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Abstract

We consider bosonic quantum complex networks as structured fi-
nite environments for a quantum harmonic oscillator and investigate
the interplay between the network structure and its spectral density,
excitation transport properties and non-Markovianity. After a review
of the formalism used, we demonstrate how even small changes to the
network structure can have a large impact on the transport of excita-
tions. We then consider the non-Markovianity over ensemble averages
of several different types of random networks of identical oscillators
and uniform coupling strength. Our results show that increasing the
number of interactions in the network tends to suppress the average
non-Markovianity. This suggests that tree networks are the random
networks optimizing this quantity.

1 Introduction

Understanding the dynamics of open quantum systems is important in sev-
eral fields of physics and chemistry including problematics dealing, e.g., with
quantum to classical transition and decoherence with its harmful effects for

∗jsinok@utu.fi
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quantum information processing and communication. In general, formu-
lating or deriving a suitable equation of motion for the density matrix plt
for the open system is often a daunting task. Perhaps the most celebrated
and most used theoretical result in this context is the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) master equation [1, 2]

dρs(t)

dt
= −i[Hs, ρs(t)] +

∑
k

γk

(
Ckρs(t)C

†
k −

1

2

{
C†kCk, ρs(t)

})
, (1.1)

with the associated completely positive and trace preserving dynamical map
with semigroup property. Above, Hs is the open system Hamiltonian, γk
are positive constant rates, and Ck are the jump operators with k indexing
the different decoherence channels. Indeed, this master equation and the
corresponding publications had recently 40th anniversary celebrations in
the Symposium on Mathematical Physics in Toruń in June 2016.

GKSL master equation (1.1) describes Markovian memoryless open sys-
tem dynamics and during the last 10-15 years there has been an increasing
amount of research activities in understanding memory effects and quan-
tifying non-Markovianity for open systems beyond the semigroup property
[3, 4, 5]. A pair of complementary approaches here include a description
based on quantifying the information flow between the open system and
its environment [6] or the characterization of dynamical maps in terms of
their divisibility properties [3, 8] while a large number of other ways to char-
acterize non-Markovianity also exist, see e.g. [9, 10, 11, 12, 13]. Most of
the research so far has focused on non-Markovianity using discrete variable
open systems as examples while in the current work we are interested in the
memory effects in a continuous variable (CV) open system with controlled
environmental structure.

Indeed, here we consider structured finite environments modeled by
bosonic quantum complex networks. While this and other kinds of quantum
complex networks have recieved increasing attention in recent years in the
context of perfect state transfer [14, 15], quantum random walks [16, 17],
efficient entanglement distribution [18, 19, 20] and the unification of classi-
cal and quantum network theory [21, 22], here the focus is on the interplay
between the network structure and the reduced dynamics of an open quan-
tum system attached to it. To this end, we investigate the impact of the
structure on the network spectral density, excitation transport properties
and non-Markovianity of the reduced dynamics.

The paper is organized as follows. Section 2 concerns the network itself.
Here we present the microscopic model and briefly discuss the connection
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between the network Hamiltonian and certain matrix representations of ab-
stract graphs in classical graph theory. The dynamics of the network is given
in terms of a symplectic matrix acting on the vector of operators at initial
time. In Section 3, we describe how complex quantum networks can be
treated in the framework of the theory of open quantum systems as tunable
structured environments. We demonstrate how small changes in the network
structure can have a large impact on its excitation transport properties. In
Section 4, we consider the non-Markovianity of the reduced dynamics using
a recently introduced witness based on non-monotonicity of the evolution of
Gaussian interferometric power. Finally, conclusions are drawn in Section
5.

2 Bosonic quantum complex networks

2.1 The Hamiltonian

We set ~ = 1 and work with position and momentum operators defined as
q = (a† + a)/

√
2ω and p = (a† − a)i

√
ω/2, satisfying the commutation re-

lation [q, p] = i. We consider networks of N unit mass quantum harmonic
oscillators coupled by springlike couplings. The general form of a Hamilto-
nian for such networks is

HE =
pTp

2
+ qTAq, (2.1)

where we have introduced the vectors of position and momentum opera-
tors qT = {q1, ..., qN} and pT = {p1, ..., pN}, and where A is the ma-
trix containing the coupling terms and frequencies. It has elements Aij =
δijω̃

2
i /2− (1− δij)gij/2, where gij is the strength of the springlike coupling

gij(qi − qj)
2/2 between the position operators of oscillators i and j, and

ω̃2
i = ω2

i +
∑

j gij is the effective frequency of oscillator i resulting from ab-
sorbing the quadratic parts of the coupling terms into the free Hamiltonians
of the oscillators.

