducted to evaluate the effects of IPN thermoplastic
resin on the flexural properties of FRC with various IPN polymer compositions of PMMA
or PMMA-copolymer to UDMA-MMA-based resin matrices. In addition, the penetration of
bonding resin into resin-impregnated semi-IPN FRC post with two different polymerization
methods (hand-light cure and oven cure) was also evaluated using scanning electron
microscopy (SEM).

2. Materials and Methods

In this study, fibre-reinforced composite (FRC) with various combinations of IPN
thermoplastic resin were prepared with two different kinds of fibres (S- and E-glass). All
materials used in this study are listed in Table 1. The thermoplastic resin was based on
urethane dimethacrylate (UDMA, Esschem, Linwood, PA, USA)-methyl methacrylate
(MMA, Sigma-Aldrich, St. Louis, MO, USA) monomer system. For the interpenetrating
polymer network (IPN)-forming polymer either polymethyl methacrylate (PMMA, Mw
150 kD, Sigma-Aldrich, St. Louis, MO, USA) or PMMA-copolymer (Mw 150 kD, Sigma-
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Aldrich, St. Louis, MO, USA) was used. The experimentally used polymer matrix resins
were prepared according to the IPN polymer content (PMMA: 0.5%, 2%, 5%, PMMA-
copolymer: 0.5%, 2%). A no-IPN polymer added resin was also prepared as control. Thus,
six different contents of IPN thermoplastic resin were available for flexural strength (FS,
three-point bending) testing. The compositions of all the kinds of resin are shown in
Table 2.

Table 1. Materials used in this study.

Material Components Manufacturer

IPN thermoplastic resin
UDMA Urethane-dimethacrylate Esschem
MMA Methyl-methacrylate Sigma-Aldrich

CQ Camphorquinone Sigma-Aldrich
DMAEMA 2-(Dimethylamino) ethyl methacrylate Sigma-Aldrich

PMMA Poly (methyl methacrylate) Sigma-Aldrich
PMMA-copolymer Poly (Styrene-co-methyl methacrylate) Sigma-Aldrich

Glass fibres
S2-glass fibre Owens Corning
E-glass fibre Owens Corning

SEM observation
everStick Post 0.9 mm PMMA, BisGMA (Bis-phenol A diglycidyl ether dimethacrylate), E-glass fibres StichTech-GC

GRADIA CORE UDMA GC
COMPOSITE PRIMER UDMA, HEMA(2-hydroxyethyl metacrylate) GC

Diiodomethane Sigma-Aldrich

Table 2. Composition of IPN thermoplastic resin.

Code UDMA MMA PMMA PMMA-Copolymer CQ DMAEMA

0% IPN polymer 90% 10% − − 0.7% 0.7%
0.5% PMMA 90% 10% 0.5% − 0.7% 0.7%
2% PMMA 90% 10% 2% − 0.7% 0.7%
5% PMMA 90% 10% 5% − 0.7% 0.7%

0.5% PMMA-copolymer 90% 10% − 0.5% 0.7% 0.7%
2% PMMA-copolymer 90% 10% − 2% 0.7% 0.7%

In addition, to observe the penetration condition of resin primer into FRC, everStick
posts (StickTech-GC, Turku, Finland) which are adaptable, polymer (PMMA) and resin-
impregnated (bis-GMA) unpolymerized glass fibre posts, composite primer (GC, Tokyo,
Japan, CP), and diiodomethane for labeling the primer were selected and subjected to
scanning electron microscopy (SEM) observation. These materials are also listed in Table 1.

