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ABSTRACT This paper ideates a novel texture descriptor that retains its classification accuracy under
varying conditions of image orientation, scale, and illumination. The proposed Overlapped Multi-oriented
Tri-scale Local Binary Pattern (OMTLBP) texture descriptor also remains insensitive to additive white
Gaussian noise. The wavelet decomposition stage of the OMTLBP provides robustness to photometric
variations, while the two subsequent stages — overlapped multi-oriented fusion and multi-scale fusion —
provide resilience against geometric transformations within an image. Isolated encoding of constituent pixels
along each scale in the joint histogram enables the proposed descriptor to capture both micro and macro
structures within the texture. Performance of the OMTLBP is evaluated by classifying a variety of textured
images belonging to Outex, KTH-TIPS, Brodatz, CUReT, and UIUC datasets. The experimental results
validate the superiority of the proposed method in terms of classification accuracy when compared with the

state-of-the-art texture descriptors for noisy images.

INDEX TERMS Classification, geometric transformations, photometric variations, texture representation,

wavelet decomposition.

I. INTRODUCTION

Human visual perception system banks heavily on struc-
tural components within an image for pattern classification
and object recognition. Natural images, in general, consist
of highly complected structures, modeling which remains
a long-standing challenge. Accurate texture modeling and
classification is crucial for a variety of modern-day appli-
cations, including medical imaging [1] and retrieval [2].
Agricultural produce such as herbs [3], fruits [4], leaves [5],
rocks [6], mud [7], and wood [8], as well as industrial
products including marble [9], and fabric [10] possess
unique textural characteristics that provide basis for catego-
rization into respective classes. Event detection [11], [12]
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biometric authentication [13], multimedia retrieval [14],
landmark identification [15], and similar applications rely
largely upon robust texture representation for attaining desir-
able system performance.

Textons are image micro-structures serving as building
blocks that play a key role in the visual perception of tex-
ture by humans. The periodic repetition of textons with
well-defined spacing and relative positioning imparts distinct
textural characteristics to different regions within a digital
image [16]. The aim is to identify statistical properties of
the local image regions that, in turn, can be leveraged to
evaluate differential maxima in the feature euclidean vector
space. The robustness associated with texture classification
process depends not only upon how accurately the image has
been represented but also on the choice of underlying fea-
ture classifier and image similarity metric. Nearest Neighbor
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Classifier (NNC) [17], Support Vector Machine (SVM) [18],
and Nearest Subspace Classifier (NSC) [19] are widely used
for feature classification. NSC is a definite improvement over
NNC because the former does away with the problem of
overfitting which the latter remains vulnerable to. Classifier
regularization is achieved in NSC by taking into account the
associated variance constraint parameter. Upon choosing a
considerably low value of variance constraint, NSC effec-
tively transforms into NNC in terms of classification perfor-
mance. Owing to its advantages and superior performance,
the proposed texture descriptor makes use of NSC for the
purpose of feature classification [20].

An increasing number of present-day applications require
attaining a higher texture classification accuracy. This,
in turn, requires a stable and robust texture representation that
is insensitive to geometric and photometric variations of the
image. Traditionally, the said has been achieved by designing
texture descriptors that are largely independent of changes
taking place in the rotation, scale, and illumination. Such
descriptors, however, struggle with attaining a high value of
classification accuracy when the texture under investigation
contains a large amount of noise.

This work ideates a new approach towards texture rep-
resentation offering highly sought-after features including
deterrence against additive white Gaussian noise, immunity
against orientation changes, robustness to scale variation
and insensitivity towards illumination changes. Deterrence
against additive white Gaussian noise has been achieved
by decomposing the input image into corresponding sub-
bands using wavelet transform. Immunity against orientation
changes is developed by including overlapped multi-oriented
pixel fusion process. Robustness to scale variation is secured
by incorporating multi-scale fusion in the descriptor. Insensi-
tivity towards illumination is attained using normalization of
relevant features.

