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Abstract

We present a comprehensive review of the discrete Boussinesq equations based
on their three-component forms on an elementary quadrilateral. These equations
were originally found by Nijhoff et al using the direct linearization method and
later generalized by Hietarinta using a search method based on multidimensional
consistency. We derive from these three-component equations their two- and one-
component variants. From the one-component form we derive two different semi-
continuous limits as well as their fully continuous limits, which turn out to be PDE’s
for the regular, modified and Schwarzian Boussinesq equations. Several kinds of Lax
pairs are also provided. Finally we give their Hirota bilinear forms and multi-soliton
solutions in terms of Casoratians.
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1 Introduction

Among the 1 + 1 dimensional soliton equations there are evolution equations, such as
the Korteweg – de Vries (KdV) equation, in which time derivatives appear in first order,
but there are also important equations with higher order time derivatives, such as the
Boussinesq (BSQ) equation. An essential difference between these equations is in the
initial data required: For KdV it would be enough to give, e.g., u(x, t = 0), while for the
second order BSQ equation we would need u(x, t = 0) and ∂xu(x, t = 0), or something
similar.

The difference between the first and second order time evolution is reflected also in
the integrable discretizations of these equations. For first order equations a well defined
evolution is obtained from a staircase-like initial data together with an equation defined
on the elementary square of the lattice. For higher order time evolutions one would then
need either initial data on a number of parallel staircases with an equation on a larger
stencil or alternatively, multi-component initial data with a larger number of equations
on the small stencil.

The recent rapid advances in the study of integrable partial difference equations (P∆E)
are to a large extent due to the efficient use of the particular integrability property of
multidimensional consistency (MDC), which is related to the existence of hierarchies in
the continuous case [16]. In its simplest form it involves dimensions 2 and 3 and is called
Consistency-Around-a-Cube (CAC). The MDC property was discussed already in [2,25,30]
but in full force it was applied in [1] (with some further technical assumptions), and this
provided a classification of first order equations defined on an elementary lattice square of
the Cartesian 2D lattice, the so called Adler-Bobenko-Suris (ABS) list. The requirement
of MDC can also be applied on multicomponent equations on the elementary plaquette.
A partial classification of three-component equations was done in [14] on the basis of CAC
and most of the results turned out to be discrete versions BSQ equations (DBSQ).

Multicomponent equations were also studied from the perspective of direct lineariza-
tion approach (DLA) and several equations were found [11, 27, 28, 33, 37, 41]. In addition
to the CAC and DLA approaches DBSQ equations have been derived also by applying
a three-reduction on the three-term Hirota-Miwa equation [6, 22], or on the four-term
Miwa equation [20]. Still further results have been obtained using the Cauchy matrix
approach [7] or graded Lax pairs [9].

In this review we will discuss in detail the multi-component DBSQ equations. In
Section 2 we compare the various three-component forms that have appeared in the lit-
erature and their connections by gauge transformations or by Möbius transformations.
Their symmetries are also briefly discussed. In fact, all the DBSQ-type equations found
in [14] can be viewed as extensions of some known lattice equations found in 1990’s. In
Section 3 we discuss how the dynamics of the first order three-component equations can
be represented by two- or one-component forms on a larger stencil. We also discuss the
continuum limits of the one-component forms in Section 4 and show that the limits really
are BSQ-like equations.

In Section 5 we present the Lax pairs of the various discrete forms. As for the solutions
of DBSQ-type equations, besides the results from direct linearisation and Cauchy matrix
approach (see [7, 27, 36, 37, 41]), equation B2 has been bilinearized in [18] and solutions
were given in terms of Casoratians; in Section 6 we investigate bilinear forms for A2 and
C3 equations.
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2 DBSQ-type equations

2.1 Basic concepts and definitions

The discrete equations that we discuss here are all defined on the Cartesian Z×Z lattice.
Most of the time the equations are defined on a single quadrilateral but larger stencils are
sometimes needed. The independent variables live on the vertices of the lattice and are
therefore labeled by the vertex coordinates, see Figure 1.

un,m un+1,mp

un,m+1

q

un+1,m+1

Figure 1: Elementary quadrilateral of the lattice, with possibly multi-component corner
variables u. The parameters p, q characterize the distance between lattice points.

Sometimes the equations have a simpler look if we replace the subscript with a tilde
or a hat, or use some other simplified notation, for example

u = un,m= u0,0, ũ = un+1,m= u1,0, û = un,m+1= u0,1, ̂̃u = un+1,m+1= u1,1. (2.1)

The equation(s) on the quadrilateral are given by Q(u, ũ, û, ̂̃u) = 0, where Q are
affine multilinear polynomials, and one may then ask whether the system of equations
is integrable according to some definition. We will use the MDC criterion which means
that the equation defined on the 2D-lattice can be extended consistently into higher
dimensions.

As an example consider the simple case of the 1-component lattice potential KdV
equation (H1 in the ABS list):

Q(u, ũ, û, ̂̃u; p, q) := (u− ̂̃u)(û− ũ)− p2 + q2 = 0.

Since u is defined on the 2D-lattice it naturally depends only on the coordinates n,m,
but in order to extend the equations into 3D setting, which is the simplest requirement
of MDC, we introduce a third variable k and denote un,m,k+1 = u; the associated lattice
parameter is r. For each of the six sides of the cube we have an equation:

bottom: Q(u, ũ, û, ̂̃u; p, q) = 0, top: Q(u, ũ, û, ̂̃u; p, q) = 0, (2.2a)

back: Q(u, û, u, û;α, β) = 0, front: Q(ũ, ̂̃u, ũ, ̂̃u;α, β) = 0, (2.2b)

left: Q(u, u, ũ, ũ; γ, δ) = 0, right: Q(û, û, ̂̃u, ̂̃u; γ, δ) = 0. (2.2c)

(Note that we used arbitrary parameters in this example and hope to determine them by
consistency.) In order to study CAC we choose u, ũ, û, u as initial values and then from

the equations on the LHS we can compute ̂̃u, û, ũ. When these are used on the RHS we

have three ways to compute ̂̃u but they must all yield the same value. In this case we find
the condition

(α2 − β2) + (γ2 − δ2) + (p2 − q2) = 0.

4



Since back and front equations do not depend on p we find (α2 − β2) = (q2 − r2) and
(γ2− δ2) = r2− p2 for some r and then all RHS equations yield the very symmetric form

̂̃u =
ûũ(q2 − p2) + ũu(p2 − r2) + uû(r2 − q2)

u(p2 − q2) + û(r2 − p2) + ũ(q2 − r2)
.

Note that the RHS of this expression does not depend on u, this is called the tetrahedron
property.

The application of MDC on one-component equations resulted in the ABS-list [1]. For
multi-component equations there are no equally comprehensive classifications. It should
also be noted that passing the CAC test is necessary but not sufficient [15] for integrability.

2.2 Hietarinta’s list of equations

In [14] Hietarinta made a partial classification of Boussinesq (BSQ) type lattice equations
using CAC. Since BSQ equations are of second order in time, their discrete analogues are
either multi-component on a quadrilateral, or defined on a larger stencil. In [14] three-
component approach was used and some equations were defined on the links and one
equation on the full quadrilateral. Using CAC, the following three-component DBSQ-
type equation were found:

B2: ỹ = xx̃− z, (2.3a)

ŷ = xx̂− z, (2.3b)

y = x̂̃x− ̂̃z + b0(̂̃x− x) + b1 +
P −Q

x̃− x̂
, (2.3c)

A2: ỹ = zx̃− x, (2.4a)

ŷ = zx̂− x, (2.4b)

y = x̂̃z − b0x+
P x̃−Qx̂

ẑ − z̃
, (2.4c)

C3: ỹ z = x̃− x, (2.5a)

ŷ z = x̂− x, (2.5b)

̂̃z y = b0 x+ b1 + z
P ỹ ẑ −Q ŷ z̃

z̃ − ẑ
, (2.5c)

and

C4: ỹ z = x̃− x, (2.6a)

ŷ z = x̂− x, (2.6b)

̂̃z y = x ̂̃x+ b2 + z
P ỹ ẑ −Q ŷ z̃

z̃ − ẑ
. (2.6c)

Here the parameters P and Q are related to lattice spacing parameters p, q in n and
m-directions, respectively.
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The convention for naming the variables was designed for MDC and for analyzing
the evolution (Section 2.5): The quasilinear equations are defined on the edges of the
quadrilateral; “a” equations depend always on x, x̃, z, and ỹ, and the “b” equations on x,
x̂, z, and ŷ, i.e., the dependence is always the same, only the algebra is different. Also, we
list the equations in the order B2, A2, C3,4 because, as we will see later, they correspond
to regular, modified and Schwarzian BSQ equations, respectively.

The coupling constants bi are arbitrary and generalize some previous results. Note
however, that b1 in B2 can be removed with the transformation

(x, y, z) 7→ (x, y −
b1
3
(n +m− 1), z +

b1
3
(n+m)), (2.7)

and b0 in A2 can be removed using

(x, y, z) 7→ (x, y +
b0x

3
(n+m), z +

b0
3
(n+m+ 1)). (2.8)

In the following we do not keep these removable parameters.
In addition some two-component forms were found in [14]:

C2-1: ̂̃x =
x̂z̃ − x̃ẑ

z̃ − ẑ
, (2.9a)

̂̃z = −b0z ̂̃x+ z
P ẑ −Q z̃

z̃ − ẑ
, (2.9b)

and

C2-2: ̂̃x =
x̂z̃ − x̃ẑ

z̃ − ẑ
, (2.10a)

x̂̃z = −b0z + z
P x̃ ẑ −Q x̂ z̃

z̃ − ẑ
. (2.10b)

These are actually discrete versions of KdV so we will not discuss them further here.

2.3 Relations between the C-equations

Let us first note that lattice equations are classified only up to local rational-linear (i.e.,
Möbius) transformations, and that equations related by them are considered same. How-
ever, for some purposes a particular form may be better in practice.

Note that for the C-equations one can derive relation (2.9a) by eliminating y. After
the transformations discussed below it is often useful to use this relation when comparing
results.

First note that if b0 6= 0 then by the transformation

x→ x−
b1
b0
, (2.11)

one can remove from the C3 equation (2.5c) the parameter b1 and then we can consider
the following form:

ỹ z = x̃− x, (2.12a)

ŷ z = x̂− x, (2.12b)

̂̃z y = b0 x+ z
P ỹ ẑ −Q ŷ z̃

z̃ − ẑ
, (2.12c)
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which we call C3b0 .
Since the transformation (2.11) fails when b0 = 0, the following equation

ỹ z = x̃− x, (2.13a)

ŷ z = x̂− x, (2.13b)

̂̃z y = b1 + z
P ỹ ẑ −Q ŷ z̃

z̃ − ẑ
(2.13c)

is not a trivial subcase of C3 equation (2.5). Since (2.13c) does not contain x, we get a
two-component form after eliminating x from (2.13a, 2.13b) and their shifts, this results
in

̂̃y = −z
ỹ − ŷ

z̃ − ẑ
. (2.13d)

Thus (2.13c,2.13d) is a two component form, let us call it C3b1 .
We will next show that C4 can be obtained from C3 by a Möbius transformation. As

the first step we note that from equations (2.5a,2.5b) and their shifts one can derive

x = ̂̃x+ z
ỹẑ − ŷz̃

z̃ − ẑ
. (2.14)

Using it to replace 1
2
b0x in (2.12c) we get the following alternative form for C3b0 :

ỹ z = x̃− x, (2.15a)

ŷ z = x̂− x, (2.15b)

̂̃z y = z
(P − c2) ỹ ẑ − (Q− c2) ŷ z̃

z̃ − ẑ
+ c2(x+ ̂̃x), (c2 =

b0
2
). (2.15c)

Now, inserting the (mixed) Möbius transformation [41]

x =
x1 − c2

2c2(x1 + c2)
, y =

y1
x1 + c2

, z =
z1

x1 + c2
, (2.16)

into (2.15) we get

ỹ1 z1 = x̃1 − x1, (2.17a)

ŷ1 z1 = x̂1 − x1, (2.17b)

̂̃z1 y1 = z1
(P − c2) ỹ1 ẑ1 − (Q− c2) ŷ1 z̃1

z̃1 − ẑ1
+ x1 ̂̃x1 − c22, (2.17c)

which is C4b2 equation (2.6), after redefining

P → P − c2, Q→ Q− c2, b2 = −c
2
2. (2.18)

The above transformation fails if b0 = 0 in C3 i.e., if b2 = 0 in C4, but that special
case can be obtained from C3b1=1 by the following transformation:

x = −1/x1, y = y1/x1, z = z1/x1. (2.19)

But since C3b1=1 depends only on 2 variables, the transformation (2.19) in fact eliminates
the x variable.