2.1. Fabrication of Specimens for the Flexural Strength Tests
2.1.1. Preparation of IPN Thermoplastic Resins

Six different polymer contents of experimentally used matrix resin mixture were
prepared. First, 10 g of MMA was measured using an automatic scale (ME 403, Mettler
Toledo, Columbus, OH, USA), and put it into the empty storage glass bottle, and a total
of six MMA (10 g) bottles were prepared. Then, IPN polymer of either PMMA or PMMA-
copolymer was added to each bottle, respectively, according to the polymer content (0.5 g,
2 g, 5 g of PMMA and 0.5 g, 2 g of PMMA-copolymer). The bottles with MMA-IPN
polymer were placed on a mixing device and mixed homogeneously until it was verified
that no visible polymer was in the bottle. Thereafter, 90 g of UDMA was added to the
mixed monomer/polymer resin in the bottles and mixed again continuously. After UDMA
was completely mixed in, photocuring initiator/activator (0.7 g of camphorquinone, CQ,
Sigma-Aldrich, St. Louis, MO, USA) and 2-(dimethylamino) ethyl methacrylate (DMAEMA,
Sigma-Aldrich, St. Louis, MO, USA) were added and mixed again for one night in the
dark. Also, no-IPN polymer (0%) added UDMA-MMA-DMAEMA-CQ resin was also
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prepared for control. Thus, total six different compositions of resin mixture were ready
for subsequent specimen preparation. The same weighing scale was used throughout
this study.

2.1.2. Fabrication of Specimens for Flexural Strength Tests

Using the mixed IIPN resin, rectangular bar-shaped flexural strength (FS, three-point
bending) test specimens of 2 × 2 × 25 mm size were fabricated (Figure 1). In total 180
specimens were fabricated for the FS tests. They were divided into three main groups:
(1) specimens with no fibre-reinforcement (n = 10 × 6 subgroups), (2) specimens with
S2-glass fibre-reinforcement (n = 10 × 6 subgroups), and (3) specimens with E-glass fibre-
reinforcement (n = 10 × 6 subgroups).
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Figure 1. 3-point bending (FS) test (a) and the schematic drawings of specimens from front side (b): upper; No fibre
reinforced specimen and lower; fibre reinforced specimen: a bundle of S2 or E resin impregnated glass fibres is placed on
the bottom (tensile) side. Specimen size is 2 mm × 2 mm × 25 mm. The distance between two supports is 20 mm.

For no fibre-reinforcement specimens (Group1), a stainless-steel mold with a 2 ×
2 × 25 mm cavity was placed on a glass plate and a plastic translucent film, then the
mixed resin was directly put in the cavity of the mold using a plastic syringe so that
the no air bubbles formed in the resin. The surface of the resin-filled mold was covered
with another translucent plastic film and glass plate. Then, the resin was hand-light
cured for 60 s using a LED hand curing device (Elipar S10, wavelength: 430–480 nm,
power: 1200 mW/cm2 intensity, 3M, St Paul, MN, USA). After hand-light curing, the
polymerized specimen was removed from the mold. All hand light-cured specimens were
then oven cured (TargisPower, IVOCLAR, Schaan, Liechtenstein) for 25 min at 96 ◦C for
final polymerization. The light curing time was set to 60 s in this study. According to the
manufacturer of the commercial everStick IPN FRC materials, at least 40 s of light curing is
required for direct or indirect use of these materials. In this study, length of specimens is
longer than clinical use of everstick products, so that light curing time was set for this study.
The additional post-curing time and temperature were determined from a Targis/Vectris
combination which was one of the FRC fixed partial dentures. This final polymerization
condition was based on previous studies by Abdulmajeed et al. [19] and Nganga et al. [20].

For fibre-reinforcement specimens, we used the same resins shown in Table 2 for
impregnation of fibre rovings and FRC specimen fabrication. A bundle of S2- and E-glass
fibres (tex 2400, MCX21, Owens-Corning, Toledo, OH, USA) was cut to a length of 25 mm,
and the fibre rovings was impregnated with each resin between the plastic films for 30
min in the dark. After this process, the resin-impregnated fibre rovings were placed on the
bottom of the cavity of the mold. The empty space of the cavity was filled with the same
resin for impregnation. The polymerization of this fibre-resin composite was carried out
same method as no-fibre reinforcement specimen preparation.