The proposed descriptor holds immense appeal for deploy-
ment in various novel applications. For instance, autonomous
person re-identification in distributed surveillance systems
can potentially be improved using the proposed texture
descriptor. By combating illumination changes and environ-
mental noise, the descriptor is likely to enhance the clas-
sification accuracy in intelligent surveillance applications.
Similarly, for emerging applications in aerial imaging, robust-
ness offered by the proposed descriptor can potentially be
leveraged for disaster evaluation and evacuee localization
while maintaining reasonable classification accuracy.

The remaining discussion is organized as follows.
Section II provides coverage of related work reported in the
literature. Section III details the formulation of the proposed
texture descriptor. In section IV, we describe the obtained
results and their comparison with state-of-the-art texture
models. The conclusion is drawn in section V of this paper.

Il. RELATED WORK
In general, techniques developed for texture feature extrac-
tion can be broadly classified into two main categories [21].
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The first category draws heavily from research in deep learn-
ing, where several models based upon Convolutional Neural
Networks (CNNs) have been developed. Though such models
allow for the extraction of texture features with relatively high
accuracy, the massive amount of training data required makes
the entire process both computationally expensive and time
consuming. The second category relies upon hand-crafted
techniques aimed at feature extraction, which largely remain
independent of training data and function without much of
a computational overhead [21]. In this category, extraction
of discriminative features from the structural composition is
crucial, and governs the degree of robustness offered by the
resulting descriptor.

In hand-crafted feature extraction methods, several algo-
rithms have been proposed during the last decade [22].
Among them, local binary pattern (LBP) [23] is the most
widely used technique. LBP encodes the pixels of each seg-
ment by thresholding the same against intensity measure
corresponding to the pixel in the center. LBP has captured the
attention of researchers due to its computational efficiency,
robustness to illumination as well as changes in orientation.
However, LBP descriptor is sensitive to grayscale intensity
inversion that might take place [24], [25]. Robustness to
inverse gray-scale intensities is achieved in the complete
local binary pattern (CLBP) [26] by incorporating magnitude
and center components in the LBP description. CLBP still
remains sensitive to illumination changes, necessitating the
image be normalized as a pre-step in order to remove the
effects of global intensity changes. Moreover, other vari-
ants of LBP such as dominant LBP (DLBP) [38], complete
local binary count (CLBC) [52], complete dual-cross pattern
(CDCP) [47], local directional ZigZag pattern (LDZP) [48],
and local morphological pattern (LMP) [56] have also been
developed for various applications. These methods, however,
are sensitive to noise in the texture, and the feature values of
such descriptors vary in a non-uniform manner in response
to changes in scale. The DLBP offers better accuracy by
utilizing only the most frequently occurring binary pattern of
LBP. On the downside, the descriptor neglects discriminant
macro-structures present in the texture. It is worth noting that
both CDCP and LDZP can only extract the isotropic micro-
structures, which cannot represent the textual characteris-
tics effectively. Median robust extended local binary pattern
(MRELBP) has been developed [29] to capture the micro-
and macro-structures of the image. Though this approach
offers lowered computational complexity and feature dimen-
sionality, it still requires non-local median pixel sampling.
Complete joint-scale local binary pattern (CJLBP) [27] is
developed to include neighbors at multiple scales around the
center pixel in CLBP. The CJLBP consider multiples scale
of the texture, which improves the classification accuracy for
scale variations in the input image at the cost of computational
complexity.

Noise, which affects the micro-geometric structures, can
also degrade the classification accuracy. Hence, noise tolerant
texture representation has sparked interest in the research
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community. Local ternary pattern (LTP) [40] is developed
for noisy texture representation. The feature vector associated
with LTP is not vulnerable to gray-scale inversion. At the
same time, LTP functions by decomposing a texture locally
into positive and negative binary patterns. This constituent
step has been criticized as an inefficient approach towards
texture decomposition [41]. A peculiar diamond sampling
structure-based local adaptive binary pattern (DLABP) is
presented in [30]. This method has obtained efficiency and
simplicity in noisy texture representation by introducing
diamond-shaped sampling, adaptive quantization, and gray
level averaging across a radial direction. The method per-
forms well for noisy texture of the Outex database. However
its performance degrades when test on several other texture
databases.

