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Processing of positron emission tomography (PET) data typically involves manual work,
causing inter-operator variance. Here we introduce the Magia toolbox that enables
processing of brain PET data with minimal user intervention. We investigated the
accuracy of Magia with four tracers: [11C]carfentanil, [11C]raclopride, [11C]MADAM, and
[11C]PiB. We used data from 30 control subjects for each tracer. Five operators manually
delineated reference regions for each subject. The data were processed using Magia
using the manually and automatically generated reference regions. We first assessed
inter-operator variance resulting from the manual delineation of reference regions. We
then compared the differences between the manually and automatically produced
reference regions and the subsequently obtained binding potentials and standardized-
uptake-value-ratios. The results show that manually produced reference regions can be
remarkably different from each other, leading to substantial differences also in outcome
measures. While the Magia-derived reference regions were anatomically different from
the manual ones, Magia produced outcome measures highly consistent with the average
of the manually obtained estimates. For [11C]carfentanil and [11C]PiB there was no
bias, while for [11C]raclopride and [11C]MADAM Magia produced 3–5% higher binding
potentials. Based on these results and considering the high inter-operator variance of the
manual method, we conclude that Magia can be reliably used to process brain PET data.

Keywords: PET, neuroinformatics, modeling, reference region, carfentanil, raclopride, madam, pib

INTRODUCTION

The statistical power of neuroimaging studies has been widely questioned in recent years,
leading to calls for significantly larger samples to avoid false-positive and negative findings
(Yarkoni, 2009; Button et al., 2013; Cremers et al., 2017). Additionally, the role of researcher
degrees of freedom, i.e., the subjective choices made during the process from data collection to
its analysis, has been identified as an important reason for poor replicability of many findings
(Simmons et al., 2011). Consequently, the focus in neuroimaging has shifted towards standardized,
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large-scale neuroinformatics based approaches (Yarkoni et al.,
2011; Poldrack and Yarkoni, 2016). Today, several standardized
and highly automatized preprocessing pipelines are publicly
available for processing functional magnetic resonance images
(fMRI; Esteban et al., 2019). Such standardized methods are
not, however, currently widely used for the analysis of positron
emission tomography (PET) data, although recently some tools
have become available (Gunn et al., 2016; Funck et al., 2018).

Compared to fMRI preprocessing, preprocessing of PET
data is relatively straightforward because confounding temporal
signals are rarely regressed out of the data, and the preprocessing
thus only consists of spatial processes, such as frame-realignment
and coregistration. Yet, any all-inclusive PET processing
pipeline must be able to handle numerous kinetic models to
support as many radiotracers as possible. Thus, unlike fMRI
preprocessing tools, PET pipelines should handle both the
preprocessing as well as the kinetic modeling for numerous
tracers, making the development of a comprehensive PET
pipeline a challenging task.

A particularly sensitive task in PET analysis is the requirement
of the input function. Depending on tracer, the input function
can be obtained either from blood samples or directly from
the PET images, for example, if a reference region is available
for the tracer. The blood samples require manual processing
before the input function can be obtained from them. While
population-based atlases (Fischl et al., 2002; Tzourio-Mazoyer
et al., 2002; Eickhoff et al., 2005) provide an automatic way for
defining reference regions (Yasuno et al., 2002; Schain et al.,
2014; Tuszynski et al., 2016), they are suboptimal because the
process requires warping of either the atlases or the PET images.
Ideally, the reference region should be defined separately for each
individual before spatial normalization. Consequently, manual
delineation is still considered the gold standard for defining the
reference regions, thus prohibiting a fully automatic analysis
of PET data. Furthermore, manual reference region delineation
is time-consuming and relies on numerous subjective choices.
To minimize between-study variance resulting from operator-
dependent choices (White et al., 1999), a single individual should
delineate the reference regions for all studies within a project.
Thus, manual delineation is not suited for large-scale projects
where hundreds of scans are processed, or neuroinformatics
approaches where an even significantly larger number of scans
have to be processed.

To resolve these issues, we introduce Magia1 that enables
automatic modeling of brain PET data with minimal user
intervention The major advantages of this approach involve:

1. Flexible, parallelizable environment suitable for large-scale
standardized analysis.

2. Fully automated processing of brain PET data starting from
raw images.

3. Visual quality control of the processing steps.
4. Centralized management and storage of study metadata,

image processing methods and outputs for subsequent
reanalysis and quality control.