All hand-light and oven cured (no fibre-reinforcement and fibre-reinforcement) speci-
mens were left to evaporate for 24 h. All fabricated specimens were then polished by #500,
#800 and #1200 silicon carbide grinding paper with an automatic polishing machine under
water to remove excess resin and to obtain the appropriate size. The polished specimens



Polymers 2021, 13, 3200 5 of 12

were dried spontaneously and stored at room temperature for 24 h under dry conditions
before mechanical testing.

2.1.3. Flexural Strength (FS, Three-Point Bending) Tests

Before starting the FS tests, the width and thickness of the loading point of the
specimens were measured again using a digital caliper and the size entered into the test
program. The measured specimen was fixed to the mounting jig, and the load was applied
in the air using an universal testing machine (Lloyd LRX, Lloyd Instruments Ltd., Bognor
Regis, UK) with a crosshead speed of 1.0 mm/min and loading span of 20 mm until fracture.
FS was calculated using the following formula:

FS = 3Fl/2bh2

where F: applied load (N) at maximum point of the load-deflection curve, l: span length of
the specimen, b: width of the specimen and h: thickness of the specimen.

2.1.4. Statistical Analysis

All results were statistically analyzed by two-way analysis of variance (ANOVA) and
Tukey’s multiple comparison test at the significant level of 0.05. This study was carried out
about two factors. One is according to the different compositions of matrix resin and the
other one is according to with and without fibre reinforcement.

2.2. Fabrication Methods of Specimens for SEM Observation

The FRC posts used for SEM analysis specimens were everStick posts (0.9 mm diame-
ter, StickTech GC, Turku, Finland). First, CP (1.0 g) and diiodomethane (Sigma-Aldrich,
St. Louis, MO, USA, 0.1 g, 10 wt% of CP) were measured and mixed. This mixture was
divided into two plastic cases. Then, two bundles of everStick 0.9 mm posts were combined
together by hand and eight similar posts were fabricated so that the diameter of each
fibre post was 1.8 mm. Four fabricated 1.8 mm posts were hand-light cured for 60 s and
the remaining four posts were oven-cured for 25 min at 96 ◦C before immersion. Each
polymerized post was immersed into the mixed primer and stored for 1 min, 5 min, 1 h,
and 24 h, respectively. After the appropriate immersion time has passed, the post was
removed from the primer. Gradia Core (GC) was mixed with a Gradia Core dispenser gun
equipped with a GC Automix Tip (Gradia, GC, Tokyo, Japan), and filled it into the plastic
ring (5 mm diameter). Each post was inserted into the center of the cement-filled ring
mold. These embedded post and resin were hand-light cured for a total of 80 s from four
directions. The light-cured post-resin specimen was removed from the ring mold. Excess
post was cut off with a diamond disc and hand polished using #800 silicon carbide paper
to clean resin off the post cross-section. These fabricated specimens were subjected to SEM
observation with a magnification of 250×. The penetration depth was evaluated from the
iodine-colored areas.

3. Results
3.1. Flexural Strength

The flexural strength results of the IPN thermoplastic resin with no fibre reinforcement
are shown in Figure 2, while the flexural strength of IPN thermoplastic resin with S-glass
fibre reinforcement is shown in Figure 3. The maximum flexural strength value of FS was
recorded in 5% PMMA/S-glass FRC (543.0 MPa), and the minimum value (111.7 MPa)
was observed in no-IPN polymer/no-fibre reinforcement samples. ANOVA showed that
there were significant differences between fibre reinforcement and no fibre-reinforcement
(p < 0.01) in both the S- and E-glass fibre groups. For the S-glass fibre reinforcement group,
there was a significant difference only between 0.5% PMMA and 5% PMMA (Figure 3),
however, the difference of IPN polymer (PMMA and PMMA-copolymer) did not influence
the FS. On the other hand, for the E-glass fibre reinforcement group, IPN polymer contents
of PMMA and PMMA-copolymer influenced the FS values as shown in Figure 4.
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3.2. SEM Observation