The matrix A, which completely determines the network Hamiltonian,
can be related to some of the typical matrix representations of weighted
graphs, i.e. abstract networks of nodes connected by weighted edges. By
weighted, we mean that a magnitude is assigned to each connection. This
can be used to establish a link between the properties of the network and
results from graph theory. A paradigmatic example is the adjacency matrix
V having elements Vij = wij , where wij is the weigth of the connection
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between nodes i and j; a weigth of 0 corresponds to the nodes being dis-
connected. Another matrix that arises very naturally is the Laplace matrix
L, related to the adjacency matrix as L = D − V, where D is diagonal
with elements Dii =

∑
j wij . In terms of them, matrix A can be writ-

ten as A = ∆2
ω̃/2 − V/2 or as A = ∆2

ω/2 + L/2, where ∆ω̃ and ∆ω are
diagonal matrices of the effective and bare frequencies of the network oscil-
lators, respectively, and weights are given by the coupling strengths. The
graph aspect of this and other kinds of quantum networks have been very
recently used to, e.g., develop a local probe for the connectivity and coupling
strength of a quantum complex network by using results of spectral graph
theory [24], and constructing Bell-type inequalities for quantum communi-
cation networks by mapping the task to a matching problem of an equivalent
unweighted bipartite graph [25].

The Hamiltonian (2.1) is a special case of the quadratic Hamiltonian
H = xTMx, where the vector x contains both the position and momentum
operators and M is a 2N × 2N matrix such that H is Hermitian. It can be
shown [23] that quadratic Hamiltonians can be diagonalized to arrive at an
equivalent eigenmode picture of uncoupled oscillators provided that M is
positive definite. Since H is Hermitian, this is equivalent with the positivity
of the eigenvalues of M. In the case at hand, HE may be diagonalized with
an orthogonal matrix K such that KTAK = ∆, where the diagonal matrix
∆ holds the eigenvalues of A. By defining new operators{

Q = KTq

P = KTp,
(2.2)

the diagonal form of HE reads

HE =
PTP

2
+ QT∆Q, (2.3)

which is the Hamiltonian of N decoupled oscillators with frequencies Ωi =√
2∆ii.

2.2 The dynamics of the network

A bosonic quantum complex network is also an interesting system to study in
its own right. Below, we review the mathematical tools useful for the task,
adopting the definitions for a commutator and anti-commutator between
two operator-valued vectors used in [26]. While we will be later concerned
with networks initially in the thermal state, we will also briefly discuss the
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case of an initial Gaussian state without displacement. For a more detailed
review of Gaussian formalism in phase space, see [27]. What is presented
here is straightforward to apply to the case where interactions with external
oscillators is considered, and we will do so in Section 3.

Let x be a vector containing the position and momentum operators of the
network oscillators, and define the commutator between two operator valued
vectors as [x1,x

T
2 ] = x1x

T
2 −(x2x

T
1 )T . Now canonical commutation relations

give rise to a symplectic form J, determined by [x,xT ] = iJ. Let x′ = Sx,
where S is a 2N×2N matrix of real numbers. In order for S to be a canonical
transformation of x, the commutation relations must be preserved. This re-
quirement gives iJ = [x′,x′T ] = [Sx, (Sx)T ] = S[x,xT ]ST = iSJST , imply-
ing that SJST = J. Such a matrix is called symplectic with respect to sym-
plectic form J. Symplectic matrices form the symplectic group Sp(2N,R)
with respect to matrix multiplication, which can be used to define a sym-
plectic representation of the Gaussian unitary group, meaning that (up to
an overall phase factor) the two groups are bijective.

We fix xT = {qT ,pT } = {q1, ..., qN , p1, ..., pN} throughout the rest of the

present work. Then the symplectic form becomes J =
(

0 IN
−IN 0

)
, where IN

is the N×N identity matrix. By defining the vector of eigenmode operators
to be XT = {QT ,PT } = {Q1, ..., QN , P1, ..., PN}, we can express the trans-

formation that diagonalizes the network Hamiltonian as X =
(

KT 0
0 KT

)
x;

a direct calculation shows that the matrix diagonalizing the Hamiltonian is
both symplectic and orthogonal.