In summary, among the C-equations we only need to consider the three-component
equation C3b0 (2.12) for b0 6= 0, and the two-component equations C3b1 (2.13c,2.13d) (for
arbitrary b1).
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2.4 Symmetries

2.4.1 n↔ m reflection symmetry

As can be easily seen, all the equations are invariant under the n ↔ m reflection, i.e.,
˜↔ ̂, accompanied by P ↔ Q parameter change.

2.4.2 Reversal symmetry

By reversal symmetry we mean symmetry under changing all tildes to undertildes and
hats to underhats. More precisely, the indices change sign and then the generic point is
renamed:

xn+ν,m+µ 7→ x−n−ν,−m−µ = xn′−ν,m′−µ,

after which we can drop the primes. This reversal is then with respect to the lattice point
(n,m). In the notation where only shifts relative to (n,m) are indicated (such as x0,1) we
have xν,µ 7→ x−ν,−µ, after which we usually shift the whole equation.

B2: If we apply this reversal to B2 equation (2.3a) we have

ỹ = xx̃− z
reversal
7−−−−−−→ y

˜
= xx

˜
− z

shift
7−−−−→ y = x̃x− z̃.

Thus we have reversal symmetry of (2.3a) (and (2.3b)) if we add the exchange y ↔ z. As
for (2.3c), it turns out that we should also take b0 ↔ −b0 and (P,Q)↔ (−P,−Q) which
is natural for a reversal of direction. In summary, the B2 equations are reversal invariant
if accompanied with

(x, y, z, P,Q, b0) 7→ (x, z, y,−P,−Q,−b0). (2.20)

C: Similarly for the C3 equations we have reversal symmetry if we include variable
changes

(x, y, z) 7→ (−x, z, y). (2.21)

For (2.5a, 2.5b) this is manifest, and also for most terms in (2.5c) but some terms need
more computations. For example we have

z
P ỹ ẑ −Q ŷ z̃

z̃ − ẑ
7→ z

P y
˜
z
̂
−Qy

̂
z
˜

z
˜
− z
̂

7→ ̂̃zP ŷ z̃ −Q ỹ ẑ
ẑ − z̃

7→ ̂̃yP ẑ ỹ −Q z̃ ŷ
ŷ − ỹ

,

and to finish the computation we should still show that z/(z̃ − ẑ) = ̂̃y/(ŷ − ỹ) but this
follows by taking suitable linear combination of (2.5a), (2.5b) and their shifts.

The only other special term in C3 is b0 x in (2.5c) which in this process changes to

−b0̂̃x. However, by taking again a suitable combination of the (2.5a, 2.5b) and their shifts
we can derive

̂̃x = x− z
ỹẑ − ẑỹ

z̃ − ẑ
,

which combines with the P,Q term. Thus if b0 6= 0, we have reversal symmetry if we do
the further parameter replacements

(P,Q, b0, b1) 7→ (P + b0, Q+ b0,−b0). (2.22)

The two-component equation C3b1 of (2.13c,2.13d) is also reversal symmetric.
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A2: The case of A2 is a bit more complicated: From (2.4a) we have

ỹ = zx̃ − x 7→ y
˜
= zx

˜
− x 7→ y = z̃x− x̃

but the usual map (2.21) does not take this to the original form. Dividing the last equation
by xx̃ yields y/(xx̃) = z̃/x̃ − 1/x. Now it can be seen that we get the original form if
instead of (2.21) we have

(y, z, x) 7→ (−z/x,−y/x, 1/x). (2.23)

For the P,Q term we only need to show that ̂̃xx/(ŷx̃ − ỹx̂) = 1/(ẑ − z̃), which follows
from (2.4a,2.4b) and their shifts. The form (2.23) suggest that the transformation can be
simplified if we use another variable w := y/x. Then we get the alternate form

A2-alt: z − w̃ =
x

x̃
, (2.24a)

z − ŵ =
x

x̂
, (2.24b)

(z̃ − ẑ)(̂̃z − w) =P x̃

x
−Q

x̂

x
. (2.24c)

These are reversal invariant with

(w, z, x) 7→ (−z,−w, 1/x). (2.25)

This is easy to show if one uses the formula

̂̃xx
x̃ x̂

=
w̃ − ŵ

z̃ − ẑ

which follows from (2.24a,2.24b).

2.5 Initial values and evolution

We will consider evolution starting from initial values given on a staircase, on which the
inside corner points are given by n+m = 0 and the outside corner points by n+m = 1,
see Figure 2 a). Another possible initial staircase is given by n − m = 0, n − m = −1,
see Figure 2 b). We have three sets of variables and several equations so we must look
carefully which kind of initial values are necessary and make sense.

Let us first consider a staircase in the NW-SE direction, Figure 2 a). We assume that
x is given on all points of the staircase and to get started, also z0,0. Then it is possible
to compute, step by step, the red y and z values using the quasilinear equations, i.e., we
can compute yn,m for n +m = 1 and zn,m for n +m = 0, n 6= 0. If the staircase is in the
NE-SW direction, as in Figure 2 b), it is necessary to give zn,m for n−m = 0,−1, n ≥ 0
and yn,m for n−m = 0,−1, n ≤ 0.

After the above we still have three equations left for each square, by which we should
be able to compute values at points where n +m = 2 (red dots in Figure 2). But before
that can be done for the staircase a) we need more initial values: In order to use the
remaining quasilinear equations we also need zn,m, n+m = 1, and for the fully nonlinear
equation, yn,m, n +m = 0. These additional necessary initial values are given in blue in
Figure 2. For staircase b) all necessary initial values were needed already for filling in the
staircase.

Since the systems are reversal symmetric the same initial values work for evolution in
the opposite direction.
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x0,0 z0,0

y0,0

x1,0

y1,0

z1,0

x0,1

y0,1

z0,1x−1,1 z−1,1

y−1,1

x−1,2

y−1,2

z−1,2

x1,−1

z1,−1 y1,−1

x2,−1

y2,−1

z2,−1

a)

x0,0 z0,0

y0,0

x−1,0

y−1,0

z−1,0

x0,1

y0,1

z0,1 x1,1 z1,1

y1,1

x1,2

y1,2

z1,2

x−1,−1 z−1,−1

y−1,−1

x−2,−1

y−2,−1z−2,−1

b)

Figure 2: The initial values given on the staircase. The black variables must be given in
order to compute the red variables on the staircase using the quasilinear equations. In
order to compute the values at red dots (one step in the evolution) it is also necessary to
give the blue variables in case a).

2.6 Connection with the direct-linearization results

2.6.1 The direct-linearization approach

Many of the discrete Boussinesq equations discussed here were derived earlier (see [24,
27, 36, 37]) using the direct linearization scheme (DLA) of Capel, Nijhoff, Quispel et al.
The results of Hietarinta [14] provided generalizations to the early results, but they were
subsequently also derived from the DLA point of view in [41] by generalizing the dispersion
relation.

The DLA was first proposed by Fokas and Ablowitz [8], and soon was developed to
the study of discrete integrable systems [27, 28, 33]. In this approach, an infinite matrix
is introduced via a linear integral equation with certain plane wave factors and discrete
equations arise as closed forms of the shift relations of the elements of the matrix.

For the DBSQ equations, one first introduces an integral equation for infinite order
column vector u(k):

u(k) + ρ(k)
2∑

j=1

∫

Γj

dµj(l)u(l)σ(−ωj(l)) = ρ(k)cTk ,

where Γj and dµj(l) are contours and measures that need to be suitably chosen, ck is an
infinite order constant column vector (· · · , k−2, k−1, 1, k, k2, · · · )T , plane wave factors are

ρ(k) = (p+ k)n(q + k)mρ(0)(k), σ(k′) = (p− k′)−n(q − k′)−mσ(0)(k′),

ρ(0), σ(0) are constants, ωj(k) are defined through

p3 + α2p
2 − (k3 + α2k

2) = (p− k)(p− ω1(k))(p− ω2(k)).

Then, introduce an ∞×∞ matrix U by

U =
2∑

j=1

∫

Γj

dµj(l) σ(−ωj(l))u(l) c
T
−ωj(l)

.
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After that one can define scalar functions

S
(i,j)
(a,b) = e

T (a+ Λ)−1
U(b− Λ)−1

e, i, j ∈ Z, a, b ∈ C,

where e = (· · · , 0, 0, 1, 0, 0, · · · )T in which only the center element is 1, and Λ = (λi,j)∞×∞

in which λi,j = δi,j−1. More explicitly we have

u(i,j) = (−1)jS
(i,j)
(0,0), sa,b = S

(−1,−1)
(a,b) , va = 1− S

(−1,0)
(a,0) , wb = 1 + S

(0,−1)
(0,b) ,

sa = a+ S
(−1,1)
(a,0) , tb = −b+ S

(1,−1)
(0,b) , ra = a2 − S

(−1,2)
(a,0) , zb = b2 + S

(2,−1)
(0,b) .

DBSQ equations arise from closed forms of the shift relations of the above elements
(cf. [41]).

Due to the different origin, the equations from DLA appear in a different gauge and
in this section we elaborate the connections.

2.6.2 B2

Let us focus on B2 equation (2.3), in which we may assume that b1 = 0, as mentioned
before. If we use on (2.3) the transformation [41]

x = u(0,0) − x0, (2.26a)

y = u(0,1) − x0u
(0,0) + y0, (2.26b)

z = u(1,0) − x0u
(0,0) + z0, (2.26c)

where

x0 = np +mq + c1, (2.27a)

y0 =
1

2
(np +mq + c1)

2 −
1

2
(np2 +mq2 + c2)− c3, (2.27b)

z0 =
1

2
(np+mq + c1)

2 +
1

2
(np2 +mq2 + c2) + c3 (2.27c)

and cj(j = 1, 2, 3) are constants, we obtain

pũ(0,0) − ũ(0,1) = pu(0,0) + u(1,0) − ũ(0,0)u(0,0), (2.28a)

qû(0,0) − û(0,1) = qu(0,0) + u(1,0) − û(0,0)u(0,0), (2.28b)

−
P −Q

p− q + û(0,0) − ũ(0,0)
=
G3(−p,−q)

q − p
+ (p+ q + b0)(u

(0,0) − ̂̃u(0,0))

− u(0,0)̂̃u(0,0) + ̂̃u(1,0) + u(0,1), (2.28c)

where

G3(a, b) = g3(a)− g3(b), (2.29a)

g3(a) = a3 + α2a
2, (2.29b)

and b0 = −α2. This agrees with the DLA result (Eqs.(32a,33) in Ref. [41]) provided that
we parameterise P,Q in terms of p, q as follows:

P = g3(−p), Q = g3(−q), (2.30)
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with b0 = −α2. Note that one can always replace −p and −q by a and b, respectively,
and then get the parametrisation used in [19] for getting soliton solutions.

The above parametrization of P,Q provides also a connection to the lattice potential
KdV equation [26,28]: Using (2.30, 2.29b) and then taking the singular limit b0 →∞ we
get from (2.3c)

(x− ̂̃x)(x̃− x̂) = −p2 + q2. (2.31)

This one-component equation appears as H1 equation in the ABS list [1].
Here is a second alternative form of (2.3) in the special case b0 = 0:

ω(û(0,1) − ũ(0,1)) = pũ(0,0)− qû(0,0)− u(0,0)(p− q +û(0,0) − ũ(0,0)), (ω = e
2πi
3 ), (2.32a)

û(1,0) − ũ(1,0) = qũ(0,0) − pû(0,0) + ̂̃u(0,0)(p− q + û(0,0) − ũ(0,0)), (2.32b)

̂̃u(1,0)− ωu(0,1) = pq − (p+ q + u(0,0))(p+ q − ̂̃u(0,0)) + p3 − q3

p− q + û(0,0) − ũ(0,0)
. (2.32c)

This is Eq.(5.3.12) in Ref. [37] as well as Eqs.(2.15a-c) with N = 3 in Ref. [27]. In
the above system, (2.32a) and (2.32b) can be obtained through (2.28a) − (2.28b) and
(2.28a)̂− (2.28b)̃, and (2.32c) is (2.28c) with b0 = 0, in addition, u(0,1) → −ωu(0,1).

Note that the alternative forms (2.28) with (2.29) and (2.32) have the “background
solution” u(k,l) = 0, corresponding to (2.27) for (2.3). Thus these alternative forms will
be useful once we start to construct soliton solutions in Section 6 and continuum limits
in Section 4.

2.6.3 A2

For the A2 equation (2.4) (without the removable parameter b0 (cf. (2.8))) several alter-
native forms have been presented in the literature.