Noise resistant local binary pattern (NRLBP) [50] can per-
form texture classification in the presence of noise with high
accuracy. However, the noise tolerance capability of NRLBP
remains unsatisfactory in many applications [29]. In addition,
the memory requirements of NRLBP increases exponentially
with the number of sample points [51]. In [28], binary rotation
invariant and noise tolerant (BRINT) descriptor has been
developed which, as the name suggests, combats changes
in rotation as well as noise within the texture. Speaking of
limitations, BRINT undergoes a rapid increase in feature
dimensionality due to its multi-scale approach and is also
sensitive to illumination-related changes.

Varma and Zisserman Maximum Response (VZ-MRS),
[42], and Varma and Zisserman Patch (VZ-Patch) [43]
describe both micro- and macro-textures by employing dense
response of multiple spatial filters. VZ-MR8 and VZ-Patch
descriptors provide poor results in comparison to LMP with
high computational complexity. LBPV [37] utilizes local con-
trast information to describe the texture in the input image.
Moreover, it also includes global rotation-invariant texture
matching to improve the classification accuracy. The main
drawback is high dimensionality associated with the resulting
feature vector.

This work presents a novel texture descriptor, offering
highly-desirable features of insensitivity to variation in the
factors enlisted below, even in the presence of additive white
Gaussian noise:

o [llumination
e Scale
o Orientation

The underlying algorithmic details for the proposed texture
descriptor are presented section-wise.

Ill. PROPOSED TEXTURE DESCRIPTOR

The focus of the proposed approach is to formulate a tex-
ture descriptor robust to variation in illumination, scale, and
rotation. CJLBP is taken as a starting point, wherein multi-
scale fusion is performed to create a combined 3 x 3 patch
of the pixels. The above is carried out by applying an aver-
aging operation around all defined radii corresponding to
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a segment. Sign and magnitude components are calculated
by subjecting the multi-scale fused patch to the local dif-
ference sign magnitude transform (LDSMT). The operators
CIJLBP_S, CJLBP_M, and CJLBP_C representing the his-
togram of the center, magnitude and sign components of the
image, are computed. Thereafter, the operators are combined
in different ways to create multiple variants of the parent
technique. CJLBP_MC is the result of combining CJLBP_M
and CJLBP_C. Likewise, CJLBP_S_MC, CJLBP_SM, and
CJLBP_SMC have been demonstrated to yield good classifi-
cation accuracy [27].

The proposed framework is divided into three stages. The
first stage of the proposed method provides deterrence against
additive white Gaussian noise, and immunity against the
orientation changes. The second stage makes the descrip-
tor robust to scale variations. The third stage normalizes
the extracted features along each radius. In the third stage,
the descriptor becomes insensitive to illumination changes.
The detail description of each stage is available in the follow-
ing subsections.

A. STAGE 1

In the proposed technique, the image under investigation is
first decomposed into its sub-bands using two-dimensional
discrete wavelet transform (2D-DWT). The approximation
coefficients are obtained through dmey (Discrete approxima-
tion of Meyer) waveform of the wavelet at single level decom-
position. Values of the feature vector are extracted from the
approximated version of an image. An individualized seg-
ment of the low frequency sub-band (LL) is calculated using
Eq. (1) given as:

Yo e =LL(r +u,c+v) (1)

where Y, . shown in Fig. 1 (a) represents the segment of
the approximated image corresponding to center pixel. The
row (r) and column (c¢) define the location of the segment
in the approximated image. The pixels of the segment Y, .
are shown with the help of symbol Jj;. The subscript 6 is
the orientation angle, while the superscript s represents the
radius. Since it is not possible to extract a segment Y, . near
the periphery of the image, r and c are therefore constrained
to vary over a certain range defined by the interval [1 + Ry«
Xn-Rimax] and [14+Ryax Yu-Rimax], respectively. x,, v, repre-
sent the last row and column position of the approximated
image, while R, is the maximum radius of the segment
Y, c. Variables u and v in Eq. (1) define the coordinates of
the segment in the approximated image. Note that both u and
v span over a range of [— R ,,,5x 4+ R4x]. Dimensions of Y. .
in pixels equal (2R,qy + 1) X (2Rjax + 1) segment of the
approximation.