In the eigenmode picture, the equations of motion are those of noninter-
acting oscillators. By defining the auxiliary diagonal matrices with elements
DΩ

cos ii = cos(Ωit), DΩ
sin ii = sin(Ωit) and ∆Ωii = Ωi, we can express them as(

Q(t)
P(t)

)
=

(
DΩ

cos ∆−1
Ω DΩ

sin

−∆ΩDΩ
sin DΩ

cos

)(
Q(0)
P(0)

)
, (2.4)

where the block matrix acting on the vectors is again symplectic. To recover
the dynamics of the network oscillators, we may use Eq. (2.2) to express
x(t) in terms of either X(0) as(

q(t)
p(t)

)
=

(
KDΩ

cos K∆−1
Ω DΩ

sin

−K∆ΩDΩ
sin KDΩ

cos

)(
Q(0)
P(0)

)
, (2.5)

or in terms of x(0) as(
q(t)
p(t)

)
=

(
KDΩ

cosK
T K∆−1

Ω DΩ
sinKT

−K∆ΩDΩ
sinKT KDΩ

cosK
T

)(
q(0)
p(0)

)
. (2.6)
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Notice that the group properties of symplectic matrices quarantees that in
both cases the block matrix remains symplectic.

If we now restrict our attention to Gaussian states with zero mean, we
may define the covariance matrix of the initial state as

cov(x(0)) = 1
2〈[x(0),xT (0)]+〉, (2.7)

where the anti-commutator is defined as [x1,x2]+ = x1x
T
2 + (x2x

T
1 )T . If

x(t) = Sx(0), then the covariance matrix at time t becomes

cov(x(t)) = cov(Sx(0)) = 1
2〈[(Sx(0), (Sx(0))T ]+〉

= 1
2S〈[x(0),x(0))T ]+〉ST = Scov(x(0))ST .

(2.8)

In the present case of symplectic matrices appearing in Eqs. (2.5) and
(2.6), the choice depends on the basis where the initial covariance matrix
is defined. A particular subtlety concerns an initial thermal state for the
network, where either choice might seem natural. Here, assuming the usual
thermal expectation values for non-interacting oscillators in the real oscil-
lator basis, i.e. a diagonal cov(x(0)), corresponds to the case where the
interactions are suddenly switched on at t = 0+. As here the state is not
the stationary state with respect to the Hamiltonian (2.1), one will see the
excitations of each network oscillator evolve with time. On the other hand,
if one assumes the covariance matrix to be diagonal in the eigenmode basis
instead, the excitations will be frozen. In this work we are using the latter
approach as it is quite natural to assume an initial stationary state for the
environment of an open quantum system.

While here the correlation structure in the state of the network is not
studied, it is of great interest in the emerging field of continuous-varibale
quantum information processing and in particular in the study of so-called
cluster states [28, 29], which are multi-mode correlated states used as a
resource in measurement-based quantum computing. In this context, it is
typically the state, rather than the Hamiltonian, that is represented with a
graph. It has been shown that specific quadratic Hamiltonians have clus-
ter states as their ground state, which can then be adiabatically prepared
by cooling a set of non-interacting modes to zero temperature and then
switching on the interactions [30].

Finally, we mention the complementary viewpoint of open quantum net-
works, where the network is considered as the open system interacting with
an environment of infinite size. The dynamics can then be described with
a master equation for the network density matrix. Collective phenomena,
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such as synchronization, can occur in a network relaxing towards a steady
state [31].

2.3 Experimental aspect

To implement an oscillator network, the basic requirements to meet are a
static topology, harmonic potential and quantum regime for the oscillators.
To match the form of the Hamiltonian (2.1), the couplings between the
oscillator position operators should be springlike, and any other interactions
between them should either be eliminated or minimized.

More challenging requirements include the scalability to many nodes and
the ability to implement also long-range couplings in order to have a non-
trivial topology. The biggest difficulties are related to the implementation
of generic networks: essentially a platform reconfigurable to a desired static
topology would be needed, i.e. independent control and tunability over all
couplings would be necessary.

A possible way to implement a simple oscillator network is to use vibra-
tional modes of trapped ions. In this way, it is possible to implement simple
oscillator chains that interact in a harmonic way via Coulomb force in single
or segmented traps [32, 33]. The main limitations are related to scalability
and independent control of couplings. In particular, if the couplings are me-
diated by Coulomb force, then they cannot be controlled in an independent
way, which limits the networks that can be realized in this way. Proposals
for scalable arrays of trapped ions have been made [34].

One can also consider cold atoms trapped in optical lattices. They offer a
scalable platform to simulate different many-body systems, in particular the
Bose-Hubbard Hamiltonian, which describes interacting bosons in a lattice.
While the Hamiltonian is different, it still shares some similarities with that
of an oscillator network. The parameters of the Hamiltonian can be tuned,
but it cannot be used to implement an arbitrary topology.