1https://github.com/tkkarjal/magia

In this study, we compared Magia-derived input functions
and the subsequent outcome measures against those obtained
using conventional manual techniques with four tracers
binding to different sites: [11C]carfentanil, [11C]raclopride,
[11C]MADAM, and [11C]PiB. We also assessed inter-rater
agreement in the reference region definition and uptake
estimates, and regional and voxel-level outcome measures.

MATERIALS AND METHODS

Overview of Magia
Magia1 is a freely available and fully automatic analysis pipeline
for brain PET data. Running on MATLAB (The MathWorks,
Inc., Natick, MA, USA), Magia combines methods from
SPM122 and FreeSurfer3—two freely available and widely used
tools–with in-house software developed for kinetic modeling.
Magia has been developed alongside a centralized database4

containing metadata about each study, facilitating data storage
and neuroinformatics-type large-scale PET analyses. While the
implementation of a similar database is highly recommended,
Magia can also be installed and used without such database as
long as the user can feed in the necessary information about
the studies. Magia runs only on Linux/Mac. The Optimization
Toolbox for MATLAB is required for fitting some of the models.
Magia has been developed using MATLAB R2016b. Magia
currently supports the simplified reference tissue model, Logan
(Logan, 2000) with both plasma input and reference tissue input,
Patlak (Patlak et al., 1983) with both plasma input and reference
tissue input, SUV-ratio (Chen and Nasrallah, 2017; standardized
uptake value), and fractional uptake ratio (FUR; Thie, 1995)
analysis for late scans with plasma input. Also, the two-tissue
compartmental model can be fitted to regional-level data.

A box-diagram describing the main steps in Magia processing
is shown in Figure 1. Magia starts by preprocessing the PET
images. The preprocessing consists of frame-alignment (motion-
correction) and coregistration with the MRI. The MRI is
processed with FreeSurfer to generate anatomical parcellations
for defining regions of interest (Schain et al., 2014), and the
reference region if one is required for the chosen kinetic model.
FreeSurfer assigns an anatomical label to each brain voxel, and
the regions of interest (ROIs) thus consist of all the voxels
with the same anatomical label. Magia performs a two-step
correction to the reference tissue mask (see below) before
obtaining the input function for modeling; the corrections make
the reference regions robust for many scanners and individuals.
TheMRI is also segmented into gray andwhitematter probability
maps for spatial normalization (Ashburner and Friston, 2000).
After modeling, the parametric images are spatially normalized
and smoothed. In addition to the parametric images, Magia
also calculates region-level parameter estimates for each study.
Finally, the results are stored in a centralized archive in a
standardized format along with visual quality control metrics,
facilitating future population-level analyses.

2www.fil.ion.ucl.ac.uk/spm/
3https://surfer.nmr.mgh.harvard.edu/
4http://aivo.utu.fi
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FIGURE 1 | The Magia pipeline combines FreeSurfer cortical mesh generation and parcellation, T1 MR image segmentation and normalization, automatic reference
region and region of interest generation, and kinetic modeling.

The above-mentioned steps are only used when applicable.
For example, for static PET-images, the frame alignment
is skipped, and if there is no related MRI available, then
a tracer-specific radioactivity template must be available
to normalize the images. For all of the tracers included
in this manuscript, such templates can be obtained from
https://github.com/tkkarjal/magia/tree/master/templates. Magia
also supports tracers that do not have a reference region.
For such studies, the preprocessed (e.g., decay-corrected,
metabolite-corrected, and possibly extrapolated) plasma input
must be available. Magia has default settings for preprocessing,
modeling, and post processing that have worked well during its
development. However, Magia is also flexible in the sense that
the user can override some of these options if needed.

Validation Data
To assess reliability of Magia we used historical control data
using four radioligands with different targets and spatial
distribution of binding sites: Dopamine D2R receptor antagonist
[11C]raclopride, µ-opioid receptor agonist [11C]carfentanil,
serotonin transporter ligand [11C]MADAM, and beta-amyloid
ligand [11C]PIB. For each radioligand we selected 30 studies
(Table 1). We generated reference regions for all the tracers using
traditional manual methods and the new automatic method and
compared the results. The study was conducted as a part of a
register-based study on brain imaging at Turku PET Centre.
Per applicable legislation in Finland, fully anonymized medical
register data (including PET and MRI scans) can be analyzed

in the context of a register study without obtaining an active
informed consent from the individuals included in the register,
if information identifying the individuals is not obtained. The
study protocol was approved by Turku University Hospital
Research Board and the legislative team.