SEM photographs of the penetration of CP into polymerized everStick posts revealed
with diiodomethane are shown in Figure 5. As shown in Figure 5a, hand-light cured
specimen shows almost no penetration layer after 1 min immersion, however, after 5
min and 1 h one layer of penetration is seen. After 24 h, the penetration layer of CP was
observed in a deeper layer and everywhere in the specimen. On the other hand, the oven-
cured specimens did not show a noticeable penetration layer after different immersion
times ranging from 1 min to 24 h as shown in Figure 5b.
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4. Discussion

This experimental study demonstrated the effects of various interpenetrating polymer
network (IPN) matrices on the flexural properties of fibre-reinforced composite (FRC)
made using S-and E-glass fibres. Whether the different compositions of additional IPN
polymer (PMMA or PMMA-co-polymer) changed the flexural strength was evaluated. The
differences in bonding resin penetration layers in hand-light and oven-cured semi-IPN
FRC resin matrices were also evaluated by SEM.

In the present study, several compositions of experimentally laboratory-mixed urethane-
dimethacrylate (UDMA, 90%)-methyl-methacrylate (MMA, 10%) monomer-based resin
were prepared. Presently, several kinds of monomers are applied in dental practice, for
example, Bis-GMA, TEGDMA and UDMA [21,22]. Of these, an UDMA-MMA based
monomer system was used. An IPN forming polymer of PMMA or PMMA-copolymer
(poly(styrene-co-methyl methacrylate)) to dimethacrylate resin were also added. PMMA
has been used in dentistry for many years as a denture base material. The thermoplastic
PMMA denture base polymer has been made by mixed MMA monomer liquid and PMMA
beads [9]. When PMMA-powder and MMA-monomer liquid are polymerized, semi-IPN is
formed [23]. Furthermore, this IPN polymer of PMMA has been also applied to FRC, and
some studies were conducted not only by using commercial products like the everStick
system but experimentally prepared IPN-FRCs [13,24]. Another PMMA-copolymer was
also used as IPN forming polymer in this study. This was also applied to denture base
material, and addition of styrene caused an increase in the values of the flexural strength
and hardness [25]. Based on these experimental reports, PMMA and PMMA-copolymer
were chosen.

In the preparation of matrix resin mixture, IPN polymer of either PMMA or PMMA-co-
polymer and MMA were mixed first. Then this resin dough was further mixed with UDMA.
During this process, a technical difficulty occurred during PMMA-copolymer/UDMA-
MMA dough mixing. PMMA-copolymer compositions higher than 5% were completely
dissolved in MMA, so 5% PMMA-copolymer-MMA dough was not homogeneously mixed
with the UDMA. It might be considered that the polymerization of PMMA-copolymer-
MMA had started before it was fully mixed in the UDMA. Therefore, the matrix resin of
5% PMMA-co-polymer of-UDMA-MMA group was rejected. PMMA is usually used as a
denture base resin [26], and when the volume of PMMA powder is increased, the viscosity
of the PMMA-MMA mixture also increases, as one of the roles of PMMA is to adjust the
viscosity of the resin dough [22]. At the same time, PMMA-co-polymer is a copolymer of
PMMA and polystyrene, so, the inclusion of polystyrene might affect something during
resin mixing. Considering this mixing process, we set up the IPN polymer content to
0.5%, 2%, and 5% of PMMA, 0.5% and 2% of PMMA-copolymer. The cause of this was not
clarified this study. Further consideration of the mixing method used for laboratory-made
resins will be needed.