An array of coupled micro- or nanomechanical resonators acting as phonon
traps is a natural candidate for an experimental realization. The setup has
good scalability, as experimental implementations of arrays of up to 400
resonators have been reported [35]. In the case of mechanically coupled de-
vices, independent control of the coupling strengths might not be possible,
however a proposal of a fully reconfigurable resonator array based on opti-
cal couplings has been made [36]. Other challenges include the suppression
of intrinsic nonlinearities of the devices, as well as cooling them to reduce
thermal noise. First steps in this direction have been taken, as coherent
phonon manipulation has been reported in a system of two resonators with
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a tunable mechanical coupling [37].
Perhaps the most promising alternative is the very recently proposed op-

tical implementation of the dynamics given by the Hamiltonian (2.1), based
on a simultaneous downconversion of the components of an optical frequency
comb from a femtosecond laser followed by pulse shaping and mode-selective
measurements [38]. By mapping the Hamiltonian to quadrature operators
of the optical field modes and determining the so called Bloch-Messiah de-
composition of either the symplectic matrix (2.5) or (2.6), one will find the
pulse shape and measurement basis necessary to implement it. In particular,
since the network structure is mapped into the parameters of the platform,
changing the network does not require a change in the optical setup. The
result is a deterministic and highly reconfigurable implementation of quan-
tum complex networks with in principle arbitrary structure. In practice,
producing the required pump shape to a sufficiently good accuracy will re-
quire further theoretical and experimental work before the proposal can be
tested.

3 Quantum networks as structured environments

3.1 Attaching external oscillators

We consider as the open quantum system a single additional quantum har-
monic oscillator interacting with one of the network oscillators. While this
is sufficient to our present purposes, what follows is straightforward to ex-
tend to the case of multiple external oscillators or interactions with multiple
network nodes. Moreover, we will fix the states of the open system and the
network to be a Gaussian state and a thermal state of temperature T , re-
spectively, assume factorizing initial conditions and work in such units that
the Boltzmann constant kB = 1.

The open system Hamiltonian is HS = (p2
S + ω2

Sq
2
S)/2, and the form

of the interaction Hamiltonian reads HI = −kqSqi, or equivalently, HI =
−kqS

∑N
j KijQj in the basis of eigenmodes, where k is the coupling strength

between the open system and the network. The total Hamiltonian is now
H = HS +HE +HI . By including the operators of the open system as the
final elements of the vectors of operators, we may express it analogously to
Hamiltonian (2.1) as

H =
{P, pS}T {P, pS}

2
+ {Q, qS}TB{Q, qS}, (3.1)

where the matrix B has diagonal elements Bii = Ω2
i /2 for i < N + 1 and
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BN+1,N+1 = ω2
S/2, while BN+1,i = Bi,N+1 = −kKli/2 for i < N + 1; here

the index l is the index of the network oscillator directly interacting with
the open system. We may diagonalize the matrix B as OTBO = F where
O is orthogonal and F diagonal with elements Fii = f2

i /2, where fi will be
the frequencies of the modes in the fully diagonal picture. If we define the
new operators as {

Q = OT {Q, qS}
P = OT {P, pS},

(3.2)

the total Hamiltonian reads

HE =
PTP

2
+ QTFQ. (3.3)

We are now in position to write down the symplectic matrix giving the
dynamics of the total Hamiltonian. By following the steps leading from
Hamiltonian (2.3) to Eq. (2.6), we arrive at

Q(t)
q(t)
P(t)
p(t)

 =

(
ODcosO

T O∆−1
f DsinOT

−O∆fDsinOT ODcosO
T

)
Q(0)
q(0)
P(0)
p(0)

 , (3.4)

where we have introduced the diagonal matrices Dcos ii = cos(fit), Dsin ii =
sin(fit) and ∆fii = fi.

As we will consider an initial thermal state for the network, throughout
the rest of the present work we will consider as the initial basis the one
on the R.H.S. of the equation above, where the initial covariance matrix
of the network is diagonal with elements 〈Qi(0)2〉 = (ni + 1/2)/Ωi and
〈Pi(0)2〉 = (ni + 1/2)Ωi, where ni = (exp(Ωi/T )− 1)−1.

If we are interested in the dynamics of the operators in the network basis,
we may use Eq. (2.2) and define the symplectic and orthogonal N+1×N+1
matrix K̃ with elements K̃N+1,i = Ki,N+1 = 0 for i < N+1, K̃N+1,N+1 = 1,
and K̃ij = Kij otherwise. Now


q(t)
q(t)
p(t)
p(t)

 =

(
K̃ODcosO

T K̃O∆−1
f DsinOT

−K̃O∆fDsinOT K̃ODcosO
T

)
Q(0)
q(0)
P(0)
p(0)

 . (3.5)
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The dynamics can be readily determined from the initial covariance matrix
of the total system, as outlined in Eq. (2.8), where the result will be the
covariance matrix at time t in the basis of either the eigenmodes or the
network oscillators, depending on which symplectic matrix is used. If the
open system has displacement, also the evolution of its first moments needs
to be considered to determine the evolution of its state.