Manual Reference Region Delineation
Five researchers with good knowledge of human neuroanatomy
delineated reference regions for every study according to written
and visual instructions (Figure 2A). Cerebellar cortex was used
as a reference region for [11C]raclopride (Gunn et al., 1997),
[11C]MADAM (Lundberg et al., 2005) and [11C]PiB (Lopresti
et al., 2005). For [11C]carfentanil, the occipital cortex was used
(Endres et al., 2003). The regions were drawn using CARIMAS5

on three consecutive transaxial slices of T1-weighted MR images,
which is the current standard manual method at Turku PET
Centre. Cerebellar reference was drawn in the cerebellar gray
matter within a gray zone in the peripheral part of cerebellum,
distal to the bright signal of white matter. The first cranial
slice was placed below the occipital cortex to avoid spill-in of
radioactivity. Typically, this is a slice where the temporal lobe
is clearly separated from the cerebellum by the petrosal part of
the temporal bone. The most caudal slice was typically located
in the most caudal part of the cerebellum. Laterally, venous
sinuses were avoided to avoid spill-in during the early phases
of the scans. Posteriorly, there was about a 5 mm distance from
the cerebellar surface to avoid spill-out effects. Anteriorly, the

5http://turkupetcentre.fi/carimas/

Frontiers in Neuroinformatics | www.frontiersin.org 3 February 2020 | Volume 14 | Article 3

https://github.com/tkkarjal/magia/tree/master/templates
http://turkupetcentre.fi/carimas/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Karjalainen et al. Magia: A Brain PET Analysis Toolbox

TABLE 1 | Summary of the studies.

[11C]carfentanil [11C]raclopride [11C]MADAM [11C]PiB

N (female) 30 (12) 30 (23) 30 (17) 30 (18)
Age (mean, range) 32 (20–51) 39 (20–60) 42 (25–57) 71 (66–80)
Scanners HRRT GE Advance HRRT HRRT

PET/CT PET/CT
PET/MR HRRT

Data range (years) 2007–2016 1998–2014 2008–2015 2014–2016

Scanners: HRRT (HRRT, Siemens Medical Solutions); PET/CT (Discovery 690 PET/CT, GE Healthcare); PET/MR (Ingenuity TF PET/MR, Philips Healthcare); GE Advance (GE Advance,
GE Healthcare).

border of the reference region was drawn approximately 2 mm
distal to the border of cerebellar white and gray matter, except
in the most caudal slice, where the central white matter may no
longer be visible.

The occipital reference region was defined on three
consecutive transaxial slices, of which the most caudal slice
was the second-most caudal slice before the cerebellum. The
reference region was drawn J-shaped with medial and posterior
parts. The reference region was drawn to roughly follow the
shape of the cortical surface, but not individual gyri. The
reference region was drawn approximately 1 cm wide with about
2 mmmargin to the cortical surface to avoid spill-out effects. The
anterior border of the reference region was placed approximately
halfway between the posterior cortical surface and the splenium
of the corpus callosum. The posterolateral border of the reference
region approximated the medial-most part of the posterior horn
of the lateral ventricle.

Automatic Reference Region Generation
Figure 2B shows an overview of the automated reference-region-
generation process. First, T1-weighted MR images were fed
into FreeSurfer to provide subject-specific anatomical masks
for cerebellar and occipital cortices. Second, an anatomical
correction was applied to the FreeSurfer-generated reference
region mask to remove voxels that, based on their anatomical
location alone, are likely to suffer from spill-over effects. For
the cerebellar cortex, the most important sources of spill-over
effects are occipital cortex and venous sinuses. Thus, the most
outermost cerebellar voxels were excluded in the anatomical
reference region correction. For the occipital cortex, voxels that
were lateral to the lateral ventricles were excluded. This is because
the most lateral parts of the FreeSurfer-generated occipital
cortex extend to areas with specific binding for [11C]carfentanil,
and the lateral ventricles provide a reliable anatomical cut-off
point for thresholding. Finally, the radioactivity concentration
distribution within the anatomically corrected reference region
was estimated, and the tails of the distribution were excluded.
The lower and upper boundaries for the signal intensities
were defined by calculating the full width at half maximum
(FWHM) of the mean PET signal intensity distribution. This
step ensures that the reference region will not contain voxels
with atypically high or low radioactivity (e.g., signal from
outside the brain). The automatic reference region generation
process thus combines information from anatomical brain
scans and the PET images to get a reliable estimate of
nonspecific binding.