FRC specimens fabricated using the laboratory-made resin mixture were subjected
to a 3 point bending test for the flexural strength tests. The fibre materials used were S-
and E-glass fibres. Several types of fibres are applied in dental practice [1,11], and one of
the reasons to choose S- and E-glass fibres in this study was that they have advantages
of translucency, in addition to excellent mechanical properties [4,11]. Also, E-glass fibre
is commonly used in FRC materials with an IPN resin matrix. The original fibre roving
was pre-impregnated with each resin mixture. To our knowledge, one of the success points
of FRC materials when used in an oral environment is the good adhesion between each
fibre and the resin matrix. If this resin impregnation into the fibres is not sufficient, stresses
applied to resin matrix are not transferred to the reinforcing fibres and as a result, fractures
or defects may occur in the final products. In this study, a bundle of fibre roving was
impregnated with each resin carefully using a syringe prior to final polymerization. Less
information about the impregnation method was found for laboratory-made resins. Some
studies have been discussed impregnation times for intact fibres, however, the applied
pre-impregnation times varied from one hour to 24 h [13,27]. In this study, used 30 m as the
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impregnated fibre roving became translucent. Further consideration about the appropriate
impregnation time will be needed to improve any clinical application.

The flexural strength (FS) results of the no-fibre reinforcement group were shown
in Figure 2. In this group, no significant differences were recorded between all the com-
positions including no (0%) IPN polymer and IPN polymer-added groups. The FS of
the no- IPN polymer added group showed the lowest value. Therefore, for the no-fibre
reinforcement composite which has traditional resin monomer system and IPN composite
resin, it was clear that additional IPN polymer did not affect the flexural strength in this
study. Moreover, the FS of all fibre-reinforced groups showed significantly higher values
than those of the no-fibre reinforcement groups (p < 0.01). Therefore, first of all, it was
clear that using S- or E-glass fibres is effective for the reinforcement of matrix resins in this
study. Three point bending tests were used in this study. When evaluating the materials’
bonding properties, we often use shear bond strength tests. However, the 3-point bending
test is also applied as a testing method. This is typically used in experiments related to the
assessment of porcelain-fused to metal crowns [28–30], where the bond strength between
porcelain and metal is assessed by using 3 or 4 point bending tests. Therefore, we followed
this concept.

As shown in Figure 3, in FS of S-glass FRCs, there was a significant difference only
between the 0.5% PMMA and 5% PMMA added groups. In both the PMMA and PMMA-
copolymer added groups, the FS tended to increase as the IPN polymer composition
increased. On the other hand, the E-glass fibre group has shown different phases. As
shown in Figure 4, the FS of no-IPN polymer recorded the lowest value, and there were
significant differences between IPN polymer-added groups except for the 2% PMMA group.
This means that addition of IPN polymer influenced the FS values. Comparing to the no
fibre-reinforcement group results shown in Figure 2, the FS of fibre-reinforcement with
IPN polymer matrices showed various changes. With the addition of polymers to resin
matrices and further combination with fibres, FRC-IPN might have an effective use for
making improved IPN thermoplastic resin materials. For FRC framework materials, a
previous study showed that FS of semi-IPN FRC recorded a higher value (796 MPa) than
a cross-linked polymer FRC (689 MPa) [12]. Another study also reported that semi-IPN
FRC tended to give a higher FS (1150 MPa) than a cross-linked UDMA-based matrix FRC
(1005 MPa) in dry conditions, and also even after thermal cycling [31]. Furthermore, in
FRC root canal post experiments, a study has shown that a semi-IPN FRC post recorded
a higher FS than that of a commercial cross-linked polymer FRC post [4]. However, it is
not always possible to directly compare the FS values with previous studies, because the
mechanical properties are dependent on the resin matrix components and the fibres used,
fibre orientation, the ratio of fibre to resin matrix, the adhesion between the fibres and
resin matrix, and so on [11]. Further studies will be needed to evaluate the effects of the
composition of IPN polymers.