While we are concerned with the dynamics of the open system as well as
the network oscillators, we mention here the possibility to treat the network
in the framework of Gaussian channels. For a general Gaussian state and for

x(0) =
(
q(0)
p(0)

)
, the elements of the covariance matrix of a single mode system

are cov(x(0))ij = 〈x(0)ix(0)j + x(0)jx(0)i〉/2 − 〈x(0)i〉〈x(0)j〉. For any
Gaussian channel taking the covariance matrix to time t, the transformation
can be written as

cov(x(t)) = C(t)cov(x(0))C(t)T + L(t), (3.6)

where C(t) and L(t) are real matrices and L(t) is symmetric. In terms of the
elements of the symplectic matrix S of Eq. (3.4), we may find the elements
using Eq. (2.8) to be

C(t) =

(
SN+1,N+1 SN+1,2N+2

S2N+2,N+1 S2N+2,2N+2

)
, (3.7)

and

L(t) =
∑
i

〈Xi(0)2〉
(

S2
N+1,i SN+1,iS2N+2,i

SN+1,iS2N+2,i S2
2N+2,i

)
, (3.8)

where the sum is taken to 2N+1 excluding N+1, such that L(t) is indepen-
dent of the initial expectation values of the open system. The matrices C(t)
and L(t) now completely characterize the channel, allowing, e.g. to make
comparisons with channels defined by a master equation or to construct in-
termediate channels taking the system from time t > 0 to s > t and checking
if the resulting channel is completely positive or not, as is done in a recently
introduced measure of non-Markovianity for Gaussian channels [39]. The
difficulty in implementing this measure in the present case is neither in the
construction of the intermediate map nor checking its complete positivity,
but rather in the fact that it considers the limit s → t, and it is not clear
how to take such a limit in the case of numerical, rather than analytical,
matrices C(t) and L(t).
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3.2 The spectral density

One of the central concepts in the theory of open quantum systems is the
spectral density of environmental couplings J(ω), which encodes the rele-
vant information in the environment and interaction Hamiltonians into a
single function of frequency. The reduced dynamics of the open system can
then be determined once the initial state of the total system as well as the
system Hamiltonian are fixed [40]. In particular, a heat bath is completely
characterized by its spectral density and temperature. The definition of
the spectral density, in terms of the environment eigenfrequencies Ωi and
coupling strengths to eigenmodes gi, reads

J(ω) =
π

2

∑
i

g2
i

Ωi
δ(ω − Ωi), (3.9)

where δ is the Dirac’s delta function. The definition is rarely used in practice,
since in the case of an infinite heat bath with a continuum of frequencies
the spectral density becomes a continuous function, and phenomenological
spectral densities are defined instead.

In the case of finite environments it is convenient to use the relation be-
tween J(ω) and the damping kernel γ(t), the latter appearing in the general-
ized quantum Langevin equations giving the dynamics for the open system
operators [40]. It is defined as

γ(t) =
∑
i

g2
i

Ω2
i

cos(Ωit), (3.10)

and the relation is given by

J(ω) = ω

∫ ∞
0

γ(t) cos(ωt)dt, (3.11)

If the environment is finite, both Eq. (3.9) and Eq. (3.11) will result in
delta spikes. However, by replacing the upper limit of integration by a finite
time tmax, the intermediate form of the spectral density can be considered
instead. If a quantum network defined by a Hamiltonian of the form (2.1) is
sufficiently symmetric, the reduced dynamics will have a regime where the
system interacts with a continuum of frequencies as if the environment was
infinite. This is evident from the damping kernel having a very small value
during this transient, until finite size effects cause a revival of oscillations.
The duration of this continuous regime of reduced dynamics depends on the
structure and size of the finite environment.
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In the present case of quantum complex networks, the coupling strengths
to eigenmodes gi are determined by the interaction Hamiltonian HI and the
matrix K diagonalizing the Hamiltonian (2.1) as gi = −kKli, where l is
the index of the network oscillator directly interacting with the system and
k the interaction strength in the network basis. In Fig. 1, we show two
examples of damping kernels and spectral densities for quantum networks.
The symmetric network is a chain with nearest and next nearest couplings.
Additionally, the chain is made homogeneous by setting the effective fre-
quencies of the ends of the chain equal with the rest. The spectral density is
continuous for the used value of tmax. If the interaction time is sufficiently
short, it would not be possible to tell from the reduced dynamics of an open
quantum system coupled to the network alone that the environment is in
fact finite. In contrast, the disorder in the other network results in a highly
structured spectral density that does not have a continuous regime.