Quantifying Operator-Dependent Variability
We first investigated how subjective choices inmanual reference-
region delineation translate into differences in reference
region masks, reference-region time-activity curves (TACs), and
outcome measures. Anatomical differences in reference region
masks were assessed in two ways: first, we calculated within-
study spatial overlap between the manual reference regions. The
spatial overlap was calculated in two stages: it was first calculated
separately for all different manual reference region pairs, and
those numbers were then averaged over to obtain a summary
statistic for each study. Second, we investigated the differences
in volumes of the manually delineated reference regions using
the intra-class correlation coefficient (ICC). To estimate ICC, we
first estimated a random-effectsmodel y∼ 1 + (1 | operator) + (1 |
study), where, y is the variable of interest, and then calculated the
proportion of variance explained by the variance of the random-
effect-components (Nakagawa et al., 2017). Calculated this way,
ICC is restricted to between 0 and 1. The R package brms6 was
used to estimate themodels, and the R package performance7 was
used to estimate ICC.

Differences in reference region TACs were assessed by
calculating area under the curve (AUC) of them. Prior to
the ICC analysis, we standardized all the AUCs with the
mean radioactivity within the union of all manually delineated
reference regions. This standardization removes between-study
variance resulting from different scanners, body masses and
injected doses.

The Volumetric Similarity of the Manual
and Automatic Reference Regions
We compared the volumes of reference regions to assess whether
the two techniques generate reference regions of systematically
different sizes. For each study, we calculated the mean volume
from all manually delineated reference regions and compared
it to the volume of the Magia-derived reference region. We
also quantified the anatomical overlap between the manually
and the automatically derived reference regions. The overlap
was defined as the ratio between the number of common
voxels and the number of manual voxels. For each study,
the overlap was first calculated separately for every manually
delineated reference region after which the mean overlap
was calculated.

6https://cran.r-project.org/package=brms
7https://easystats.github.io/performance/index.html
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FIGURE 2 | (A) Visual instructions of the most cranial slice of manually delineated cerebellar (left) and occipital (right) reference regions. The reference regions were
delineated on three consecutive transaxial T1-weighted MR images. Cerebellar reference region is shown on the left and occipital reference region on the right.
(B) The diagram shows how a T1-weighted MR image of an individual’s brain is processed to produce the final reference region. The shown example is from the
[11C]carfentanil data set. The rectangles represent processing steps between inputs and outputs. The FreeSurfer step assigns an anatomical label to each voxel of
the subject’s T1 weighted MR image. The ROI extraction step extracts a prespecified ROI from FreeSurfer’s output. The anatomical correction removes voxels that
are most likely to suffer from spillover effects; for [11C]carfentanil data this means voxels lateral to the lateral ventricles. In the tail-exclusion step, radioactivity
distribution within the anatomically corrected reference region is estimated, and the voxels whose intensities are on the tail-ends of the distribution are excluded.

Similarity of the Reference Region
Radioactivity Concentrations
A functionally homogenous region should have approximately
Gaussian distribution of radioactivity measured with PET
(Teymurazyan et al., 2013). Functional homogeneousness was
assessed using radioactivity distributions within the reference
regions. The automatically and manually derived reference
region masks were used to extract radioactivity concentration

distribution within the reference regions. The study-specific
manual distributions were averaged over the manual drawers
to provide a single manual distribution for each study. The
radioactivity concentrations were converted into SUV, after
which the distributions were averaged over studies to provide
tracer-specific distributions. Mean, standard deviations, mode,
and skewness of the distributions were used to quantify the
differences in the distributions.
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Similarity of the Reference Region
Time-Activity Curves
We compared the similarity of the automatically and manually
delineated reference region TACs. For each study, the manual
reference region TAC was defined as the average across the
manual TACs to minimize the subjective bias in adhering to the
instructions for manual reference region delineation. Activities
were expressed as standardized uptake values (SUV, g/ml) which
were obtained by normalizing tissue radioactivity concentration
(kBq/ml) by total injected dose (MBq) and body mass (kg),
thus making the different images comparable to each other. To
assess the similarity of the shapes of reference region TACs,
we calculated Pearson correlations between the manually and
automatically delineated TACs for each tracer. Bias was assessed
using the area under the curve (AUC).