The form

s̃a = (p+ u(0,0))ṽa − (p− a)va, (2.33a)

ŝa = (q + u(0,0))v̂a − (q − a)va, (2.33b)

(p+ q − ̂̃u(0,0) + sa
va
− α2)(p− q + û(0,0) − ũ(0,0)) = pa

ṽa
va
− qa

v̂a
va
, (2.33c)

was derived from direct linearisation approach (see Eq.(30) in Ref. [41]), here pa and qa
are defined as

pa =
−G3(−p,−a)

p− a
, qa =

−G3(−q,−a)

p− a
. (2.34)

The transformation between Eq.(2.4) and Eq.(2.33) is given by

va =
x

xa
, u(0,0) = z − z0, sa =

1

xa
(y − vaya), (2.35)

where

xa = (p− a)−n(q − a)−mc1, (2.36a)

z0 = (c3 − p)n + (c3 − q)m+ c2, (2.36b)

ya = xa(z0 − c3), (2.36c)
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and where c1, c2 are constants, c3 = α2/3 (if b0 = 0) and

P = −G3(−p,−a), Q = −G3(−q,−a). (2.37)

Note that the above P,Q can be equivalently reparameterised as

P = G3(p, a), Q = G3(q, a) (2.38)

if we take c3 = −α2/3 in (2.36). Either convention can be adopted.
Another system related to A2 was given in Eqs.(4.22a, 4.21b) of Ref. [24], i.e.

s̃ ṽ = (p+ u)ṽ − pv, (2.39a)

ŝ v̂ = (p+ u)v̂ − pv, (2.39b)

(p+ q + s− ̂̃u)(p− q + û− ũ) =
p2ṽ − q2v̂

v
, (2.39c)

which can be derived from (2.33) by taking

sa = sv, u0 = u, va = v, a = 0, α2 = 0. (2.40)

Then there is the system

p− q + û− ũ =
(p− a)v̂ − (q − a)ṽ

̂̃v
, (2.41a)

p− q + ŝ− s̃ = (p− a)
v

ṽ
− (q − a)

v

v̂
, (2.41b)

(p+ q + s− ̂̃u)(p− q + û− ũ) =
paṽ − qav̂

v
, (2.41c)

which is given by Eqs.(A.4a,b,c) in [27], and named as the “Toda-MBSQ equation”. In
fact, (2.41a) and (2.41b) can be derived from (2.33a) and (2.33b), by using

sa = sv, va = v, u(0,0) = u, α2 = 0, (2.42)

and then eliminating s and u, respectively.
Finally, eliminating sa from (2.33a) and (2.33b) yields

p− q + û0 − ũ0 =
(p− a)v̂a − (q − a)ṽa

̂̃va
, (2.43)

which, together with (2.33a) and (2.33c) with α2 = 0, gives the system {(5.3.7a), (5.3.14),
(5.3.15)} in Ref. [37].

2.6.4 C3

The C3 equation is related to the following equation derived by DLA [41]

(p− a)Sa,b − (p− b) S̃a,b = ṽawb, (2.44a)

(q − a)Sa,b − (q − b) Ŝa,b = v̂a wb, (2.44b)

va ̂̃wb = wb

pa
p−b

ŵb ṽa −
qa
q−b

w̃b v̂a

(p− b) w̃b − (q − b) ŵb
+

G3(−a,−b)

(p− b) (q − b)
Sa,b, (2.44c)
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Sa,b = sa,b − 1/(a− b) and the connection between the two equations is [41]

Sa,b =

(
p− a

p− b

)n (
q − a

q − b

)m

x, (2.45a)

va = −(p− a)
n (q − a)my, (2.45b)

wb = (p− b)−n (q − b)−mz, (2.45c)

where

P = −G3(−p,−a), Q = −G3(−q,−b), b0 = G3(−a,−b), (2.46)

and G3(a, b), pa and qa are defined as before.
Note that since α2 is arbitrary we can replace α2 by −α2 and thus in C3 (2.12) P,Q

and b0 can be reparameterised as

P = G3(p, a), Q = G3(q, b), b0 = −G3(a, b), (2.47)

where G3(a, b) is defined as (2.29).

3 Two- and one-component forms

So far we have discussed the BSQ equations in their three-component forms, e.g., in terms
of x, y, z, or u(0,0), u(1,0), u(0,1) etc. As explained in Section 2.5, Figure 2, for the discrete
BSQ equations it is then necessary to give the initial values for two components on an
staircase-like configuration before the next step in the evolution can be computed. An
alternative formulation of second order time evolution is to use only one component and
give initial values on two consecutive staircases as in Figure 3. In that case the equation
usually involves the points within a 3× 3 stencil. (Note that in the two-component case
it is not necessary that the equations are defined on a square, only that the next step in
the evolution can be calculated once values on the staircase are given.)

In this section we will derive two- and one-component forms of these equations. The
process of variable elimination can also be interpreted as a Bäcklund transformation (BT).
Assuming we have the following situation:

G[x] = 0
eliminate y

{
A[x, y] = 0
B[x, y] = 0

eliminate x
H [y] = 0

Then we say that the pair {A[x, y] = 0, B[x, y] = 0} provides a BT between G[x] = 0
and H [y] = 0. Another way of looking at the above is to consider the pair {A[x, y] =
0, B[x, y] = 0} as two equations for one variable x, which can be solved, provided that
the other variable y satisfies some “integrability condition”. In the context of PDE’s this
is a familiar situation. For example, from the pair ∂xψ = A(x, y), ∂yψ = B(x, y) we can
solve ψ only if ∂xB = ∂yA. In more general cases this problem of “formal integrability”
or “involutivity” of a set of PDE’s can become quite complicated,1 and the problem has

1The idea is to compute differential consequences of the initial equations and try to find an “involutive
completion” after which the new differential consequences are just prolongations and produce no genuine
new equations. One of the difficult problems is to decide when one can stop this process (this is apparently
based on Spencer cohomology).
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x0,0

x0,1

x0,2

x1,0

x1,1

x1,2

x2,0

x2,1

x2,2

Figure 3: For one-component second order time evolution initial values can be given on
two consecutive staircases. The evolution equation will then be given on the indicated
9-point stencil.

been analysed at length in the mathematics literature (the reader is referred to a recent
monograph [35]).

Now we have a partial difference version of the same thing: we can integrate one
of the variables, say x if the other variable, say y, satisfies some P∆E (condition for
integrability), which we should find. To do that we may need several shifted consequences
of the original equations, which provide new equations but also new variables. The hope
is that we eventually have a sufficient number of equations to solve for all shifts of x and
still have one more equation that gives a condition on the other variable.2

Since we will need several shifts in both directions we will use the notation where we
give as subscripts just the shifts with respect to the basic position (n,m), for example
ỹ = y1,0.

3.1 Generalities about the elimination process

Before studying the specific equations we can make some general observations. Our
starting point is the set of three equations for three variables, A2, B2, or C3. Since
we always have an equation with un-shifted z it is easy to solve for that variable and use
it in the remaining ones. Similarly for y, we just need to apply shifts, although due to
reversal symmetry we do not have to consider this case. Thus we can easily construct a
two component pair of equations in y and x or in z and x.

The situation with x is different, because the first two equations contain x0,0, x1,0,
x0,1. We can use these to eliminate all shifted x and the resulting equation would then be
a polynomial in x0,0. In the optimal case the x0,0-dependent part would factor out, but
this does not always happen. Furthermore it turns out that sometimes it is beneficial to

2After this it remains to prove that all the remaining equations are satisfied due to this one condition
(although this is never done in practice).
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w0,1x0,1

x0,0 w0,0x1,0 w1,0

x1,1 x2,1 w2,1

Figure 4: Equations (3.2a) and (3.2c) allow evolution in the NW direction, even if initial
values outside the square are needed.

absorb some x-dependence into y by writing the equation in terms of w := y/x.
As discussed in Section 2.4.2, all of our equations are reversal symmetric, which in

particular exchanges z and y. We will therefore only need to construct two-component
forms in terms of (y, z) and (y, x) or (z, x).

3.2 A2

We take the A2 equation in the alternate form (2.24) with w := y/x:

z0,0 − w1,0 =
x0,0
x1,0

, (3.1a)

z0,0 − w0,1 =
x0,0
x0,1

, (3.1b)

(z1,0 − z0,1)(z1,1 − w0,0) =P
x1,0
x0,0
−Q

x0,1
x0,0

, (3.1c)

because it is reversal symmetric, and because in this form x appears homogeneously and
is therefore easier to eliminate.

A2 in terms of x and w := y/x: Solving for z0,0 from (3.1a) we get from (3.1b) and
(3.1c)

w1,0 − w0,1 =
x0,0
x0,1
−
x0,0
x1,0

, (3.2a)

w2,1 − w0,0 =
x1,1
x0,0

P x1,0 −Qx0,1
x1,0 − x0,1

−
x1,1
x2,1

. (3.2b)

This is suitable for next eliminating w, but if we want to eliminate x then it is best to
first eliminate x0,0 from (3.2b) using (3.2a) which gives the alternative form

(
w2,1 − w0,0 +

x1,1
x2,1

)
(w1,0 − w0,1) = P

x1,1
x0,1
−Q

x1,1
x1,0

. (3.2c)

The corresponding equation for z, x can be obtained by reversal symmetry, together with
(2.25). Note that equations (3.2b) and (3.2c) are not defined on the basic square but
contain an extra point at (2, 1). Nevertheless they allow evolution from a staircase initial
conditions, as shown in Figure 4.
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A2 in terms of z and w := y/x: In order to eliminate x-dependence from (3.1a) and
(3.1b) we need to take shifts and ratios, leading to [9, 31]

w1,0 − z0,0
w0,1 − z0,0

=
w1,1 − z0,1
w1,1 − z1,0

, (3.3a)

(w0,0 − z1,1)(z1,0 − z0,1) =
P

w1,0 − z0,0
−

Q

w0,1 − z0,0
. (3.3b)

The second equation has the alternative form obtained by eliminating the z0,0-dependency

(w0,0 − z1,1)(w1,0 − w0,1) =
P

w1,1 − z0,1
−

Q

w1,1 − z1,0
. (3.3c)

Equations (3.3b) and (3.3c) are connected by

(P,Q, n,m,w, z)→ (−P,−Q,−n,−m, z, w).

The equations (3.3) are defined on the basic quadrilateral and are 3-dimensionally
consistent; the triply shifted quantities are given in the Appendix.

A2 in terms of x only from (3.2a) and (3.2b): From equations (3.2a),(3.2b) it is
easy to derive an equation for x alone. These equations are of the following type

w1,0 − w0,1 = A0,0, w2,1 − w0,0 = B0,0, (3.4a)

and by taking suitable shifts one can eliminate w and derive the “integrability condition”

B1,0 − B0,1 = A2,1 − A0,0. (3.4b)

When this is calculated we get an equation on a 3× 3 stencil (cf. Figure 3) (see Eq.(A.5)
in [27], (5.2) in [23], Eq.(4.9) in [24] and Eq.(5.7.6) in [37]).

(
P x1,1 −Qx0,2
x0,2 − x1,1

)
x1,2
x0,1
−

(
P x2,0 −Qx1,1
x1,1 − x2,0

)
x2,1
x1,0

=
x0,0
x1,0
−
x0,0
x0,1
−
x1,2
x2,2

+
x2,1
x2,2

. (3.5)

This equation is reversal symmetric with (2.25) and only changes sign.

A2 in terms of w only from (3.3a) and (3.3c): In order to derive other one component
equations one needs a slightly more complicated sequence of elimination steps. In order to
eliminate z from (3.3a) and (3.3c) we observe that the zn,m that appear in these equations
are located on the lattice as given in Figure 5.1, where (a) corresponds to (3.3c) and (b)
to (3.3a).

The elimination process then goes on as follows: Assume that the z-values at points
1 and 2 of Figure 5.2 are arbitrary (say, z0,0 and z1,0), then using (b) we can compute the

value at point 3; we denote this process by (1; 2)
(b)
−→ 3. There are two routes to compute

the z-value at point 5:

(1; 2)
(b)
−→ 3, (2; 3)

(a)
−→ 4, (4; 2)

(b)
−→ 5,

(1; 2)
(a)
−→ 6, (2; 6)

(b)
−→ 7, (2; 7)

(a)
−→ 5.
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(a) (b)

Figure 5.1

1 2

3 4

6

5

7

Figure 5.2

Figure 5: If equations (a) and (b) have variables located in the lattice as in Figure 5.1
then in the elimination process one needs to consider 7 points as given in Figure 5.2.

(a)(b)

Figure 6.1

1 6

7

2

54

8

3

9

Figure 6.2

Figure 6: If equations (a) and (b) have variables located in the lattice as in Figure 6.1
then in the elimination process one need to consider 9 points as given in Figure 6.2.

The resulting two values for z at 5 must be the same, for the arbitrary values of z at points
1 and 2. Equating the two computed values yields a rational expression in the arbitrary
initial values z0,0, z1,0. In this case the numerator does not contain the initial values and
gives the equation. The necessary polynomial algebra is straightforward but tedious and
is best done using a computer algebra system (such as REDUCE [13] or Mathematica).
The result is (see (1.3) in [27], (5.3) in [23], (4.18) in [24] and Eq. (5.7.3) in [37].)