In general, it may be asked whether J(ω) of a quantum complex network
can be deduced from the reduced dynamics of the system. It can be shown
[41] that, provided the coupling to the network k is weak and the network
is in a thermal state, the system excitation number is well approximated
by the expression 〈n(t)〉 = exp(−Γt)〈n(0)〉 + n(ωS)(1 − exp(−Γt), where
Γ = J(ωS)/ωS and n(ωS) = (exp(ωS/T ) − 1)−1, or the thermal average
boson number at system frequency ωS . The value of the spectral density at
system frequency is then approximated by

J(ωS) =
ωS
t

ln

(
∆n(0)

∆n(t)

)
, (3.12)

where ∆n(t) = n(ωS)−〈n(t)〉. If T is known, the local value of the spectral
density can be determined by performing measurements on the system only.
This is demonstrated in Fig. 1, where the dots are probed values of the
spectral density with each circle corresponding to one value of the system
frequency. By keeping the interaction time fixed to the used value of tmax,
it can be seen that even for networks with disorder, the probed values follow
the shape of J(ω).

It is also worth mentioning that the machinery introduced so far can
be used to approximate an infinite heat bath, determined by its spectral
density, with a finite one. Together with its temperature, the finite bath
is completely characterized by the coupling strengths gi and frequencies
Ωi. While there is considrebale freedom in choosing Ωi, they should cover
the non-vanishing parts of J(ω) and there should be enough of them to
push the finite size effects to interaction times longer than what is being
considered. Next, the couplings are determined from the spectral density
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Figure 1: (Color online) A comparison of the spectral densities and damping
kernels for a symmetric and a disordered network. The black dots are probed
values of J(ω) extraced from the reduced dynamics of an open quantum
system interacting with the networks. The symmetric network is a chain of
N = 100 oscillators with nearest and next nearest neighbor couplings with
magnitudes of g1 = 0.1 and g2 = 0.02, respectively, while the disordered
network is a random network of N = 30 oscillators with a constant coupling
strength g = 0.05. For both, the bare frequency of the oscillators was
ω0 = 0.25, the system-network interaction strength was k = 0.01 and the
states of the system and the network where a thermal state of T = 1 and
vacuum, respectively. The system is coupled to the first oscillator in the
chain and to a random oscillator of the disordered network.

as follows. From Eq. (3.9), it can be seen that
∫∞

0
2
πJ(ω)ωdω =

∑
i g

2
i .

Approximating the integral on the left hand side with, e.g., a Riemann sum,
and identifying the terms on both sides then gives g2

i = 2
πJ(Ωi)Ωi∆Ωi, where

∆Ωi = |Ωi − Ωi+1| is the sampling interval. The range of interaction times
where the approximation is valid can be checked by comparing the damping
kernels calculated for the finite bath from Eq. (3.10) and for the infinite

bath from the inversion of Eq. (3.11), namely, γ(t) = 2
π

∫∞
0

J(ω)
ω cos(ωt)dω.

The two will be similar up to the point where finite size effects manifest.
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This can be of advantage when considering early or intermediate dynamics
in the case of a strong coupling, since the dynamics given by Eqs. (3.4) or
(3.5) is exact.

3.3 Engineering aspect and excitation transport

Reservoir engineering aims to modify the properties of the environment of an
open quantum system, typically to protect non-classicality of the system or
to increase the efficiency of some task. In the present case, the environment is
a quantum network determined by the matrix A. To assess its properties as
an environment, it is convenient to consider the effect of the structure on the
spectral density J(ω), which can be returned to the effect of the structure
on the eigenfrequencies Ωi and coupling strengths to eigenmodes gi. By
changing the structure by, e.g., adding or removing links, one can try to
effectively decouple the system from the network by finding a configuration
where J(ωS) has a small value, or alternatively to look for structures with
increases transport efficiency.

In fact, assuming that the system can be freely coupled to any single node
in the network, a single network can produce as many spectral densities as
it has nodes. This is because a coupling to a single node corresponds to
a set of coupling strengths gi, which are in turn directly proportional to a
row of the matrix K diagonalizing the network. On the other hand, the set
of eigenfrequencies Ωi are completely determined by the eigenvalues of the
matrix A and as such are independent of where in the network the system
is coupled.

Even small changes to the network structure can have a large impact
on both the network spectral density and excitation transport properties.
Generally speaking, when the reduced dynamics has a continuous regime,
the flow of energy is steady provided that the system is resonant with the
network. Furthermore, excitations can freely be exchanged between different
nodes in the network. On the other hand, when the degree of disorder in
the network is high, the excitations typically become locked to a subset of
the network nodes and cannot spread effectively. We present examples of
this in Fig. 2, where the same symmetric network is considered as in Fig.
1. Rewiring randomly only a single coupling changes the path taken by the
majority of excitations. Also shown is the excitation dynamics in a random
network.