The overlapped multi-oriented pixel fusion process, shown
in Fig. 1 (b), creates a topological structure of 8 samples for
all 3 scales shown in Fig. 1 (c). Overlapped multi-oriented
pixel fusion process is performed over the pixels laying at
radius 2 and 3 are shown in Eq. (2) and (3). Sample points P3,
P%, and P,lc in Eq. (2), (3), and (4) represent the topological
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In the first step, samples at radii 1 and 2 are fused through
mean operation, while in the second step samples belonging
to radii 2 and 3 are combined together. For each segment
Y, . the multi-scale fusion depends on the set of radius R

and sample point k. The multi-scale fusion is represented
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using Eq. (5).

{1_ B Pi 8
e = {Zl—("—l)(k)} 5)
k=1

2

where P}; represents the k™ pixel intensity at radius R; of the
topological structure in Fig. 1 (¢).y, . denotes the multi-scale
fused patch with topological structure (8, 3), (8, 2) and (8, 1)
of the Fig. 1 (e), (f), and (g) respectively.

C. STAGE 3

In the third stage feature vectors are extracted from each
topological structure shown in Fig. 1 (e), (f), and (g). The
local difference sign-magnitude transform (LDSMT) is used
to calculate the sign and magnitude component from the y, ..

P

drc = {’y‘i‘,c - C} (6)
k=1
P k . k
= d
dy.o = {s’;c x m’;c} and {°"¢ ”g’z( rd )
, ' k=1 mr,c = |dr,c|

where d, . denotes the set of local difference, 'ff . Tepresents
the k™ sample point of the multi-scale fused patch, and C .
represents the intensity value of the center pixel correspond-
ing to segment Y .. s’;’ . represents the k™ sign component
having a value equal to 1 when df’ . 18 greater than or equal
to 0, and —1 when dfyc is less than 0. The magnitude compo-
nent m, . stores the absolute values of the local difference d,
The rotation invariant operator OMTLBP_S;{’% is obtained
using the sign component s, . of the local difference d, .. Its
encoding is formulated as LBP;}_”I% [23]. The rotation invariant
operator OMTLBP_M}’?‘% shown in Eq. (8) is obtained using
the magnitude component of the local difference d, ..

‘[/(ml;yc, Hm), if U—MP-,R <2
P+1,

U_Mpg = [Y(ml ", wm) — vr(m) .. i)l

OMTLBP_M}'3 = ®)

otherwise

P—1
+ D I nf ) = Y )

k=1
©)

where ¥/ (x, y) is 1 for x greater than or equal to y and ¥/ (x) =
Oforx <y.The m’,c . is the k" magnitude component and 1,
is the mean value of the magnitude component of the segment
at location (r,c) of the input image. In addition to the sign and
magnitude pattern, the center pixel’s grey level OMTLBP_C
is also considered. This is formulated as

OMTLBP_CP,R = w(cr,m "r) (10)

where p; represents the mean value of the whole input
image. The joint combination of operators OMTLBP_ng‘Ig,
OMTLBP_M;{“%, and OMTLBP_Cpr is represented by
OMTLBP_SMCi“3.