P −Q

w2,0 − w1,1

−
P −Q

w1,1 − w0,2

− (w2,2−w0,1)(w2,1−w1,2)− (w0,0−w2,1)(w1,0−w0,1) = 0. (3.6)

The equation for z alone can be obtained by reversal symmetry and its form is identical
to (3.6) except for sign changes (cf.(2.25)).

A2 in terms of w only from (3.2a) and (3.2c): We could also eliminate x from (3.2)
in order to obtain an equation in w. In the present A2 case it is not necessary because
we did already derive the w equation using another sequence of eliminations. However,
in some later cases we need this different kind of elimination process, so we will do it here
as an exercise with guaranteed success.

First note that the x variables appear in lattice positions as illustrated Figure 6,
with Figure 6.1(a) corresponding to (3.2a) and Figure 6.1(b) to (3.2c). The elimination
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process is now as follows: We assume that x values at circled points 1,2,3 are given and
then compute the other x values as follows

(1; 2; 3)
(b)
−→ 4, (2; 4)

(a)
−→ 5, (1; 2; 5)

(b)
−→ 6, (6; 1)

(a)
−→ 7,

(1, 2)
(a)
−→ 8, (2; 3)

(a)
−→ 9, (2; 8; 9)

(b)
−→ 7.

The two values of x at point 7 must be the same, which gives us an equation which should
hold for arbitrary values of x at 1,2,3. When the computations are done the result is (3.6),
as expected.

3.3 B2

The B2 equation is given by

y1,0 + z0,0 = x0,0x1,0 , (3.7a)

y0,1 + z0,0 = x0,0x0,1 , (3.7b)

y0,0 + z1,1 = x0,0x1,1 + b0(x1,1 − x0,0) +
P −Q

x1,0 − x0,1
. (3.7c)

Note that equations (3.7a,3.7b) are similar to (3.1a,3.1b) and therefore the derivation of
two-component forms is similar.

B2 in terms of y and x: Solving z0,0 from (3.7a) and using in the other equations
yields

y1,0 − y0,1 = x0,0(x1,0 − x0,1), (3.8a)

y0,0 − y2,1 = (x0,0 − x2,1)x1,1 + b0(x1,1 − x0,0) +
P −Q

x1,0 − x0,1
. (3.8b)

Another two-component form is obtained if we replace y by w := y+ z and after that
eliminate z. The result is

w0,1 − w1,0 + (x0,0 + x1,1)(x0,1 − x1,0) = 0, (3.9a)

P −Q− x1,0 w1,0 + x0,1w0,1

x1,0 − x0,1
− w0,0 − w1,1 + b0(x1,1 − x0,0)

+(x0,0 + x1,1)(x1,0 + x0,1) + x0,0 x1,1 = 0. (3.9b)

A notable difference with (3.8) is that this is defined on an elementary quadrilateral; it
has the CAC property. This form was presented in [34] but its relation to B2 was left
open.

B2 in terms of x only from (3.8a) and (3.8b): The structure of equations (3.8a) and
(3.8b) is as in (3.4a) so that we get the one-component equation using (3.4b):

(P −Q)

(
1

x2,0 − x1,1
−

1

x1,1 − x0,2

)
+ b0(x0,1 − x1,0 + x2,1 − x1,2)

−(x2,2 − x0,1)(x2,1 − x1,2)− (x0,0 − x2,1)(x1,0 − x0,1) = 0. (3.10)

This equation is a generalization (b0-terms) of (3.6) derived for A2.
Attempts to eliminate x seem to lead into very complicated equations.
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3.4 C3

As noted in Section 2.3 we only need to consider C3 equation

y1,0 z0,0 = x1,0 − x0,0, (3.11a)

y0,1 z0,0 = x0,1 − x0,0, (3.11b)

z1,1 y0,0 = b0 x0,0 + b1 + z0,0
P y1,0 z0,1 −Qy0,1 z1,0

z1,0 − z0,1
, (3.11c)

for the three-component case b0 6= 0, b1 = 0 and for the two component case b0 = 0, b1
arbitrary. We can treat them together for some computations.

C3 in terms of x, y: After solving for z from (3.11a) and using it in (3.11b) and (3.11c)
we get the two-component form

y1,0(x0,1 − x0,0) =y0,1(x1,0 − x0,0), (3.12a)

y0,0(x2,1 − x1,1) =y2,1(b0 x0,0 + b1)

+y2,1
(x1,1 − x0,1)(x0,0 − x1,0)P − (x1,1 − x1,0)(x0,0 − x0,1)Q

x1,0 − x0,1
. (3.12b)

This form is well suited for eliminating y next, because it is linear in y, but if we would
like to eliminate x the following alternative would be useful:

(x2,1 − x1,1)
y0,0
y2,1

= (b0 x0,0 + b1)−
(x1,1 − x0,1) y1,0 P − (x1,1 − x1,0) y0,1Q

y1,0 − y0,1
, (3.12c)

because it is linear in x. These equations are defined on a configuration given in Figure 4
(w ↔ y). The equations for x, z are the same as above, and can be obtained by reversal,
cf.(2.21,2.22).

C3 in terms of x only: Equations (3.12a, 3.12b) have the form

y1,0
y0,1

= A0,0,
y0,0
y2,1

= B0,0.

The dependence is similar to (3.4), except that instead of an additive case we now have
a multiplicative case. The integrability condition is

A2,1

A0,0
=
B0,1

B1,0
,

which yields

(x2,2 − x1,2)(x0,2 − x1,1)(x0,1 − x0,0)

(x2,2 − x2,1)(x1,1 − x2,0)(x1,0 − x0,0)
=

(x1,1− x0,2)(b0 x0,1+ b1) + (x1,2− x0,2)(x0,1 − x1,1)P − (x1,2 − x1,1)(x0,1 − x0,2)Q

(x2,0− x1,1)(b0 x1,0+ b1) + (x2,1− x1,1)(x1,0 − x2,0)P − (x2,1 − x2,0)(x1,0 − x1,1)Q
.

(3.13)
Note that this is invariant under n↔ m, P ↔ Q, and reversal symmetric with (2.22).
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C3 in terms of y only: The dependence on x in (3.12a) and (3.12c) is linear and of the
form given in Figure 6, and using that method we can eliminate x. The resulting equation
in terms of y is the same as (3.5) in terms of x. Note in particular that dependence on
the parameters b0, b1 drops out from the y-equation, while it remains in the x-equation.

C3 in terms of y and z: The method of eliminating x depends sensitively on the
additional x-dependent term. We need to consider separately the two cases.

• b1 arbitrary, b0 = 0. In this case equation (3.11c) does not depend on x at all, while
form (3.11a) and (3.11b) x can be easily eliminated, leaving

y1,1(z1,0 − z0,1) + z0,0(y1,0 − y0,1) = 0, (3.14a)

y0,0z1,1 = b1 + z0,0
Py1,0z0,1 −Qy0,1z1,0

z1,0 − z0,1
. (3.14b)

Note that by the gauge transformation

z = w pn qm, y = −v p−n q−m, (3.15)

with P = p3, Q = q3 and b1 = b′1pq, we will get from (3.14)

p w̃ − q ŵ

w
=
p v̂ − q ṽ

̂̃v
=
p ṽ ŵ − q v̂ w̃

b′1 + v ̂̃w
. (3.16)

When b′1 = 0 we get

p w̃ − q ŵ

w
=
p v̂ − q ṽ

̂̃v
=
p ṽ ŵ − q v̂ w̃

v ̂̃w
, (3.17)

which was already presented in [24].

• b1 = 0, b0 6= 0. In this case it is best to absorb some x into y by defining w := y/x.
Then (3.11a) and (3.11b) yield

w1,1z0,0(w1,0z1,0 − w0,1z0,1)− w1,1(z1,0 − z0,1)− z0,0(w1,0 − w0,1) = 0, (3.18a)

while the other equation becomes

b0 +
w1,1

w1,0 − w0,1

(
Pw1,0z0,1
w1,1z0,1 − 1

−
Qw0,1z1,0
w1,1z1,0 − 1

)
− w0,0z1,1 = 0. (3.18b)

Note that in both cases the equation pair is still quadrilateral.
In order to derive one-component forms one can use the method of Figure 5, after

some modifications in the equations.

C3 in terms of z or y from (3.14): Eliminating variable y leads to (3.5) but in terms
of z and n,m reversed.

In order to eliminate z one should first eliminate z0,0 from (3.14b) using (3.14a), after
which the method of Figure 5 works and yields (3.5) in terms of y.
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C3 in terms of w or z from (3.18): After eliminating z one gets (3.5), but now in
terms of w and with (p, q) 7→ (p− b0, p− b0).

In order to eliminate w one should first eliminate w1,1 from (3.14b) using (3.14a), and
then one gets (3.5) in terms of z but n,m reversed.

Summary of one-component forms:

• A2 has two one-component forms: (3.6) in w = y/x and in z, and (3.5) in x. They
correspond to regular and modified BSQ, respectively.

• C3 has two one-component forms: (3.13) in x and (3.5) in y or w = y/x or z,
corresponding to Schwarzian and modified BSQ, respectively.

Thus we can say that the three-component form of A2 contains both regular and modified
BSQ and the three-component form of C3 contains both Schwarzian and modified BSQ.
B2 on the other hand contains only regular BSQ, but in a generalized form in comparison
to A2. It is an interesting open question whether there is a three-component version which
contains all three different BSQ equations in full generality.

4 Continuum limits

We will now consider (semi-)continuous limits of the derived one-component equations:
(3.5) for A2, (3.10) for B2, and (3.13) for C3b0 . These are defined on a 3 × 3 stencil, see
Figure 7.

The technical aspects of taking semi-continuous and fully continuous limits involve
several choices, including the gauge (or background solution) and the way the lattice
parameters behave under these limits. For example, we know that p, q are related to
lattice spacing, but should we let, for example, p → 0 or p → ∞? Before going into
specific equations we are going to discuss some aspects that apply to all cases.

4.1 Common features

4.1.1 Approaching continuum

The semi-continuous limit means that in some direction the lattice points approach each
other to form a continuum. There are two simple ways to squeeze the 3 × 3 stencil onto
a line, the straight and the skewed way, see Figure 7.1 and 7.2, respectively. (Squeezing
in other directions are also possible but the result would depend on still more points and
probably would not be useful for applications.)

Before taking the limit we must anchor the discrete and continuous variables. First of
all we shift the equations so that the center of the 3×3 stencil is at (0, 0). For the straight
limit in the m direction, we can take m = 0 to correspond to ξ = 0 and then generically
the discrete variable m corresponds to continuous variable ξ and we can write

un,µ = un(ξ + ǫµ), (4.1)

where ǫ measures the distance between two lattice points in the m direction. In practice
µ ∈ {−1, 0, 1}. For the skew limit we must take instead

xν,µ = uν+µ(τ +
1
2
(ν − µ)ǫ), (4.2)
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Figure 7.1 Figure 7.2

Figure 7: Two ways to project the 3 × 3 stencil to a line: Figure 7.1 gives the straight
limit, Figure 7.2 the skew limit. A 90o degree rotation is also possible.

where ν, µ ∈ {−1, 0, 1}.
Now that the dependence on ǫ is given we can expand in ǫ,

un(ξ + ǫs) = un(ξ) + ǫs u′n(ξ) +
1

2
ǫ2s2 u′′n(ξ) + · · · . (4.3)

4.1.2 Parameter relations

The above discussion was about limits in general, but in concrete cases we must first
determine the connections between the various parameters in the equation and the lattice
spacing. One method to get information about this is to linearize the discrete equation
and study its discrete plane wave solutions or plane wave factors (PWF) (cf. [26, 33])
Once the PWF is known one can figure out what should be done in order to get, as a
limit, the continuous PWF. This is described in Chapter 5 of [16]. In general terms the
discrete-continuous relation is an application of

lim
n→∞

(
1 +

α

n

)n
= eα. (4.4)

Before one can linearize a nonlinear equation it is necessary to choose a background
solution (or gauge) around which to expand. For equation (3.5) we must choose a multi-
plicative gauge

xn,m = (p− a)−n+n0(q − b)−m+m0c1(1 + ǫvn,m + · · · ), (4.5)

while for (3.10) we must choose additive gauge, such as

xn,m = σ(n− n0)(p− a) + σ(m−m0)(q − b) + ǫun,m + · · · , (4.6)

but for (3.13) no gauge is necessary.
We have used here (n0, m0) as origin but in the expansion these should drop out.
For each of the considered DBSQ equations one finds for un,m or vn,m the PWF solution:

PWF:

(
p− ω(k)

p− k

)n(
q − ω(k)

q − k

)m

, (4.7)

where ω(k) 6= k is one of the roots of g3(ω)− g3(k) = 0, where g3 is a cubic polynomial,
such as (2.29b).
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Straight limit: In order to use (4.4) for a straight limit in the m-direction we write
(
q − ω(k)

q − k

)m

=

(
1 +

k − ω(k)

q − k

)m

and therefore q must approach infinity as m, i.e., m/q = ξ. Then
(
q − ω(k)

q − k

)m

=

(
1 +

ξ(k − ω(k))

m− ξk

)m

−→ exp[ξ(k − ω(k))], as m→∞.