While transport is inefficient in most random networks, a search can be
carried out for exceptions, and indeed it can be shown that when sampling
the distribution of random networks, some rare cases have vastly superior
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Figure 2: (Color online) Examples of excitation transport in quantum net-
works. In all examples, the interaction time is shown on the horizontal axis
while the vertical axis corresponds to the index of the network oscillator.
The color bar shows the difference between initial excitations and excita-
tions at time t. On the left, the network is the symmetric network of Fig.
1. Excitations propagate freely along the chain. In the middle, a single ran-
domly chosen link in the symmetric network has been rewired, changing the
transport properties. On the right, evolution of excitations in the network
oscillators of a random network of N = 100 oscillators with bare frequency
ω0 = 0.25 and coupling strengths g = 0.05 is shown. Excitations become
locked to a subset of network oscillators.

transport properties robust against ambient dephasing [42]. One may also
ask whether there is any connection between the excitation transport proper-
ties and non-Markovianity. While in the spin-boson model non-Markovianity
and the back-flow of excitations can behave similarly with respect to the en-
vironment parameters [43], there does not seem to be such a connection
in the case of a continuous variable system [44]. Furthermore, even in the
spin-boson model, information and excitation backflows can occur without
the other [45].

4 Non-Markovianity in complex quantum networks

4.1 Generalities

The dynamics of an open quantum system can significantly deviate from the
memoryless Markovian case when the interaction between the open system
and the environment is strong, or if the environment is structured. Previous
investigations [46] of harmonic chains with nearest neighbor couplings, hav-
ing a Hamiltonian of the form (2.1), show that the strongest memory effects
occur when the system frequency is located near the edges of the spectral
density. A J(ω) with a single band will then have two regimes of system fre-
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quency where memory effects are strong while one with band-gaps will have
more. In this work, the Breuer-Laine-Piilo [47] and Rivas-Huelga-Plenio [48]
measures were used.

To the best of our knowledge, however, there have been no studies of non-
Markovianity attempting to connect it to the structure of a complex network.
While it is the case that any spectral density of an oscillator network with
non-regular structure can be replicated with an oscillator chain with nearest
neighbor couplings [49, 50, 51], it is nevertheless of interest to ask whether
the amount of non-Markovianity could be tied to the statistical properties
of complex networks by comparing the average non-Markovianity over many
realizations, and whether adding more structure typically increases the non-
Markovianity or not.

To this end, we considered three types of random networks presented in
Figure 3. For all three cases, we fixed the size of the network to be N = 30
and assumed that the network is connected, i.e. any node can be reached
from any other by following the links. The Erdős-Rényi network G(N, p)
[52] is constructed from the completely connected network of N nodes by
independently selecting each link to be part of the final network with a prob-
ability p. The Barabási-Albert network G(N, l) [53] is constructed from a
connected network of 3 nodes and repeatedly adding a new node with l links,
connecting it randomly to existing nodes but favoring nodes which already
have a high number of links, until the size N is reached. Setting l = 1 is
an important special case, as the resulting network is a tree, i.e. it has the
smallest possible number of links that a connected network of size N can
have. Finally, a Watts-Strogatz network G(N, p, n) [54] is constructed start-
ing from a circular network where all nodes are connected to n-th nearest
neighbors, and then rewiring each link with the probability p. In this work,
we fixed n = 2.

4.2 Non-Markovianity quantified by the non-monotonicity
of Gaussian interferometric power

The key concept used in several witnesses and measures of non-Markovianity
is to track the dynamics of a quantity that can be shown to behave differently
under Markovian and non-Markovian evolutions. In this work, we consider
a recently introduced measure and a witness based on the non-monotonicity
of Gaussian interferometric power under non-divisible dynamical maps [55].

Gaussian inteferometric powerQ quantifies the worst-case precision achiev-
able in black-box phase estimation using a bipartite Gaussian probe com-
posed of modes A and B. It is also a measure of discord-type correlations
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Erdős-Rényi Barabási-Albert Watts-Strogatz

Figure 3: (Color online) Schematics for the used networks. Each column cor-
responds to a network type while the rows correspond to different parameter
values. When the connection probability for the Erdős-Rényi network is in-
creased the number of links grows, but links are chosen randomly. This is at
variance with the Barabási-Albert network where nodes with a higher num-
ber of links are preferred when introducing new links, resulting in highly
connected nodes when the connectivity parameter grows. Watts-Strogatz
networks are constructed from a cycle graph by rewiring each link with a
given probability. As this rewiring probability grows, the average distance
between the nodes decreases, but the total number of links remains constant.

between the two modes, as it vanishes for product states. For quantifying
non-Markovianity, it is enough to consider the case where mode A is sub-
jected to a local Gaussian channel while mode B remains unchanged. Then
the expression for the Gaussian interferometric power Q has a closed form in
terms of the symplectic invariants of the two-mode covariance matrix σAB
[56].