To analyze the penetration of bonding resin into the IPN matrix resin, semi-IPN
(everStick) posts were used. To visualize the penetration layer, 10 wt% of diiodomethane
was mixed with CP. In some studies, confocal laser scanning microscopy was used for
detecting the penetration layer with rhodamine-B-isothiocyanate as fluorescent dye [10,17].
In this study, we used SEM, and the penetration layer could be clearly observed with
colored diiodomethane. This would be useful and effective option to evaluate not only the
penetration like in this study but also marginal gaps in restorations and dentin/enamel
interfaces instead of commonly used X-rays.

The penetration depth of bonding resin into the polymer matrix of semi-IPN FRC and
cross-linking polymer (CLP) FRC posts has already been reported. The bonding resin more
effectively penetrated deeper into a semi-IPN resin matrix than a CLP matrix [10,17].

In this study, we set up various bonding resin impregnation times: 1 m, 5 m, 1 h
and 24 h. For use of bonding resin in chair-side direct treatment, 1 m and 5 m of bonding
time are acceptable both for patients and operators, whereas longer impregnation times
like 24 h will not be practical. On the other hand, a previous report showed that a longer
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impregnation time of 24 h led to better penetration into deeper areas of the resin matrix [18].
This result led to higher bond strength in veneering composites [18]. That is, the overlaying
materials are firmly interlocked with semi-IPN FRCs. Although a longer impregnation
time of 24 h can only be applied to laboratory-made products, we also set up various longer
impregnation time up to 24 h as the possible maximum impregnation time.

In the SEM micrographs of the hand-light cure (Figure 5a), the penetration of bonding
resin into semi-IPN FRC matrix resin has been seen in a deeper layer with the progress
of impregnation time. After 1 min of impregnation only the surface layer was penetrated
by bonding resin as compared to other longer times. Mannocci et al. [10] showed that
the penetration of bonding resin could be noted after 30 s of impregnation time, and was
always noted after 300 s. This supports our present study results. It might be considered
that 1 min impregnation in this study is enough for clinical use, especially in chair-side
direct treatments, however, for safety, 300 s and more should be recommended. On the
other hand, a maximum 24 h of impregnation showed that the penetration of bonding resin
into the deeper inner layer of semi-IPN resin matrix was still proceeding. This 24 h period
can be applied to laboratory-made restorations, if higher bonding properties to a veneering
composite and/or luting cement are necessary because a thicker penetration layer results
in certain interlocked IPN bonding. On the contrary, when using the oven- cure method
(Figure 5b), the penetration did not progress during the longer impregnation time. SEM
micrographs, however, showed that the layer after 1 m was almost the same as after 1 m of
hand-light cure. These results may be related to the degree of monomer conversion in the
matrix resin. Alander et al. showed that the degree of monomer conversion in a resin matrix
resulted lower when using hand-light curing rather than oven-curing [32]. Good bonding
between FRC and resin monomers or veneering resins is generally related to the existence
of an unpolymerized surface layer, the so-called oxygen inhibition layer [17]. Also, the CP
used in this study contains hydroxyethyl methacrylate (HEMA). The surface of the matrix
resin of hand-light cured specimens might have more space for bonding resin penetration.
On the other hand, for oven cure specimens, the surface was cured by heating and the
post might become similar to a hard cross-linking post. In previous studies it was shown
that this HEMA-containing bonding resin could effectively dissolve the linear phases of
semi-IPN matrices [16,17] and then, the bonding properties were increased [16,18]. In this
study, bond strength was not evaluated, however, it will be needed to clarify the effects of
bonding resin, HEMA, after using these two polymerization methods.

5. Conclusions

• In the S-glass fibre-reinforcement group, there was a tendency to increase the flexural
strength according to the increase of IPN polymer composition, however, no statistical
differences were shown except between 0.5% and 5% PMMA.

• In the E-glass fibre-reinforcement group, additional IPN polymers significantly influ-
enced the increase in flexural strength, except for 2% PMMA.

• The depth of the penetration layer of bonding resin into the semi-IPN matrix resin
was improved when hand-light curing was used, and oven-cured posts did not show
any improvement with impregnation time.
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