Sometimes we may need higher order corrections to the above as follows:
(
q − ω(k)

q − k

)m

= exp
[
ξ(k − ω(k)) + 1

2
(k2 − ω(k)2)ξ/q +O(1/q2)

]
.

These results suggest that in a straight limit in m direction we should take

m = ξ q, q →∞. (4.8)

Skew limit: In the skew limit, as in Figure 7.2, we first need to make a 45o degree
rotation, and after defining N = n+m, m′ = 1

2
(n−m), i.e., n = 1

2
N +m′, m = 1

2
N −m′,

we get3

(
p− ω(k)

p− k

)n(
q − ω(k)

q − k

)m

=

(
p− ω(k)

p− k
·
q − ω(k)

q − k

)N/2(
p− k

p− ω(k)
·
q − ω(k)

q − k

)m′

=

(
p− ω(k)

p− k
·
q − ω(k)

q − k

)N/2 (
1 +

(k − ω(k))(p− q)

(p− ω(k))(q − k)

)m′

.

This suggests that p− q should approach 0, thus we take

q = p− δ, τ = δm′, δ → 0 (4.9)

and then the expansion yields
(
1 +

(k − ω(k))δ

(p− ω(k))(p− k − δ)

)τ/δ

= exp

[
(k − ω(k))τ

(p− ω(k))(p− k)
+O(δ2)

]
.

Thus the main results we have so far obtained from PWF analysis are the limit behav-
iors (4.8) and (4.9) for straight and skew limits, respectively. Expanding in higher orders
will be useful in deriving double limits.

Finally we must relate the lattice parameters p, q used in the limits to the parameters
P,Q appearing in the equation, we use

P = g3(p) or P = g3(p)− g3(a), where g3(x) := x3 + α2x
2 + α1x+ α0, (4.10)

and similarly for Q. (This g3 is a generalized version of (2.29b) with additional αj .) The
cubic term is a signature of Boussinesq equations. It should also be noted that as far as
the CAC test is concerned, the parameters P,Q can be arbitrary. However, if we want the
discrete equation to have a continuum limit to a (semi-)continuous Boussinesq equation
then the cubic form is necessary, furthermore P,Q may depend on some other parameters
of the equation.

3Note that one can also take N = n+m, m′ = m, cf. [16].
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4.2 B2

As the first case we take equation (3.10), but centered at the origin

(P −Q)

(
1

x1,−1 − x0,0
−

1

x0,0 − x−1,1

)
+ b0(x−1,0 − x0,−1 + x1,0 − x0,1)

−(x1,1 − x−1,0)(x1,0 − x0,1)− (x−1,−1 − x1,0)(x0,−1 − x−1,0) = 0.

4.2.1 Straight limit

We use the linear background x = pn + qm + ǫ u and take ǫ = 1/q → 0 with initially
arbitrary P,Q as in (4.10). Then using (4.1) and expanding we find from order 0 that
α3 = 1, and at order 1 that α2 = −b0.

4 Finally (if α1 = 0, in agreement with (2.29b)) at
order 2 we get the semi-discrete three-point equation

u′′1 + u′′0 + u′′
−1 − 3u′1(p− u0 + u1) + 3u′

−1(p− u−1 + u0)

+ (p− u0 + u1)
3 − (p− u−1 + u0)

3

− b0[u
′

−1 − u
′

1 + (2p− u−1 + u1)(u−1 − 2u0 + u1)] = 0. (4.11)

where the primes refer to derivatives with respect to ξ, cf. (4.1). Note that when b0 = 0,
the above equation is Eq.(5.9.13) in [37] (with u→ −u). The b0 term is actually a discrete
derivative of the semi-discrete lpKdV equation

u′0 + u′1 + (2p− u0 + u1)(u0 − u1) = 0.

4.2.2 Skew limit

As discussed before, we should make a 45o degree rotation and then take the continuous
limit in the m′ direction. We use the same linear background as before, and the form of
P,Q found for the straight limit, but instead of (4.8) and (4.1) we use (4.9) and (4.2).

Then at order ǫ3 we get the following five-point equation

(3p2 − 2pb0) ü0 + (u̇0 + 1)2[(u2 − u−1 − b0 + 3p)(u̇1 + 1)

+ (u−2 − u1 + b0 − 3p)(u̇−1 + 1)] = 0, (4.12)

where the dot refers to derivatives with respect to τ in (4.2). For b0 = 0 this agrees with
(5.9.4) in [37], up to p→ −p.

4.2.3 Double limit

Now we take equation (4.11) and do the straight continuum limit on the remaining discrete
variable using p = 1/δ. We set uν(ξ) = v(τ + νδ, ξ) and apply Taylor expansion as in
(4.3) and the leading term in the expansion would then be (∂ξ − ∂τ )v(τ, ξ) = 0, which
means that the naive limit does not work. In order to get a better understanding of the
situation we return to the PWF (4.7). With q → ∞ limit already taken we expand in
1/p:

(
p− ω(k)

p− k

)n

e(k−ω(k))ξ = exp
[
(k− ω(k))(ξ+ τ) + 1

2
(k2− ω2(k)) τ

p
+O( 1

p2
)
]
, τ =

n

p
.

(4.13)

4This means in particular that although P,Q and b0 were independent in the CAC analysis, they must
be related in the indicated way before we have a reasonable continuum limit.
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This suggests that we should introduce new variables

x = ξ + τ, t = τ/p, (4.14)

which means
∂ξ = ∂x, ∂τ = ∂x +

1
p
∂t, (4.15)

and apply these in the expansion, before actually taking the limit p→∞. In other words,
the variables ξ and τ are infinitesimally close and therefore the leading term combines
with some higher order terms. With this modification the leading term becomes

vxxxx − 12vxxvx − 8b0vxt + 12vtt = 0.

The vxt term can be converted into vxx by the translation ∂t 7→ ∂t +
1
3
b0∂x (which could

have been be added into (4.15)) which yields

vxxxx − 12vxxvx −
4
3
b20vxx + 12vtt = 0. (4.16)

This is the standard Boussinesq equation with a mass term.
We can also take the double continuum limit by starting from (4.12), where the con-

tinuous variable is τ and p = 1/δ. Thus we expand uν(τ) = v(ξ + νδ, τ), but a change of
the continuous variables is also necessary. If we define x, t by

∂τ = [1 + δ 1
3
b0]δ

2∂x + δ3∂t, ∂ξ = ∂x,

we get (4.16).
Finally, we can take a double limit directly from the fully discrete form (3.10). For

that purpose we take the linear gauge as before, and the limit by p = p0/ǫ, q = q0/ǫ, ǫ→ 0
with

un,m = −v(x+ nA+mB, y + (n+m)ǫ2/(p0q0)), (4.17)

where
A := −ǫ/p0 − (ǫ2b0)/(3p

2
0), B := −ǫ/q0 − (ǫ2b0)/(3q

2
0). (4.18)

After expanding in ǫ the leading term is again (4.16).

4.3 A2

Now we consider equation (3.5), centered at the origin:

(
P x0,0 −Qx−1,1

x−1,1 − x0,0

)
x0,1
x−1,0

−

(
P x1,−1 −Qx0,0
x0,0 − x1−1

)
x1,0
x0,−1

=
x−1,−1

x0,−1
−
x−1,−1

x−1,0
−
x0,1
x1,1

+
x1,0
x1,1

.

In this case we use the gauge transformation (4.5) and the cubic parameterization (4.10).

4.3.1 Straight limit

As in Section 4.2.1 we use (4.8), (4.10) and (4.1) but now with a multiplicative gauge
(4.5) and take α3 = σ = 1, b = a after which the leading term in the expansion will yield
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a second order three-point equation:

v′′1
v1

+
v′′0
v0

+
v′′
−1

v−1

− 2

(
v′1
v1

)2

−

(
v′0
v0

)2

−
v′1v

′

0

v1v0
+
v′
−1v

′

0

v−1v0

+3(p− a)

(
v′
−1

v0
−
v′1v0
v21

)
+ (α2 + 3a)

(
v′
−1

v−1
−
v′1
v1

)
−

(
v1
v0
−

v0
v−1

)
P (p)

a− p

−

(
v−1

v0
−
v0
v1

)
(α2 + 3a)(a− p) +

(
v2
−1

v20
−
v20
v21

)
(a− p)2 = 0. (4.19)

This can also be written as

[ln(v−1v0v1)]
′′+(ln v−1 − ln v1)

′[α2 + 3a+ (ln(v−1v0v1))
′]

+(p− a)

[
v−1

v0
(α2 + 3a+ 3(ln v−1)

′)−
v0
v1
(α2 + 3a+ 3(ln v1)

′)

]

+
P (p)

p− a

(
v1
v0
−

v0
v−1

)
+ (p− a)2

(
v2
−1

v20
−
v20
v21

)
= 0. (4.20)

If α2 = a = 0 this is the same as (5.9.14) in [37].

4.3.2 Skew limit

For the skew limit we also use multiplicative gauge (4.5) and expansion (4.2) with (4.9)
and cubic parameterization. The semi-continuous limit is then

∂τ

(
v1
v−1

Π1 v̇0 +Π2 v0
(p− a)v̇0 − v0

)
−
v−2

v−1

(
(p− a)

v̇−1

v−1
− 1

)
+
v1
v2

(
(p− a)

v̇1
v1
− 1

)
= 0, (4.21)

where

Π1 = (g3(p)− g3(a))/(a− p),

Π2 = −(a + 2p+ α2).

4.3.3 Double limit

Again we can derive the fully continuous limit from either the straight semi-continuous
equation (4.19) or from the skew semi-continuous limit (4.21) or taking a double limit
directly from (3.5). For A2 there is the special feature that in order to reach the modified
BSQ equation we must also change the dependent variables by v = eV .

Starting with the straight semi-continuous limit (4.19) we use again p = 1/δ and
uν = v(y + νδ, x), v = eV and furthermore we use the change of variables5

∂y = (1− 1
3
α2δ)∂x +

1
2
δ∂t,

and then we obtain

Vxxxx − 6VxxV
2
x + 6VxxVt − 4(α2 + 3a)VxxVx + 4(α1 −

1
3
α2
2)Vxx + 3Vtt = 0. (4.22)

This is the modified Boussinesq equation (cf. [21], Equation (3.5)).

5This transformation is needed in order to eliminate the cross term Vxt in favor of the mass term Vxx.
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From the skew limit (4.21) we use p = 1/δ, α3 = 1 and the variable change

∂y = δ2(−1 + 1
3
α2δ)∂x − δ

3∂t,

and get the same result (4.22).
Finally the double limit directly from (3.5) is taken with (4.17) except now

A := ǫ/p0 − (ǫ/p0)
2 1
3
α2, B := ǫ/q0 − (ǫ/q0)

2 1
3
α2. (4.23)

The result is again the same as in (4.22).

4.4 C3

We consider next the continuum limits of (3.13), centered at (0, 0):

(x1,1 − x0,1)(x−1,1 − x0,0)(x−1,0 − x−1,−1)

(x1,1 − x1,0)(x0,0 − x1,−1)(x0,−1 − x−1,−1)
=

(x0,0 − x−1,1)(b0 x−1,0 + b1) + (x0,1−x−1,1)(x−1,0−x0,0)P−(x0,1− x0,0)(x−1,0− x−1,1)Q

(x1,−1 − x0,0)(b0 x0,−1 + b1) + (x1,0−x0,0)(x0,−1−x1,−1)P−(x1,0− x1,−1)(x0,−1− x0,0)Q
.

4.4.1 Straight limit

We use the usual straight limit approach (4.1), (4.8), and (4.10) but without any gauge
transformation. The leading term in the expansion is then

∂x log

[
P (p)(u1 − u−1)− b1 − b0u−1 +

u′1u
′

0u
′

−1

(u1 − u0)(u0 − u−1)

]

=
u′1

u1 − u0
−

u′
−1

u0 − u−1
. (4.24)

A special case of this appears in [37] (5.9.15).