Assessing the Similarity of the Outcome
Measures
We used nondisplaceable binding potential (BPND) to
quantify uptakes of [11C]carfentanil, [11C]raclopride and
[11C]MADAM. It reflects the ratio between specific and
nondisplaceable binding in the brain. The binding potentials
were calculated using a simplified reference tissue model
whose use has been validated for these tracers (Gunn et al.,
1997; Endres et al., 2003; Lundberg et al., 2005). SUV-ratio
between 60 and 90 min was used to quantify [11C]PiB uptake
(Lopresti et al., 2005). All the studies were first processed
using Magia. To obtain the outcome measures resulting
from manually delineated reference regions the procedure
was repeated with the only exception of replacing the
automatically generated reference regions with a manually
generated reference region. Thus, the only differences observed
in the uptake estimates originate from differences in the
reference regions. We estimated the outcome measures in
one representative ROI for each tracer, and also calculated
parametric images. The ROIs were extracted from the
FreeSurfer parcellations.

RESULTS

Operator-Dependent Variation
The influence of different operators on reference region
volumes, reference region time-activity AUCs, and outcome
measures are presented for each tracer in Table 2. The spatial
overlap between the manually delineated masks was modest,
as the maximum overlap was 41% for [11C]raclopride studies,

while the overlap for the other tracers was 14–22%. The
ICC for reference region volumes were moderate to good
(0.74. . .0.83) for all tracers except [11C]MADAM (ICC = 0.46).
The reference region TAC AUCs varied substantially especially
for [11C]carfentanil and [11C]MADAM, while for [11C]PiB
operator had little influence on the AUCs (ICC = 0.95).
The operator had the most influence on outcome measures
for [11C]carfentanil and [11C]MADAM. For [11C]raclopride
and [11C]PiB operators had little influence on outcome
measures (ICC ≥ 0.95).

Differences Between Manually and
Automatically Produced Reference
Regions
Differences in Reference Region Masks
We first compared the anatomical similarities between the
automatically and manually delineated reference regions. For
each tracer, automatic reference regions were consistently
larger than manually derived reference regions (Figure 3 and
Supplementary Figure S1). In four [11C]carfentanil studies
at least one of the manually drawn reference regions was
larger than the automatic occipital reference region. Magia-
generated cerebellar reference regions were always larger than
mean manual cerebellar reference regions. The automatically
produced reference regions are naturally larger than the
manually delineated ones because manual delineation requires
mechanic work from highly trained individuals, thus providing
a cost to the size of the regions.

Next, we determined whether the Magia-derived reference
regions overlap with the manually drawn reference regions. The
automatic occipital reference region for [11C]carfentanil
overlapped only 14% with a manual occipital reference
region. The low overlap is explained by the substantial
difference between the sizes of the manually and automatically
generated occipital ROIs. Automatic cerebellar reference
regions overlapped with manual reference regions by
55%, 59% and 61% for [11C]raclopride, [11C]MADAM and
[11C]PiB, respectively.

Differences in Reference Region SUV Distributions
The overlap between the manual and automatic radioactivity
distributions was approximately 90% for all tracers
(Supplementary Figure S2). All distributions were unimodal
and highly symmetric for all tracers. The means of the
distributions were practically equal (maximum difference
of 0.07%). The standard deviations of the distributions differed

TABLE 2 | Operator-caused variation in basic characteristics derived from the reference region masks.

Intra-class correlation coefficient

Tracer Spatial overlap (%) Reference region volume Reference TAC AUC Outcome measure

[11C]carfentanil 22 83 61 75
[11C]raclopride 41 79 80 97
[11C]MADAM 18 46 58 76
[11C]PiB 14 74 95 95

TAC, time-activity curve; AUC, area under curve.

Frontiers in Neuroinformatics | www.frontiersin.org 6 February 2020 | Volume 14 | Article 3

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Karjalainen et al. Magia: A Brain PET Analysis Toolbox

FIGURE 3 | (A) Mean volumes of Magia-generated reference regions compared to mean volumes of manually delineated reference regions. (B) Visual examples of
Magia-generated and manual reference regions for one study.

by 14%, 11%, 12% and 18% for [11C]carfentanil, [11C]MADAM,
[11C]PIB and [11C]raclopride, respectively. The modes of the
automatically and manually derived distributions were 1.5 and
1.55 for [11C]carfentanil, 1.95 and 2.05 for [11C]MADAM,
1.65 and 1.70 for [11C]PIB, and 1.35 and 1.35 for [11C]raclopride.
Thus, the maximum difference was less than 5%. The skewnesses
of the Magia-derived and manually derived distributions were
1.2 and 0.9 for [11C]carfentanil, 1.3 and 1.2 for [11C]MADAM,
2.0 and 1.6 for [11C]PIB, and 2.4 and 2.0 for [11C]raclopride.