The train and test feature vectors are obtained using the
operator OMTLBP_SMC;"’”I%. Chi-square distance is used as
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Algorithm 1 Extract OMTLBP_SMC Feature Vector
Input : Input image 7 of size M x N
Output : Feature Vector: OMTLBP_SMC
Initialization: The parameters as R,y = 3,

r=Rpuax +1,and c = Ryar + 1

1 Apply 2D-DWTon [ ;
2 Extract the Approximation (LL);
3 forr < (M — Ryuy) do
4 for c < (N — Ry,4x) do
5 Extract the segment Y, . using Eq. (1);
6 Compute P3, P,%, and P,i described through
Eq. (2), (3), and (4);
7 Compute ¥, . through Eq. (5) for the set of {1,
2} and {2, 3};
8 for each topological structure do
9 Compute LDSMT by Eq. (6) and (7) ;
10 Compute sign S, magnitude M, and center C
component;
11 end
12 increment c;
13 end
14 increment r;
15 end

16 Compute OMTLBP_S, OMTLBP_M, and OMTLBP_C
from the component S,M, and C;
17 Concatenate all operators to get OMTLBP_SMC;

a dissimilarity measure, and the classification accuracy is
obtained using Eq. (11).
TP+ TN

Accuracy = (11D
TP+~ FP+ TN + FN

where TP stands for true positive, TN signifies true negative,
FN corresponds to false negative, and FP denotes false pos-
itive samples of the test dataset. It is worth-noting that the
classification accuracy of a descriptor reflects its ability to
categorize textured images into respective classes, and is a
key metric to evaluate the performance.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental validation of the proposed technique is
carried out on multiple texture datasets including Outex [31],
Brodatz Album [32], CUReT [33], and KTH-TIPS [35]. The
accuracy of OMTLBP descriptor is validated by employing
the k-fold cross-validation procedure. Nearest subspace clas-
sifier (NSC), with Chi-Square ( x2) distance, is employed for
test feature classification. The k-fold cross-validation scheme
requires a set of train and test features. In the proposed
novel approach, the feature set of each class is re-arranged
randomly before splitting the same into train and test set.
In k-folds with k = 10, the k—1 folds train data, while the
remaining features are used as test data for classification. The
final cross-validation accuracy is the mean of all classifica-
tion accuracies obtained in k number of rounds.
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TABLE 1. Texture databases overall summary.

Parameters TC10 (Outex) TC12 (Outex) KTH-TIPS [35] Brodatz [32] CUReT [33] UIUC [34]
[31] [31]

Rotation v v v v v v

Illumination changes v v v

Scale changes v v v

Classes 24 24 10 32 61 25

Size in Pixels 128x 128 128128 200200 64x64 200200 640480

Samples per Class 180 200 81 64 92 40

AWGN included with SNR (dB)  40-5 40-5 40-5 40-5 40-5 40-5

Total Samples 4320 4800 810 2048 5612 1000

FIGURE 2. Texture samples from outex database [31].

A. OUTEX

Outex database consists of 24 different homogeneous tex-
ture classes depicted in Fig. 2. The illumination and rota-
tion invariance of OMTLBP is examined by employing
three test suites, TC10, TC12 000, and TC12 001 from the
Outex database. For all test suites, the classifier is trained
using 20 reference images with an orientation angle of 0°
and illumination condition ‘inca’, which makes a total of
480 samples. The difference between these three test suites
is in their test data. In Outex TC10, 3840 samples with
rotation angles 5°, 10°, 15°, 30°, 45°, 60°, 75°, and 90°
with illumination condition ‘inca’, are used for testing the
classifier. In Outex TC12 000 and Outex TC12 001, the clas-
sifier is tested with all 4320 images from fluorescent and sun-
light lighting, respectively. The dataset has been summarized
in Table 1.