4.4.2 Skew limit

For the skew limit we use (4.2), (4.9) and (4.10), without gauge transform, and the leading
term in the expansion yields

∂τ log

[
P (p)(u1 − u−1)− b1 − b0u−1 +

(3p2 + 2α2p+ α1)(u1 − u0)(u0 − u−1)

u̇0

]

=
u̇−1

u−1 − u−2
−

u̇1
u2 − u1

. (4.25)

This has some similarity to the straight limit. When P (p) = p3, b1 = b0 = 0, one will get
(5.9.9) in [37] (up to signs).
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4.4.3 Double limit

Starting from (4.24) and using p = 1/δ and uν = v(y+ νδ, x) with the additional variable
change defined by

∂y = (1− 1
3
α2δ)∂x +

1
2
δ∂t,

we obtain

3∂t

(
vt
vx

)
+ ∂x

(
vxxx
vx

+
3

2

v2t − v
2
xx

v2x
− 4

b1 + b0v

vx

)
= 0. (4.26)

The double limit obtained by starting from the skew semi-continuous limit (4.25),
together with variable change

∂y = (−1 + 1
3
α2δ)δ

2∂x +
1
2
δ3∂t,

again yields (4.26).
The direct double limit from (3.13) using (4.17) with (4.23), but with the second

variable in (4.17) given by y−(n+m)ǫ2/(2p0q0), leads again to (4.26), except for b1 7→ −b1.
If b0 = b1 = 0 in (4.26) it is the Schwarzian BSQ (see, e.g., [38] Eq. (4.9)), however

the additional b0, b1 terms break the Möbius invariance.

5 Lax pairs

In general Lax pairs can be generated from CAC: One takes the side equations and
interprets the bar-shifted variables as linear Lax variables. However, the equations defined
on an edge only are not convenient, thus one usually takes some linear combinations of
them. The construction of Lax matrices using CAC can be automatized to some extent,
see [3–5].

One important requirement for the Lax matrices is that they should contain a spectral
parameter, in the following it will be R.

5.1 B2

The B2 equations were given (2.3). On the left side of the cube we then have

ỹ = xx̃− z, y = xx− z, (5.1)

ỹ = xx̃− z, ỹ = x̃x̃− z̃, (5.2)

and if from the second set we eliminate ỹ or x̃ we get

x̃ =
z̃ − z

x̃− x
, ỹ =

z̃ x− z x̃

x̃− x
. (5.3)

Now we introduce [41]

x =
φ1

φ0

, z =
φ2

φ0

, y =
φ3

φ0

, (5.4)

and then the equations in (5.3) can be written as

φ̃0 = γ(x̃φ0 − φ1), (5.5a)

φ̃1 = γ(z̃φ0 − φ2), (5.5b)

φ̃3 = γ(z̃φ1 − x̃φ2), (5.5c)
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where γ is the separation factor. For the z̃ equation we take tilde-bar version of (2.3c)
(with also Q→ R) and eliminate from it x̃ using (5.3), this results with

φ̃2 = γ(Ap φ0 + (b0 x− b1 + y)φ1 − (b0 + x)φ2), (5.5d)

where Ap := (b1 − b0x− y)x̃+ (b0 + x)z̃ + P − R. (5.5e)

The above can also be done for the hat-bar version. We then get the matrix equations

φ̃ = Lφ , φ̂ = Mφ , (5.6)

in which [41]

φ =




φ0

φ1

φ2

φ3


 , L

B2
4×4 = γ




x̃ −1 0 0
z̃ 0 −1 0
Ap y + b0x− b1 −b0 − x 0
0 z̃ −x̃ 0


 . (5.7)

The matrix M is the hat-q version of L. Now the last column of L,M is a null column
and therefore we can reduce the system to a 3× 3 matrix problem with

φ =




φ0

φ1

φ2


 , L

B2
3×3 = γ




x̃ −1 0
z̃ 0 −1
Ap y + b0x− b1 −b0 − x


 . (5.8)

The compatibility condition following from (5.6) is

L̂M = M̃L. (5.9)

For this equation it would be best to choose the separation factor γ so that detL =const.,
because then part of the matrix equation is immediately satisfied by taking determinants
of both sides. In this case we can take γ = 1 because detL = P − R. With this choice
(5.9) yields three equations:

̂̃x =
z̃ − ẑ

x̃− x̂
, x =

ỹ − ŷ

x̃− x̂
, (5.10a)

̂̃z = b0(̂̃x− x) + x̂̃x+ b1 − y +
P −Q

x̃− x̂
. (5.10b)

This is not completely equivalent to (2.3) because we do not have un-shifted z, nor z̃ and
ẑ separately.

In the language of DLA version of B2 (2.28) (with b1 = 0), the 3× 3 Lax matrices are
as follows,

L
B2D =




p− ũ(0,0) 1 0
−ũ(1,0) p− b0 1
∗ −u(0,1) − 2b0u

(0,0) − 2b20 p+ 2b0 + u(0,0)


 , (5.11)

in which ∗ = R − P − (p − ũ(0,0))[(p + b0)(p + u(0,0)) + u(0,1)] − (p + u(0,0) + 2b0)ũ
(1,0),

and where M
B2D is obtained from (5.11) by replacing p by q and ˜ by ̂, furthermore

det[LB2D] = R − P . The compatibility leads to the equations

û(1,0) − ũ(1,0) = (p− q + û(0,0) − ũ(0,0))̂̃u(0,0) − pû(0,0) + qũ(0,0) (5.12a)
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and
û(0,1) − ũ(0,1) = (p− q + û(0,0) − ũ(0,0))u(0,0) − pũ(0,0) + qû(0,0), (5.12b)

together with an equation that is equivalent to equation (2.28c), if we use ̂̃u(0,0) as solved
from the first equation and u(0,0) solved from the second.

The B2 Lax pair was first given in [27] with α1 = α2 = b0 = b1 = 0 and in [41] with
full parameterization.

5.2 A2

From CAC: The A2 equation was given in (2.4), where we can take b0 = 0. Using
(2.4a) and the bar-version of (2.4b) and their shifts, we can easily derive

x̃ =
x̃− x

z̃ − z
, ỹ =

x̃ z − x z̃

z̃ − z
. (5.13)

To these and to the tilde-bar version of (2.4c) we use (5.4) and obtain the Lax matrix [41]

L = γ(x, x̃)




z̃ 0 −1 0
x̃ −1 0 0

yz̃
x
− P x̃

x
R
x
− y
x

0
0 −z̃ x̃ 0


 . (5.14)

Again the last column vanishes and we use instead an invertible 3× 3 matrix [41]

L
A2 = γ(x, x̃)




z̃ 0 −1
x̃ −1 0

yz̃
x
+ P x̃

x
−R

x
− y
x


 , (5.15)

and the matrix M
A2 is the hat-q version of LA2. If we again normalize the Lax matrix by

the condition det[L] =const, we should take γ(a, b) = (a/b)1/3. Then the compatibility
condition (5.9) yields

̂̃x =
x̃− x̂

z̃ − ẑ
, x =

x̂ỹ − x̃ŷ

x̃− x̂
, (5.16)

together with eq. (2.4c).

From DLA: In the DLA the A2 equation is given in (2.33) and the Lax matrix given
there is [41]

L
A2 =




p− a ṽa 0
0 p− ũ(0,0) 1

G3(R,−a)
va

∗ p− α2 +
sa
va


 , (5.17)

in which ∗ = (p−ũ(0,0))(p−α2+sa/va)−paṽa/va, R stands for the spectral parameter, and
M

A2 is obtained from (5.17) by replacing p by q and ˜ by ̂. (Recall that va is related to
x, u(0,0) to z and sa to y.) The Lax compatibility condition leads to the equations (2.33c)
and

p− q + û(0,0) − ũ(0,0) = (p− a)
v̂a
̂̃va
− (q − a)

ṽa
̂̃va

, (5.18a)

p− q +
ŝa
v̂a
−
s̃a
ṽa

= (p− a)
va
ṽa
− (q − a)

va
v̂a

. (5.18b)
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From the two-component form: The A2 equation has also a two-component form,

z − w̃

z − ŵ
=
ẑ − ̂̃w
z̃ − ̂̃w

, (5.19a)

( z̃ − ẑ ) ( ̂̃z − w) = P

z − w̃
−

Q

z − ŵ
. (5.19b)

This pair is still defined on the elementary square and is 3-dimensionally consistent, but
it is not possible to construct a Lax pair using the sides of the consistency cube, because
it leads to an expression that is quadratic in the auxiliary field φ. However, a 2 × 2
Lax matrix was given in [31] (see eqn. (2.4.5)) (although this does not contain spectral
parameter):

L
A2
2×2 =

(
z̃ −1

wz̃ + P
z−w̃

−w

)
, (5.20a)

M
A2
2×2 =

(
ẑ −1

wẑ + Q
z−ŵ

−w

)
, (5.20b)

which directly yields (5.19) from the compatibility L̂M = M̃L.
Still another Lax matrix generating (5.19) is given in [9] (see page 16)

L
FX =




z̃ − w 0 −1
−1 w̃ − z 0

P
w̃−z
− (w̃ − w)(z̃ − w) R w̃ − w


 , (5.21)

with corresponding M
FX . As mentioned above this Lax pair cannot arise from CAC

analysis of the type that worked for the other equations. However, since this Lax matrix
resembles some of the other CAC-generated Lax matrices, we could try to reverse engineer
and see where it could come from. If we write out the 3 × 3 version of φ̃ = L

FXφ and
then divide the second and third equation by the first we get

φ̃1

φ̃0

=
1 + (z̃ − w)φ1

φ0

w − z̃ + φ2
φ0

, (5.22a)

φ̃2

φ̃0

=
Rφ1
φ0

+ (w̃ − w)φ1
φ0

+ P
w̃−z
− (w̃ − w)(z̃ − w)

w − z̃ + φ2
φ0

. (5.22b)

Previously we associated bar-quantities to φ ratios as in (5.4) but it does not work here.
We must instead take

φ1

φ0
=

1

w − z
,

φ2

φ0
= z − w, (5.23)

and this choice yields (5.19) from (5.22).

5.3 C3

The C3 equation (2.5) is

x− x̃ = ỹz , x− x̂ = ŷz , (5.24a)

̂̃z y = z
P ẑỹ −Qz̃ŷ

z̃ − ẑ
+ b1 + b0 x . (5.24b)
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Several other equations can be derived from (5.24a), for example

̂̃x =
x̂z̃ − x̃ẑ

z̃ − ẑ
, x =

x̂ỹ − x̃ŷ

ỹ − ŷ
, z = −

x̃− x̂

ỹ − ŷ
, ̂̃y = −z

ỹ − ŷ

z̃ − ẑ
. (5.25)

If we consider the tilde-bar versions of these and take equation for x̃ from (5.25) and
equation (5.24b) in which ỹ and y have been eliminated using (5.24a), then we can use
the CAC method and construct the 3× 3 Lax matrix

L
C3
3×3 =

1

z




z̃ 0 −1
0 z̃ −x̃

z̃
y
(b1 + (b0 − R) x)

z̃
y
R 1

y
(P (x̃− x)− b1 − b0 x)


 . (5.26)

The compatibility conditions arising from this Lax matrix and its hat-Q companion yield

the equations for ̂̃x and x in (5.25). However, for ̂̃z it produces an equation that agrees
with (5.24b) only after we also use the equation for z in (5.25), which does not follow
from Lax compatibility.

There is also the 4 × 4 Lax matrix that can be obtained from CAC by adding the ̂̃y
equation from (5.25):

L
C3
4×4 =

1

z




z̃ 0 0 −1
0 z̃ 0 −x̃
−zỹ 0 z 0

z̃
y
(b1 + b0 x) 0 −zz̃

y
R 1

y
(Pzỹ − b1 − b0 x)


 , (5.27)

and the matrix M
C3
4×4 is the hat-Q version. In this case the compatibility conditions yield

equation (5.24b) and equations for ̂̃x, x, ̂̃y in (5.25).
If b0 = 0 we also have the two-component version (2.13c,2.13d) containing z and y

only. Using the CAC method we can construct the 3× 3 Lax matrix

L
C3b1
3×3 =

1

z




z̃ 0 −1
−zỹ z 0
b1
z̃
y
−R zz̃

y
1
y
(Pzỹ − b1)


 (5.28)

and with corresponding M
C3b1
3×3 the compatibility condition exactly returns (2.13c, 2.13d).

6 Bilinear structures of DBSQ-type equations

6.1 Preliminary

6.1.1 Discrete Hirota’s bilinear form and Casoratians

Suppose fj(n,m) and gj(n,m) are functions defined on Z × Z. Then a one-component
discrete Hirota bilinear equation has the following form [17, 20]

∑

j

cj fj(n+ ν+j , m+ µ+
j ) gj(n+ ν−j , m+ µ−

j ) = 0,

where it is essential that the index sums µ+
j +µ−

j = µs, ν
+
j + ν−j = νs do not depend on j.
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The solutions to a discrete Hirota bilinear equation will be given by a Casoratian,
which is a determinant of a matrix composed of different shifts of a vector. For example,
given functions ψi(n,m, l) we define the column vector

ψ(n,m, l) =
(
ψ1(n,m, l), ψ2(n,m, l), · · · , ψN (n,m, l)

)T
, (6.1)

and then the N -th order Casoratian reads

∣∣ψ(n,m, l1), ψ(n,m, l2), · · · , ψ(n,m, lN)
∣∣. (6.2)

For such a determinant we use a shorthand notation |l1, l2, · · · , lN |. Furthermore, if the
Casoratian contains consecutive columns we use condensed notation such as (cf. [10]),

|0, 1, · · · , N − 1| = |N̂ − 1|, |0, 1, · · · , N − 2, N | = |N̂ − 2, N |.