Differences in Reference Region Time-Activity
Curves
The Magia-produced TACs were on average very similar to
the average TACs calculated based on the manually delineated
reference regions (Figure 4). The Pearson correlation coefficients
were above 0.99 for all tracers. Supplementary Figure S3
shows how the Magia-derived reference region time-activity
curve AUCs compare against the manually obtained results.
For [11C]carfentanil, the between-study AUC means were
practically identical (<1%). The Magia-produced reference
regions had 2.6%, 1.1%, and 1.8% lower AUCs than the manual
reference regions for [11C]raclopride, [11C]MADAM, and
[11C]PiB, respectively.

Differences in Outcome Measures
Pearson correlation coefficients between the mean of
manual outcome measures and the Magia-derived outcome
measures were 0.79, 0.98, 0.84, and 0.99 for [11C]carfentanil,

[11C]raclopride, [11C]MADAM, and [11C]PiB, respectively.
The outcome measures derived using automatic and manual
methods are visualized in Figure 5 in one representative
ROI, the averaged outcome-measure-images are visualized
in Figure 6A and the relative bias in the whole brain
between them is visualized in Figure 6B. For [11C]carfentanil
and [11C]PiB Magia produced basically no bias (less than
1%). For [11C]MADAM, Magia produced up to 3–5%
higher binding potential estimates in regions with high
specific binding. In cortical regions with low specific
binding, the bias was over 10%. For [11C]raclopride, Magia
produced approximately 4–5% higher binding potential
estimates in striatum. In the thalamus, the bias was 8–10%.
Elsewhere in the brain the bias varied considerably between
13–20%. For both [11C]MADAM and [11C]raclopride, the
relative bias decreased significantly with increasing binding
potential (Figure 6C).

DISCUSSION

We established that the automated Magia pipeline produces
consistent estimates of radiotracer uptake for all the tested
ligands, with very little or even no bias in the outcome
measures. As expected, the manual delineation method suffered
from significant operator-dependent variability, highlighting the
importance of standardization of the process. The consistency
coupled with significant gains in processing speed suggests that
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FIGURE 4 | Between-subject mean time-activity curves. Blue = Magia; red = manual.

Magia is well suited for automated analysis of brain-PET data for
large-scale neuroimaging projects.

Outcome Measures Can Substantially
Depend on Who Delineated the Reference
Region
We estimated the amount of operator-dependent variation in
outcome measures. Despite all operators drawing the ROIs
using the same instructions (presented both verbally and
as visual/written instructions available for reference while
working) the ICC analyses show that for [11C]carfentanil and
[11C]MADAM, the variation produced by different operators is
significant, indicating that for these two tracers the subjective
variation in manual ROI delineation (e.g., which transaxial
slices to use, how to define ROI boundaries etc.) significantly
influences the magnitude of binding potential estimates. Out of
the tracers using the cerebellar cortex as the reference region,
[11C]MADAMhad the lowest ICCwith 76%. For [11C]raclopride
and [11C]PiB the ICCs were over 95%, indicating that for these
tracers manual delineation of reference regions may not be as
crucial source of variation.

These differences between tracers likely reflect differences
in the uniformity of the PET signal within the reference
regions. If the reference region were perfectly homogenous
with respect to the PET signal, it would not matter at all
which voxels to choose. In reality, however, the PET signal
is highly heterogenous. For example, the PET signal depends
on the transaxial slices used. Presumably, these heterogeneities
are substantial for [11C]carfentanil and, to a lesser extent, for
[11C]MADAM, while the PET signal from cerebellar cortex using
[11C]raclopride and [11C]PiB is significantly more homogenous.
Indeed, the spatial overlap between the manually delineated
reference region was higher for [11C]carfentanil (22%) than for
[11C]PiB (14%), suggesting that even small differences in spatial
overlap translate into substantial differences in binding potential
for [11C]carfentanil.