Extensive experimentation has been carried out on the
previously mentioned test suites of the Outex database. The
results of the proposed OMTLBP is compared with a num-
ber of recently-reported descriptors. The proposed texture
descriptor has attained the highest classification accuracy
when tested on all test suits in the Outex database. The
average classification accuracy of the proposed descrip-
tor remains 0.02%, 0.2%, 0.91%, and 1.39% higher than

VOLUME 7, 2019

LDZP, CDCP, CJILBP_SMC, BRINT_CS_CM respectively.
Inclusion of noise affects the micro-structures, leading to
reduced inter class variations in the texture. The proposed
texture descriptor is also evaluated on noisy textured images.
Table 2 describes the comparative results in term of classifica-
tion accuracy (%). The table shows that the proposed descrip-
tor with NSC classifier outperforms the other techniques.
Upon addition of Gaussian noise (AWGN) with signal-to-
noise ratio (SNR) 100 dB, 30 dB, 15 dB, and 5 dB, classi-
fication accuracy of 99.96%, 99.84%, 99.80%, and 99.75%
has been demonstrated using the proposed method. The initial
wavelet decomposition stage renders the proposed OMTLBP
descriptor robust against noise. Wavelet decomposition of
the input image via demy waveform breaks the image into
approximation and detail coefficients. The coefficients of the
approximation provide distinctive features, which maximize
the inter-class variation of the feature set.

B. BRODATZ

Brodatz dataset [32] consists of total 2048 sample images
of 32 homogeneous texture classes. The dataset samples have
variations in their scale and orientation. Each sample of the
dataset is divided into 25 non-overlapping segments of size
128 x 128 pixels. The patches are further down-sampled into
64 x 64 pixels. Each texture class contains a total of 64 sample
images. The dataset image of each class is labeled with
four different properties namely, that are normal, rotated,
scaled, and scaled with rotation. The dataset is summarized
in Table 1. Few randomly selected color samples of the
database have been presented in Fig. 3. The difference in scale
and orientation may create variations in the micro-texture of
the image. The images of the dataset consist of grass, wood,
water, gain, bricks, sand, and many other naturally-occurring
texture-rich objects.

The classification presented in Table 3 depicts that the
proposed OMTLBP descriptor, when applied to images in the
Brodatz database outperforms most of the other techniques.
The proposed descriptor with classification accuracy 99.17%
results in a percentage improvement of 0.01%, 4.37%,
4.55%, and 4.57% when compared with DLBP, CLBP_SMC,
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TABLE 2. Performance analysis (%) on TC10 (Outex) and TC12 (Outex) [31].

Technique Classifier TC10 (Outex) TC12h (Outex) TC12t (Outex) Average
LBP%EV [36] NNC 99.24 96.18 94.28 96.56
MRELBP [29] NNC 91.17 84.95 87.01 87.71
DLABP [30] NNC 99.04 95.35 94.93 96.44
PTP [44] NNC 99.56 98.08 97.94 98.52
LDDP [45] NNC 97.89 93.40 95.30 95.53
DRLBP [46] NNC 99.19 95.80 96.72 97.23
CDCP [47] NNC 99.76 99.82 99.62 99.72
LDZP [48] NNC 99.95 99.93 99.82 99.90
NRLBP [50] NNC 93.44 86.13 87.38 88.98
CLBC CSM [52] NNC 98.96 95.37 94.72 96.35
DLBP+NGF [38] SVM 99.1 93.2 90.4 94.23
CLBP_S/M/C [26] NNC 98.93 92.29 90.30 93.84
CJLBP_SMC"#%2 [27] NNC 99.77 98.59 98.68 99.01
LBPV7i4Z [37] NNC 91.56 717.01 76.62 81.73
DLBPR_3 n—24 [38] SVM 98.10 87.40 91.60 92.36
BRINT_CS_CM [28] NNC 99.35 97.69 98.56 98.53
VAR [39] NNC 90.00 64.35 62.93 72.42
LBP [23] SVM 97.60 85.30 91.30 91.40
LTP [40] NNC 76.06 63.42 62.56 67.34
VZ-MRS [42] NSC 93.59 92.82 92.55 92.99
VZ-Patch [43] NSC 92.00 92.06 91.41 91.82
Proposed OMTLBP NSC 99.96 99.98 99.82 99.92

FIGURE 3. Texture samples from Brodatz album [32].