For the DBSQ-type equations discussed in this paper the solutions can be expressed

through a Casoratian f = |N̂ − 1| which is composed by the entry function Ψ:

ψj(l, n,m, α, β) :=
2∑

s=0

(−ωs(kj))
l(p− ωs(kj))

n(q − ωs(kj))
m

×(a− ωs(kj))
α(b− ωs(kj))

β ̺
(0)
j,s , (6.3)

which contains 5 independent variables n,m, l, α and β. In the following we do not
mention those variables that are obvious from context. Here ωs(kj), s = 1, 2 are roots of

g3(ω(kj)) = g3(kj), (6.4)

where g3 defined in (2.29b) and ω0(kj) ≡ kj.
For shifts in the index variables (l, n,m, α, β) we often use shorthand notation: in

addition to tilde and hat for shifts in the n- and m-direction (as in (2.1)), we introduce
bar, circle and dot for the shifts in the l-, α- and β-directions, respectively, i.e.

f(n,m, l, α, β) = f(n,m, l + 1, α, β), (6.5a)
◦

f(n,m, l, α, β) = f(n,m, l, α+ 1, β), (6.5b)
•

f(n,m, l, α, β) = f(n,m, l, α, β + 1). (6.5c)

When the symbol is below the variable it means backward shift: e.g., f
˜
(n,m, l, α, β) =

f(n− 1, m, l, α, β).
A more general form than (6.3) is

ψj(l) =
2∑

s=0

(δ − ωs(kj))
l(p− ωs(kj))

n(q − ωs(kj))
m(a− ωs(kj))

α(b− ωs(kj))
β ̺

(0)
j,s , (6.6)

which is referred to as the δ-extension of (6.3). Thus (6.6) can be considered as a func-
tion containing symmetrically five dimensions, corresponding to the direction coordinates
(n,m, l, α, β) and their lattice spacing parameters (p, q, a, b, δ). Here for ψj(l) in (6.6) we
already omitted n,m, α, β for convenience, we will often do this if it does not cause any
confusion.
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Finally we note that a Casoratian can sometimes be written as a Wronskian. Suppose
we define

φj(l) =

2∑

s=0

e(δ−ωs(kj))l(p− ωs(kj))
n(q − ωs(kj))

m(a− ωs(kj))
α(b− ωs(kj))

β ̺
(0)
j,s , (6.7)

and the corresponding vector as in (6.1). Then the following Casoratian and Wronskian
are equal to each other,

|ψ(l1), ψ(l2), · · · , ψ(lN)|C[ψ] = |∂
l1
l φ(l), ∂

l2
l φ(l), · · · , ∂

lN
l φ(l)|W[φ].

6.1.2 Laplace expansion

The proof that a Casoratian solves a bilinear equation is usually given by reducing the
problem to a three-term Laplace expansion of a zero determinant. We will first give a
generic result.

Lemma 6.1 Suppose that P is a N×(N−1) matrix, and Q its N×(N−k+1) sub-matrix
obtained by removing arbitrary (k−2) columns from P where k ≥ 3. Let ai(i = 1, 2, · · · , k)
be some N-th order column vectors. Then we have

k∑

i=1

(−1)i−1|P, ai| |Q, a1, · · · , ai−1, ai+1, · · · , ak| = 0. (6.8)

This is a special case of Plüker relations.
In fact, let B be the N × (k − 2) matrix consisting of those (k − 2) column vectors

that are removed from P so that |QB| = |P|. Then it is easy to see that the following
2N × 2N determinant vanishes:

∣∣∣∣
Q 0 B a1 · · · ak
0 Q 0 a1 · · · ak

∣∣∣∣ = 0. (6.9)

The LHS of (6.8) is actually the Laplace expansion of the LHS of (6.9).
Equation (6.8) is quite useful in proving solutions. When k = 3, (6.8) yields

|P, a1| |Q, a2, a3| − |P, a2| |Q, a1, a3|+ |P, a3| |Q, a1, a2| = 0. (6.10)

If we denote P = (Q, a0), it reads

|Q, a0, a1| |Q, a2, a3| − |Q, a0, a2| |Q, a1, a3|+ |Q, a0, a3| |Q, a1, a2| = 0, (6.11)

which can be viewed as an expression of Plüker relation, and were used to verify Wronskian
(or Casoratian) solutions to bilinear equations [10] and also to prove many determinantal
identities (see [12]). When k = 4, (6.8) yields

|P, a1| |Q, a2, a3, a4| − |P, a2| |Q, a1, a3, a4|+ |P, a3| |Q, a1, a2, a4|

−|P, a4| |Q, a1, a2, a3| = 0, (6.12)

which is also useful in solution verification (see [43]). In this paper, besides (6.10) and
(6.12), we need also k = 5 case, which is

|P, a1| |Q, a2, a3, a4, a5| − |P, a2| |Q, a1, a3, a4, a5|+ |P, a3| |Q, a1, a2, a4, a5|

−|P, a4| |Q, a1, a2, a3, a5|+ |P, a5| |Q, a1, a2, a3, a4| = 0. (6.13)

Here is another determinantal property which is often used in Wronskian/Casoratian
verification.
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Lemma 6.2 [10]

N∑

j=1

|a1, · · · , aj−1, baj , aj+1, · · · , aN | =

( N∑

j=1

bj

)
|a1, · · · , aN |, (6.14)

where aj = (a1j , · · · , aNj)
T and b = (b1, · · · , bN)

T are N-th order column vectors and
baj stands for (b1a1j , · · · , bNaNj)

T .

A generalized version of this lemma can be found in [39, 42]. For further details see [40].

6.2 B2

6.2.1 B2

Equation B2 ((2.3) with b1 = 0) is given by

B1 := ỹ − xx̃+ z = 0, (6.15a)

B2 := ŷ − xx̂+ z = 0, (6.15b)

B3 := y − b0(̂̃x− x)− x̂̃x+ ̂̃z − P −Q

x̃− x̂
= 0, (6.15c)

where
P = p3 − b0p

2 +R, Q = q3 − b0q
2 +R. (6.15d)

It has background solution [18]

x0 = pn+ qm+ c1, (6.16a)

z0 =
1
2
x20 +

1
2
(p2n+ q2m+ c2) + c3, (6.16b)

y0 =
1
2
x20 −

1
2
(p2n + q2m+ c2)− c3, (6.16c)

where c1, c2, c3 are arbitrary constants.
By the dependent variable transformation [18]

x = x0 −
g

f
, z = z0 − x0

g

f
+
h

f
, y = y0 − x0

g

f
+
s

f
, (6.17)

we can bilinearize the B2 lattice consisting of (6.15) and their shifts follows

B1 =
B1

f f̃
, B2 =

B2

f f̂
, B3 =

B3B4 + (p− q)f
̂̃
fB4 + [p2 + pq + q2 − b0(p+ q)]f̃ f̂B3

(x̃− x̂)f f̃ f̂
̂̃
f

,

(6.18)
where the bilinear equations are

B1 := f̃(h+ pg)− g̃(g + pf) + f s̃ = 0, (6.19a)

B2 := f̂(h+ qg)− ĝ(g + qf) + f ŝ = 0, (6.19b)

B3 := f̃ ĝ − f̂ g̃ + (p− q)(f̃ f̂ − f
̂̃
f) = 0, (6.19c)

B4 := [p2+pq+q2−b0(p+q)](f
̂̃
f−f̃ f̂)+(p+q−b0)(

̂̃
fg−f̂̃g)+̂̃

fs+f
̂̃
h−ĝ̃g= 0. (6.19d)
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We have also used the parametrization (6.15d).
The set of bilinear equations (6.19) admits N -soliton solutions in the following Caso-

ratian form,

f = |N̂ − 1|, g = |N̂ − 2, N |, h = |N̂ − 2, N + 1|, s = |N̂ − 3, N − 1, N |, (6.20)

composed of ψ = (ψ1, ψ2, · · · , ψN )
T with (6.3). A proof for these Casoratian solutions

can be found in [19], where the meaning of the parameter b0 is also discussed.
An alternate bilinearization was given in [22], where they first transformed the 9-point

equation (3.10) without b0 into a pair of equations living on a 2×4 stencil (Eqs. (53, 54)),
which were then bilinearized using only f and g (see Eqs. (56, 57, 65, 66)).

6.2.2 B2-δ

In the above derivation we used Casoratians with entries (6.3). However, there is a natural
generalization of the entry function with a new parameter δ as given in (6.6). We will
now derive the corresponding generalized equations.

As the first step we compute the difference of f, g, h, s (as defined in (6.20)) for δ = 0
and for δ 6= 0. Using binomial expansion on (δ − ωs(kj))

l we see that only the right-most
columns contribute and find [18] (here f ≡ f(0), f ′ ≡ f(δ))

f ′ = f, (6.21a)

g′ = g +Nδ f, (6.21b)

h′ = h+ (N + 1)δ g + 1
2
N(N + 1) δ2f, (6.21c)

s′ = s+ (N − 1)δ g + 1
2
N(N − 1) δ2f, (6.21d)

where N is the size of the determinant. Now inverting this for f, g, h, s and using them
on (6.19) it follows that the primed quantities solve the δ-modified bilinear equations

B
δ
1 := f̃ ′ [ h′ + (p− δ)g′ ]− g̃′ [ g′ + (p− δ)f ′ ] + f ′ s̃′ = 0, (6.22a)

B
δ
2 := f̂ ′ [ h′ + (q − δ)g′ ]− ĝ′ [ g′ + (q − δ)f ′ ] + f ′ ŝ′ = 0, (6.22b)

B
δ
3 := f̃ ′ ĝ′ − f̂ ′ g̃′ + (p− q)

(
f̃ ′ f̂ ′ − f ′ ̂̃f ′

)
= 0, (6.22c)

B
δ
4 := (p2 + pq + q2 − b0(p+ q))

(
f ′ ̂̃f ′ − f̃ ′ f̂ ′

)

− (p+ q − b0 + δ)

(
f ′ ̂̃g′ − ̂̃

f ′g′
)
+

̂̃
f ′ s′ + f ′ ̂̃h′ − g′ ̂̃g′ = 0. (6.22d)

Furthermore, from (6.17) we get

x′ = x′0 −
g′

f ′
= (x′0 −Nδ)−

g

f
= x, (6.23a)

provided that x′0 = x0 + Nδ, which can be accommodated by a change in the constant:
c′1 = c1 +Nδ. Similarly

z′ = z′0 − x
′

0

g′

f ′
+
h′

f ′

= z′0 − (x0 +Nδ)
g

f
− x′0Nδ +

h

f
+ (N + 1)δ

g

f
+ 1

2
N(N + 1) δ2

= z − δ(x− x0), (6.23b)

y′ = y + δ(x− x0), (6.23c)
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provided that the constants in z0, y0 are adjusted so that 1
2
(c′2− c2)+ c′3− c3 +

1
2
δ2N = 0.

Using these we get the δ-modified nonlinear equations:

Bδ
1 := ỹ′ − x′x̃′ + z′ − δ

(
x̃′ − x′ − p

)
= 0, (6.24a)

Bδ
2 := ŷ′ − x′x̂′ + z′ − δ

(
x̂′ − x′ − q

)
= 0, (6.24b)

Bδ
3 := y′−b0

(̂̃
x′−x′

)
−x′

̂̃
x′ +

̂̃
z′+

p3−q3−b0(p
2−q2)

x̂′ − x̃′
+δ

(̂̃
x′−x′−p−q

)
= 0. (6.24c)

Equations (6.22) and (6.24) were given for the b0 = 0 case in [18] and for generic b0 in [32].