The influence of the operator on reference TAC AUCs
was even larger. For all the tracers, the ICC of outcome
measures was higher than the ICC for reference TAC AUCs.
For example, while [11C]raclopride BPND was barely influenced

by the individual manually delineating the reference region, the
ICC for [11C]raclopride reference TAC AUC was only 80%,
almost 20%-units less than for BPND. Thus, even the reference
region TACs for [11C]raclopride was not remarkably consistent
between the operators, further highlighting the sensitivity of
the delineation process despite detailed written and visual
instructions. These results highlight the need for reference-
region generation processes that do not suffer from subjectivity.

Reliability of Magia’s Uptake Estimates
Importantly, Magia produced parameter estimates consistent
with the averaged manual estimates (Pearson correlation
coefficients >0.78 for all tracers). This suggests that: (i) even
though individual operators yield different output metrics
these are sampled from the same true parameter space; which
(ii) is in turn accurately reflected by the Magia output. There
was no systematic bias for [11C]PiB SUVR and [11C]carfentanil
BPND. For [11C]PiB, the difference between the manual and
automatic SUVR estimates fluctuated randomly around zero.
Because SUVR was used to quantify [11C]PiB uptake, the
random fluctuation was independent of the brain region.
For [11C]carfentanil, the random fluctuation was slightly
greater in low-binding regions (but still within ±5%). In
contrast to [11C]PiB and [11C]carfentanil, there were systematic
differences between the manual and automatic binding potential
estimates for [11C]raclopride and [11C]MADAM. For both
tracers the bias decreased as a function of specific binding,
and in high-binding regions (BPND > 1.5) the bias was less
than 5%. Even if the bias increased sharply with decreasing
binding potential, the problematic regions are not typically
considered very interesting because of their poor signal-to-
noise ratio.

The systematic bias for [11C]MADAM and [11C]raclopride
is also reflected in the small differences in reference to tissue
TACs. For the tracers using cerebellar reference region, Magia-
derived reference tissue TACs had 2–3% lower AUCs. The
peaks of the TACs were also slightly lower. For [11C]PiB, the
bias did not propagate into outcome measures because the
SUV-ratio was calculated between 60 and 90 min when there
was no bias in TACs. Because binding potential reflects the ratio
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FIGURE 5 | Comparison of Magia-derived outcome measures against manually obtained ones.

between specific binding and unspecific binding (obtained from
reference tissue), the reference TAC AUCs directly propagate
into biases in binding potentials. Thus, these data indicate

that Magia may produce slightly higher binding potential
estimates than traditional methods at least if the cerebellar
cortex is used as the reference region. These data do not,
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FIGURE 6 | (A) Visualization of the outcome measure distributions for each tracer. (B) Maps visualizing the relative biases of the Magia-derived outcome measures
compared to the averages obtained by manual reference region delineation. The manual method is here presented as the ground truth, because the manual
outcome for each scan is an average over five individual estimates, while the Magia result relies on a single estimate. (C) Associations between the outcome measure
magnitude and relative bias.

however, imply that the bias should be regarded as error: in
fact, Magia produces significantly larger reference regions, and
consequently the reference tissue TACs are less noisy. This is
desirable because the noise in the input function influences
model fitting. However, the bias alsomeans thatMagia-produced
estimates should not be combined with estimates produced with
other methods.

Functional Homogeneity of the Reference
Regions
We tested whether the assumption of homogenous binding
within the reference regions holds for both automatic and
manual reference regions. A homogenous source region should
produce unimodal and approximately symmetric radioactivity
distributions 21. Between-study average distributions were
unimodal and symmetric for all tracers for both the manual
and automatic methods. The distribution means were practically
identical, but the modes were 1–2% higher for Magia. The
manual distributions were slightly wider (the standard deviations
were approximately 15% larger) because Magia cuts the
distribution tails. The manual distributions were also slightly

less skewed. Because averaging distributions tends to make
them more Gaussian, this difference probably arises from
the fact that the manual distributions that were used in
the comparison were defined as an average over the five
distributions delineated by the independent operators. The
distribution overlaps were approximately 90% for all tracers.
In sum, these results show that the Magia-generated reference
region radioactivity distributions satisfy the requirement of
functional uniformity.