VZ-MRS, and LBPHF_S, respectively. The classification
accuracy of the proposed descriptor stands at 99.17%, which
is slightly lower than BRINT_CS_CM. On the other hand,
BRINT_CS_CM comprehensively falls short when applied
on a number of significant databases when compared with
the proposed texture descriptor. This wider adaptability of
the proposed texture descriptor validates its efficacy as
a leading choice in the new-age of texture classification
applications.

C. CUReT

The CUReT database [33] has a total of 61 texture classes.
Each class contains 92 sample images. The database is
designed by including a large intra-class variation in the
samples, making it the main reason why this particular dataset
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TABLE 3. Comparison of classification accuracy (%) on KTH-TIPS [35],
Brodatz [32], CUReT [33] and UIUC [34].

Technique Classifier KTH-  Brodatz CUReT UIUC
TIPS  [32] [33]  [34]
[35]
LBPV [37] NNC 9550 93.80 9400 -
CLBP_SMC [26] NNC  97.19 9480 97.40 93.26
CJLBP_SMC™®*2[27] NNC - - 97.51  95.13
DLBPR_3 n—24[38] SVM 8699 99.16 8493 60.73
LBP7 %2 [36] NNC 9517 91.60 9584 76.88
MRELBP [29] NNC - - 94.11  86.79
DLABP [30] NNC - - 96.75  92.36
BRINT_CS_CM[28] NNC  97.75 9922 97.06 93.26
LBP [36] SVM 8267 8216 80.63 5526
SSLBP [53] NNC  97.80 - 98.55  97.02
VZ-MRS [42] NSC 9450 9462 9743 93.59
LBPHF_S [54] NNC  97.00 9460 9590 -
COALBP [55] NNC  97.00 9420 98.00 -
LMP [56] NNC 9837 - 98.11 -
VZ-Patch [43] NSC 9240 87.10 98.03 97.83
Proposed OMTLBP  NSC  98.58 99.17 98.58 97.86

is heavily used for texture descriptor validation purpose [49].
The images of the database have a difference in illumina-
tion. The scale of the images in each class is kept constant.
All 92 samples from 61 texture classes are densely divided
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FIGURE 4. Texture samples from CUReT [33].

into 200 x 200 local regions, and each segment is converted
into grayscale. The dataset is summarized in Table 1. Few
randomly selected samples of the dataset have been presented
in Fig. 4.

The classification accuracy of the proposed descriptor
on CUReT dataset is 98.58%, which is 0.03%, 0.47%,
0.55%, and 0.58% higher than SSLBP, LMP, VZ-Patch, and
COALBP descriptor respectively. The classification accuracy
presented in Table 3 highlights the superiority of the proposed
texture descriptor over recently reported techniques.

FIGURE 5. Random samples from KTH-TIPS [35] database.

D. KTH-TIPS

Ten texture classes of the CUReT database [33] have been
extended to create KTH-TIPS dataset [35] as shown in Fig. 5.
The database has a total of 810 texture images categorized in
ten different classes. Each class contains a total of 81 samples
images. The total size of each sample is 200 x 200. All images
are in grayscale. The texture samples of each class have three
different poses, four illumination types, and nine scales. The
dataset is summarized in Table 1. The classification accuracy
in Table 3 shows that the OMTLBP outperforms all other
approaches mentioned in the table in terms of classification
accuracy. The proposed approach exhibits 98.58% accuracy
which is 0.21%, 0.78%, 0.83%, 1.39%, 1.58%, and 1.58%
higher than LMP, SSLBP, BRINT_CS_CM, CLBP_SMC,
LBPHF, and COALBP respectively.
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E. UIUC DATABASE

The UIUC database [34] consists of 25 different texture
classes collected from various materials. Each class of the
dataset includes 40 images with resolution 640 x 480. A few
random samples from the dataset are in Fig. 6. The images
of each class have variations in scale and viewpoint.
Moreover, the images have non-rigid deformation and illumi-
nation changes. Half of the random samples from each class
is selected for training, while the remaining half images are
used as test data.