6.3 A2

6.3.1 A2

The A2 equation (after removing parameter b0) is given by

A1 := x̃z − ỹ − x = 0, (6.25a)

A2 := x̂z − ŷ − x = 0, (6.25b)

A3 := x̂̃z − y − P x̃−Qx̂

z̃ − ẑ
= 0, (6.25c)

where P, Q will be parameterized by (2.37). It has background or seed solution (2.36)

xa = (p− a)−n(q − a)−mc1, (6.26a)

z0 = (c3 − p)n + (c3 − q)m+ c2, (6.26b)

ya = xa(z0 + a− c3), (6.26c)

where c3 = α2/3, and c1, c2, αi are arbitrary constants.
By the dependent variable transformation

x = xa
◦

f

f
, z = z0 +

g

f
, y = ya

◦

f

f
+ xa

◦

g

f
, (6.27)

A2 is bilinearized into

A1 := ˜
◦

f(g + pf)− (p− a)
◦

f f̃ − f(a˜
◦

f +
◦̃

g) = 0, (6.28a)

A2 := ̂
◦

f(g + qf)− (q − a)
◦

f f̂ − f(â
◦

f +
◦̂

g) = 0, (6.28b)

A3 := f̃ ĝ − f̂ g̃ + (p− q)(f̃ f̂ − f
̂̃
f) = 0, (6.28c)

A4 := (p− q)[((p+ q + a− α2)
◦

f +
◦

g)
̂̃
f − ̂̃g

◦

f ]− paf̂˜
◦

f + qaf̃̂
◦

f = 0, (6.28d)

where pa, qa are defined as (2.34) and the circle shift was defined in (6.5). The connection
to (6.25) is by

A1 =
x̃aA1

f f̃
, A2 =

x̂aA2

f f̂
, A3 = xa

A3A4 + (p− q)f
̂̃
fA4 + (paf̂˜

◦

f − qaf̃̂
◦

f)A3

(p− q)f f̃ f̂
̂̃
f(ẑ − z̃)

. (6.29)

Multisoliton solutions to (6.28) are given through

f = |N̂ − 1|, g = |N̂ − 2, N |, (6.30)

composed of ψ given in (6.6) with δ = 0.
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6.3.2 A2-δ

The δ deformation discussed in Section 6.2.2 can also be applied on A2. In this case the
definitions of f, g are as in (6.20), and therefore the δ-dependence is as in (6.21), i.e.,
f ′ = f, g′ = g +Nδ f. From this and (6.27) it follows

x = x′, y = y′, z = z′ − δ, (6.31)

provided that we choose c′2 − c2 +Nδ = 0. Then we find A2-δ as

Aδ1 := x̃′z′ − ỹ′ − x′ − δx̃′ = 0, (6.32a)

Aδ2 := x̂′z′ − ŷ′ − x′ − δx̂′ = 0, (6.32b)

Aδ3 := x′
̂̃
z′ − y′ − δx′ +

P x̃′ −Qx̂′

z̃′ − ẑ′
= 0. (6.32c)

On the other hand, it can be easily seen that equations (6.28) are invariant under g 7→
g + c f .

6.4 C3b0

The equation C3b0 is

C1 := x̃− ỹ z − x = 0, (6.33a)

C2 := x̂− ŷ z − x = 0, (6.33b)

C3 := ̂̃z y − d2 x− z
P ỹ ẑ −Q ŷ z̃

z̃ − ẑ
= 0. (6.33c)

It has 0SS

xa,b =
1

b− a

(
p− b

p− a

)n(
p− b

q − a

)m

, (6.34a)

zb = (p− b)n(q − b)m, (6.34b)

ya = −(p− a)
−n(q − a)−m, (6.34c)

where we have used parametrization (2.46). By the transformation (c.f., (6.5))

x = xa,b

•

◦

f

f
, z = zb

•

f

f
, y = ya

◦

f

f
, (6.35)

from (6.33) we have its bilinear form

C1 := (p− b)
◦

•

f̃ f − (p− a)
•

◦

f f̃ + (b− a)
•

f˜
◦

f = 0, (6.36a)

C2 := (q − b)
◦

•

f̂ f − (q − a)
•

◦

f f̂ + (b− a)
•

f̂
◦

f = 0, (6.36b)

C3 := (p− b)f̂
•

f̃ − (q − b)f̃
•

f̂ + (p− q)
̂̃
f

•

f = 0, (6.36c)

C4 := (p− q)

•

̂̃
f

◦

f +
(p− q)ab

(p− b)(q − b)
̂̃
f

•

◦

f −
pa
p− b

•

f̂˜
◦

f +
qa
q − b

•

f̃̂
◦

f = 0, (6.36d)
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where pa, qa are defined as (2.34) and here we also use ab = ba = pa|p=b, and the connection
with (6.33) is

C1 =
−xa,bC1

(p− a)f f̃
, C2 =

−xa,bC2

(q − a)f f̂
,

C3 =
(p− b)(q − b)(b− a)xa,bzb

(p− q)f f̃ f̂
̂̃
f(z̃ − ẑ)

[
C3C4+

(
pa
p− b

•

f̂˜
◦

f −
qa
q − b

•

f̃̂
◦

f

)
C3− (p− q)

̂̃
f

•

fC4

]
.

(6.37)

Casoratian solution of (6.36) is given by f = |N̂ − 1| with ψ composed by (6.6). Note
that C3-δ is the same as (6.33).

The bilinearization of C3b1 is still open.

7 Conclusions

In this review we have discussed the fully discrete versions Boussinesq equations given
as three-component equations on the basic quadrilateral. Their derivation using CAC
and DLA was compared. From the three-component equation we derived two- and one-
component versions on a larger stencil. Then we derived two semi-continuous limits and
the fully continuous limits for the one-component versions. We discussed also several
versions of Lax pairs. Finally we gave their Hirota bilinear forms, which are important
for constructing solutions. The basic results are summarized in the adjoining Table 1
which points to the relevant equations.

We also note that recently an elliptic scheme of DLA has been developed, in which the
spacing parameters P and Q can be parameterized by Weierstrass elliptic functions [29].

In addition to the question of bilinearizing equation C3b1 , there are some interesting
open questions: For example, the classification of higher order CAC lattice equations (cf.
the ABS list containing 9 equations), higher genus solutions of the DBSQ-type equations,
reductions of the hierarchy of lattice KP equations, etc.
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Appendix A Triply shifted variables from CAC

Since the equations are integrable their triply shifted forms are the same independent of
the sides used in the computation, therefore tilde-hat-bar symmetric. They can be com-
puted if the equations are defined on a quadrilateral. This holds for all three-component
forms and for some two-component forms but the one component forms are all defined on
a bigger stencil.
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Equation name A2 B2 C3b0 C3b1

3 component versions (2.4) , (2.24) (2.3) (2.12) ←

2 component versions (3.2), (3.3) (3.8) (3.9) (3.12), (3.18) (3.14)

1 component versions (3.5), (3.6) (3.10) (3.13), (3.5) ←

Straight limit (4.19) (4.11) (4.24) ←

Skew limit (4.21) (4.12) (4.25) ←

Double limit (4.22) (4.16) (4.26) ←

Lax Pairs (5.15)+others (5.8), (5.11) (5.26) (5.28)

Bilinear form (6.28) (6.19) (6.36) ?

Table 1: A summary of the relevant equations. Those defining equations that live on
the elementary quadrilateral are boxed. The “←” in the last column means the result is
included in the C3b0 case.

A.1 Three-component forms

Three-component forms all live in the elementary quadrilateral and were in fact derived
using CAC. The triply shifted quantities are as follows [14]:

For A2

̂̃x = x
x̃(ẑ − z) + x̂(z − z̃) + x(z̃ − ẑ)

px̃(ẑ − z) + qx̂(z − z̃) + rx(z̃ − ẑ)
, (A.1a)

̂̃y =
y

x
̂̃x+ px̃(x̂− x) + qx̂(x− x̃) + rx(x̃− x̂)

px̃(ẑ − z) + qx̂(z − z̃) + rx(z̃ − ẑ)
, (A.1b)

̂̃z = z − x
p(ẑ − z) + q(z − z̃) + r(z̃ − ẑ)

px̃(ẑ − z) + qx̂(z − z̃) + rx(z̃ − ẑ)
. (A.1c)

For B2

̂̃x = b0 + x+
(q − r)x̃+ (r − p)x̂+ (p− q)x

x̃(ẑ − z) + x̂(z − z̃) + x(z̃ − ẑ)
, (A.2a)

̂̃y = b0x+ y +
(q − r)z̃ + (r − p)ẑ + (p− q)z

x̃(ẑ − z) + x̂(z − z̃) + x(z̃ − ẑ)
, (A.2b)

̂̃z = z + b0̂̃x−
(q − r)x̂x+ (r − p)xx̃+ (p− q)x̃x̂

x̃(ẑ − z) + x̂(z − z̃) + x(z̃ − ẑ)
. (A.2c)

For C3

̂̃x =
b0x+ b1

y
̂̃y + x+ z

z̃ŷy(q − r) + ẑyỹ(r − p) + zỹŷ(p− q)

z̃(qŷ − ry) + ẑ(ry − pỹ) + z(pỹ − qŷ)
, (A.3a)

̂̃y = y
z̃(ŷ − y) + ẑ(y − ỹ) + z(ỹ − y)

z̃(qŷ − ry) + ẑ(ry − pỹ) + z(pỹ − qŷ)
, (A.3b)

̂̃z = b0z + (b1 + b0x)
(q − r)z̃ + (r − p)ẑ + (p− q)z

z̃(qŷ − ry) + ẑ(ry − pỹ) + z(pỹ − qŷ)

+zy
qrz̃(ŷ − y) + rpẑ(y − ỹ) + pqz(ỹ − y)

z̃(qŷ − ry) + ẑ(ry − pỹ) + z(pỹ − qŷ)
. (A.3c)
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A.2 Two-component forms

When the two component form is defined on a quadrilateral we can compute the triply
shifted quantities. This is true for (3.3),(3.14),(3.18).

For A2 (3.3) where w := y/x

̂̃w =w +
P (w − ŵ) +Q(w̃ − w) +R(ŵ − w̃)

z̃(w̃ − z)(ŵ − w) + ẑ(ŵ − z)(w − w̃) + z(w − z)(w̃ − ŵ)
, (A.4a)

̂̃z = (A.4b)

Pw̃(ŵ−z)(w−z)(ẑ−z)+Qŵ(w−z)(w̃−z)(z−z̃)+Rw(w̃−z)(ŵ−z)(z̃−ẑ)

P (ŵ − z)(w − z)(ẑ − z)+Q(w−z)(w̃ − z)(z − z̃)+R(w̃ − z)(ŵ − z)(z̃ − ẑ)
.

For B2 (3.9) where w := y + z

̂̃x =b0 +
P (x− x̂) +Q(x̃− x) +R(x̂− x̃)

w̃(x− x̂) + ŵ(x̃− x) + w(x̂− x̃)
, (A.5a)

̂̃w =̂̃x(b0 − x) + w + x2+

P (w − ŵ + (x− x̂)x̃)+Q(w̃ − w + (x̃− x)x̂)+R(ŵ − w̃ + (x̂− x̃)x)

w̃(x− x̂) + ŵ(x̃− x) + w(x̂− x̃)
. (A.5b)

For C3b1 (3.14):

̂̃y =− y
ỹ(ẑ − z) + ŷ(z − z̃) + y(z̃ − ẑ)

P ỹ(ẑ − z) +Qŷ(z − z̃) +Ry(z̃ − ẑ)
, (A.6a)

̂̃z =− zPQz(ỹ − ŷ) +RP ẑ(y − ỹ) +QRz̃(ŷ − y)

P ỹ(ẑ − z) +Qŷ(z − z̃) +Ry(z̃ − ẑ)

+ b1
P (ẑ − z) +Q(z − z̃) +R(z̃ − ẑ)

P ỹ(ẑ − z) +Qŷ(z − z̃) +Ry(z̃ − ẑ)
. (A.6b)

For C3b0 (3.18):

̂̃w = −w
(w̃ŵz + w)(z̃ − ẑ) + (ŵwz + w̃)(ẑ − z) + (ww̃z + ŵ)(z − z̃)

Dw

, (A.7a)

Dw =w̃(P + b0)(z(ŵẑ − wz)− ẑ + z) + ŵ(Q+ b0)(z(wz − w̃z̃)− z + z̃)

+ w(R + b0)(z(w̃z̃ − ŵẑ)− z̃ + ẑ), (A.7b)

̂̃z = z
Nz

Dz
, (A.7c)

Nz =PQ(w̃ − ŵ)(wz−1)z +QR(ŵ − w)(w̃z−1)z̃ +RP (w − w̃)(ŵz−1)ẑ

+ b0[P (ŵz − 1)(wz − 1)(ẑ − z) +Q(wz − 1)(w̃z − 1)(z − z̃)

+R(w̃z − 1)(ŵz − 1)(z̃ − ẑ)], (A.7d)

Dz = P (ŵz − 1)(wz − 1)(ẑ − z)w̃ +Q(wz − 1)(w̃z − 1)(z − z̃)ŵ

+R(w̃z − 1)(ŵz − 1)(z̃ − ẑ)w. (A.7e)

Note that none of these results have the tetrahedron property.
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[38] Weiss J, The Painlevé property for partial differential equations. II: Bäcklund trans-
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