Reference Tissue Time-Activity Curves
Despite their topographical differences, the automatically and
manually produced reference regions yielded very similar TACs.
For all tracers, the Pearson correlation coefficient between
average automatic and manual reference tissue TACs was
above 0.99. The TAC shapes were thus in excellent agreement.
For [11C]carfentanil, also the AUC of reference region TACs
were highly similar. The AUCs of cerebellar TACs were 2–3%
lower for Magia, indicating that the cerebellar automatic TACs
were slightly negatively biased compared to their manual
counterparts. The source of this difference unknown but
it could result e.g., from heterogenous nonspecific binding
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within cerebellar cortex or from spill-in or spill-over effects.
Whatever explains the small difference, these data do not
directly indicate which method produced more realistic TACs.
However, because the Magia-generated cerebellar reference
regions were without exception substantially larger than their
manual counterparts, the TACs of Magia presumably have
a higher signal-to-noise ratio, suggesting that the Magia-
derived metrics may compare favorably against the manually
obtained metrics.

Solving Time Constraints in the Processing
of PET Data
On average, drawing the reference region for a single subject took
around 15 min, and without any automatization the modeling
and spatial processing of the images standard tools (e.g., PMOD
or Turku PETCentremodeling software) take on average 45min.
In contrast, it takes less than 5 min to set Magia running for
a single study. Although the time advantage—roughly an hour
per study—gained from automatization is still modest in small-
scale studies (e.g., three 8-h working days for a study with
24 subjects) the effect scales up quickly, and manual modeling
of a database of just 400 studies would take already 50 days. This
is a significant investment of human resources, in particular, if
the analyses have to be redone later with, for example, different
modeling parameters requiring repeating of at least some parts of
the process.

Comparison of Magia to Existing Tools
Several tools already exist for processing brain PET data.
MIAKAT (Gunn et al., 2016) is another MATLAB-based tool
that combines preprocessing and kinetic modeling. Compared
to Magia, MIAKAT is missing support for the two-tissue
compartmental model, SUV-ratio, as well as FUR-analyses.
APPIAN (Funck et al., 2018) is another recent development
that, unlike Magia, includes partial volume correction. However,
APPIAN lacks motion-correction and also supports fewer kinetic
models than Magia, and like MIAKAT, APPIAN also uses
neuroanatomical atlases for ROI definition. Both of these tools, as
well as all the other existing tools, are restricted in the sense that
they require both MRI and PET data. Magia, in contrast, can also
process brain PET data without MRI if a tracer-specific template
is available. Magia also comes with default modeling options for
several tracers. Accordingly, Magia is currently the most flexible
open-source tool available for automated processing of brain
PET data.

Limitations
SMagia is currently fully automatic only for tracers for which
a reference region exists. However, even for blood-based
inputs, Magia requires minimal user intervention, as Magia
can read in the input function from the appropriate location.
Magia was originally developed with the assumption that
a T1-weighted MR image is available for each subject (for
reference region delineation and spatial normalization). Because
this assumption limited the applicability of the approach for
reanalysis of some historical data, Magia can now also use
neuroanatomical atlases for ROI definition and tracer-specific

radioactivity templates for spatial normalization. Templates
for each of the tracers used in this manuscript are available
in https://github.com/tkkarjal/magia/tree/master/templates,
and Magia can use whatever templates the user may have
available. Thus, the availability of MRI is not necessary,
but it is strongly recommended because most of the testing
has been done with MRI-based processing, and because the
ROIs as well as reference regions can then be generated
in the native space. The drawback of FreeSurfer-based
ROI-generation is that it is relatively slow (∼ 10 h). Partial
volume correction is not currently implemented in Magia,
yet this feature will be added in future releases. Finally,
Magia processes the studies independently of each other.
Within-subject designs would benefit from consideration
of multiple images per participant, but this is currently
not possible.

CONCLUSION

Magia is a standardized and fully automatic analysis pipeline for
processing brain PET data. By standardizing the reference region
generation process, Magia eliminates operator-dependency in
producing outcome-measures. For [11C]carfentanil that uses the
occipital cortex as the reference region, the reduced variance
comes with no cost for bias in BPND. The SUVR estimates were
also unbiased for [11C]PiB. [11C]raclopride and [11C]MADAM
BPND was slightly overestimated. However, compared to the
variance resulting from operator dependency, this bias was
negligible and may actually favor Magia. In any case, bias is
meaningless in most population-level analyses. Magia enables
standardized analysis of brain PET data, facilitating shift
towards larger samples and more convenient data sharing across
research sites.
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