For Markovian channels, Q is a monotonically non-increasing function

of time, implying that
d

dt
Q(σAB) ≤ 0. Any period of time where this does

not hold is then a sign of non-Markovianity. Once the initial covariance
matrix σAB has been fixed, the degree of non-Markovianity of the reduced
dynamics can then be quantified as
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NGIP =
1

2

∫ ∞
0

(|D(t)|+D(t))dt, (4.1)

where D(t) =
d

dt
Q(σAB). While the related measure is defined with a

maximization over all initial states for the bi-partite system, Eq. (4.1)
provides a lower bound for this measure. Since there is strong numerical
evidence that squeezed thermal states are particularly suited for witnessing
non-Markovianity of this type [55], we fix the initial state of the two-mode
system to be a squeezed thermal state with two-mode squeezing parameter
r = 1

2 cosh−1(5/2) and initial thermal excitations nA = nB = 1/2 for both
modes. The network initial state is taken to be the vacuum.

Besides disorder in the network structure, additional sources of non-
Markovianity include finite size effects that become stronger as the interac-
tion time is increased, and memory effects at the boundaries of the spectral
density. To better assess the non-Markovianity arising from the structure,
we will restrict the interaction time to an intermediate value of t = 50 and
fix the frequency of the system to be the 15th eigenfrequency of the networks
to ensure that it is resonant.

The results are shown in Fig. 4. For all considered cases, changing
the interaction strength affects the magnitude but not the behaviour of
non-Markovianity against the network parameter. For Erdős-Rényi and
Barabási-Albert networks, the number of couplings between network oscil-
lators grows with the parameter, reducing the amount of non-Markovianity.
On the other hand, the number of couplings in the network is constant for
the Watts-Strogatz network. The results suggest that when the system is
resonant with the network, non-Markovianity is highest for networks with
a small amount of random couplings. For all considered coupling strengths,
the highest non-Markovianity is achieved when the network is a tree. If the
network is highly symmetric, as is the case with Watts-Strogatz networks
with a low rewiring probability, the amount of non-Markovianity in the
resonant case is very small. Non-Markovianity is increased by introducing
disorder into the network through rewiring of the couplings.

Besides the results we present here, we also checked that increasing
the network temperature decreases the non-Markovianity. Furthermore, for
comparison we determined the non-Markovianity in the simple case of a ho-
mogeneous chain with nearest-neighbor couplings only and found that even
at the edges of the spectral density, where memory effects are strongest,
NGIP has a similar value than Erdős-Rényi and Barabási-Albert networks
have in the resonant case.
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Figure 4: (Color online) A comparison of the non-Markovianity for three dif-
ferent types of quantum complex networks. The columns correspond to the
type and the rows to interaction strength between the network and the sys-
tem. The size of each network is fixed to N = 30 while a parameter control-
ling the structure of the network is varied. The parameters are connection
probability p, connectivity parameter l and rewiring probability p for Erdős-
Rényi, Barabási-Albert and Watts-Strogatz networks, respectively. Refer to
main text for details. Results are averaged over 1000 realizations for each
parameter value.

5 Conlusions and outlook

In this work, we have studied bosonic quantum complex networks in the
framework of open quantum systems. After briefly investigating the effect
of the network stucture on the spectral density and transport of excitations,
we focused on the non-Markovianity in the reduced dynamics of an open
quantum system interacting with the network.

We considered non-Markovianity over ensemble averages of different types
of random networks of identical oscillators and constant coupling strength
between the network oscillators. Previous work shows that strong memory
effects can occur in symmetric networks at the edges of the spectral den-
sity and near band gaps. Here we have shown that increasing the disorder
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of the network can lead to a high degree of non-Markovianity also when
the system is resonant with the network, however increasing the number of
interactions between network oscillators appears to suppress it, suggesting
that trees optimize the ensemble averaged non-Markovianity.

While here we considered only the lower bound of a single non-Markovianity
measure, it would be interesting to extend the investigations to other mea-
sures such as the measure introduced by Torre, Roga and Illuminati [39].
We expect that a systematic study could perhaps link some of the graph
invariants, such as the mean distance between nodes, to non-Markovianity
and other non-classical properties of the quantum networks, such as the abil-
ity to generate or transport entanglement. Such a link could pave way to
structural control of non-classical properties of quantum complex networks.
Indeed, in the case of quantum walks on classical complex networks, it can
be shown that the quantumness of the walk is a function of both the initial
state and specific graph invariants. Furthermore, for a deeper understanding
of quantum networks the introduction of purely quantum graph invariants
without a classical counterpart would be needed.
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