FIGURE 6. Random samples from UIUC [35] database.

The results presented in Table 3 proposed OMTLBP_SMC
provides 0.03%, 0.84%, 2.73%, and 4.27% higher classifi-
cation accuracy for VZ-Patch, SSLBP, CJLBP_SMC, and
VZ-MRS respectively.

The results achieved from the experimental setup
reveal that the classification accuracy of the operator
OMTLBP_SMC?”% is high for the set of radius R = 1, 2,
and 3 with the sampling point value of 8. The comparison of
classification accuracy obtained with various combinations
of radius and sample points using the same databases is
shown in Table 2 and 3. The results reported in Fig. 7 (a)-(d),
show the proposed descriptor is much better than recently
reported descriptors applied on the Outex, Brodatz, CUReT,
and UIUC dataset in the presence of additive Gaussian
noise. The noise with zero mean and standard derivation
o = (40, 30, 15, 5) dB is included in the texture before the
validation process of Fig. 7. The dimension of the proposed
descriptor in comparison to the recently reported approaches
is presented in Fig. 8. The dimensionality of the proposed
descriptor stands at 600 variables, which is lower than that
offered by most recently developed descriptors.

Table 2 and 3 show the classification performance of dif-
ferent texture techniques with various scales R and sampling
points P. The proposed OMTLBP_SMC;ff‘I% with wavelet
type ’dmey’ provides more robustness to additive white
Gaussian noise as compared to other recently developed
approaches. OMTLBP_SMC;{”,% with sample point 8 and
radius set 1, 2, and 3, provides the average classification
accuracy of 99.92%, 98.58%, 99.17%, 98.58%, and 97.86%
with Outex [31], KTH-TIPS [35], Brodatz [32], CUReT [33],
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FIGURE 7. Noisy texture classification on various publicly available databases. (a) Outex dataset [31]. (b) Brodatz dataset [32].

(c) CUReT dataset [33]. (d) UIUC database [34].
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and UIUC [34] respectively that is better than all other com-
binations of radius for the same descriptor.

V. CONCLUSION

A novel texture descriptor, Overlapped Multi-oriented
Triscale Local Binary Pattern (OMTLBP), is proposed in
this work. The proposed descriptor is insensitive to a wide
range of variations in image scale, illumination, and ori-
entation. OMTLBP descriptor is also resilient to additive
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white Gaussian noise with SNR of up to 5 dB. This has
been attained by decomposing the texture under inves-
tigation into its corresponding sub-bands. The OMTLBP
contains the Overlapped Multi-oriented fusion that trans-
forms each input segment of the image into eight sam-
ple points. The process imparts rotation invariant features
to the proposed descriptor. Multi-scale fusion is also per-
formed to merge the pixels along the radius in three
different combinations. Doing so secures the sought-after
property of scale invariance for the formulated descriptor.
Moreover, the process of feature normalization has also been
applied to achieve illumination invariance while designing
the proposed texture descriptor.

When evaluated on publicly available texture databases,
the proposed texture descriptor offers improved classification
accuracy under conditions of geometric and photometric vari-
ations. In particular, comparison with four leading texture
descriptors is performed for the case of Outex dataset where
the average classification accuracy has been improved by
0.02% when compared with LDZP. Similarly, upon consid-
ering Brodatz dataset, an increase in average classification
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accuracy is reported by 0.01% when compared with DLBP.
On taking the CURET dataset into account, an improve-
ment in classification accuracy has been reported by 0.03%
in comparison with SSLBP. Upon analyzing texture images
from KTH-TIPS, increase in average classification accuracy
of 0.1% to that of LMP has been demonstrated. Finally, tex-
ture images from UIUC database have also been scrutinized
wherein a performance improvement in terms of average
classification accuracy is increased by 0.03% of VZ-Patch
descriptor.

The descriptor holds potential for deployment across a
broad array of applications related to texture classifica-
tion including personnel re-identification in distributed video
surveillance systems, search and localization tasks in aerial
surveillance, and so on.
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